

 | Contents | 2

Contents

Copyright..6

Integration Development Guide... 7

Authorizing Client Applications to Work with Acumatica ERP.......................8
Authorization Code Flow... 8
Implicit Flow..14
Resource Owner Password Credentials Flow...18
Comparison of the Flows...22
To Register a Client Application..22
To Revoke the Access of a Connected Application...24

Configuring the Contract-Based REST and SOAP API................................. 26
Contract-Based Web Services API.. 26
Endpoints and Contracts... 27
API Entities, Fields, and Actions...28
Custom Fields.. 30
Custom Endpoints and Endpoint Extensions...31
Naming Rules for Endpoints.. 32
Comparison of Contract Versions..32
Comparison of System Endpoints... 33
To Create a Custom Endpoint.. 39
To Extend an Existing Endpoint..41
To Validate an Endpoint.. 42

Working with the Contract-Based REST API...45
Representation of a Record in JSON Format.. 45
Login to the Service...48
Logout from the Service... 50
Creation of a Record.. 51
Update of a Record.. 53
Retrieval of a Record by Key Fields..56
Retrieval of a Record by ID...58
Retrieval of Records by Conditions... 59
Retrieval of Data from an Inquiry Form.. 62
Parameters for Retrieving Records..64
Removal of a Record.. 66
Execution of an Action..68
Attachment of a File to a Record... 71
Retrieval of a File Attached to a Record..73
Retrieval of the Schema of Custom Fields... 75
Multi-Language Fields... 76

 | Contents | 3

Working with the Contract-Based SOAP API.. 78
Multi-Language Fields... 78
To Configure the Client Application...79

Working with the Screen-Based SOAP API...83
Screen-Based Web Services API...83
API Objects Related to Acumatica ERP Forms.. 84
Screen-Based API Wrapper..85
To Generate the WSDL File of the Web Services.. 88
To Import the WSDL File Into the Development Environment...89
To Use the Screen-Based API Wrapper... 92

Working with Commands of the Screen-Based SOAP API...........................94
Commands for Retrieving the Values of Elements...94
Selection of a Group of Records for Export... 95
Commands for Setting the Values of Elements.. 97
Commands for Clicking Buttons on a Form..97
Commands for Adding Detail Lines...98
Commands for Pop-Up Dialog Boxes and Pop-Up Forms.. 99
Commands for Pop-Up Panels.. 100
Commands for Record Searching: Filter Service Command.. 102
Commands for Record Searching: Key Command... 104
Commands for Record Searching: Custom Field... 104
Commands That Require a Commit.. 105
Commands for Working with Attachments... 106
Commands for Working with Multi-Language Fields...107

Configuring Push Notifications...109
Push Notifications... 109
Recommendations for the Data Queries.. 110
Push Notification Destinations.. 111
Push Notification Format... 112
To Configure Push Notifications.. 113
To Process Failed Notifications..115

Defining Push Notifications..116
To Create a Built-In Definition... 116
To Connect to the SignalR Hub.. 118
To Add Additional Information to Push Notifications.. 120
To Create a Custom Destination Type... 121

Contract-Based REST API Reference.. 123

Contract-Based SOAP API Reference..124
Login() Method...124
Logout() Method...125

 | Contents | 4

SetBusinessDate() Method...126
Get() Method... 126
GetList() Method (Contract Version 3)...127
GetList() Method (Contract Version 2)...128
Put() Method... 129
Delete() Method... 132
Invoke() Method...132
GetProcessStatus() Method..133
GetFiles() Method... 133
PutFiles() Method... 134
GetCustomFieldSchema() Method... 135
Attributes Property... 135
CustomFields Property...136
ReturnBehavior Property (Contract Version 3).. 138
ReturnBehavior Property (Contract Version 2).. 140

Screen-Based SOAP API Reference.. 142
Login() Method...142
Logout() Method...143
SetLocaleName() Method...144
SetBusinessDate() Method...144
GetScenario() Method... 145
GetSchema() Method.. 145
SetSchema() Method.. 146
Export() Method... 146
Submit() Method.. 147
Import() Method...148
Clear() Method...149
GetProcessStatus() Method..149

Contract-Based API Examples..151
Integration of Acumatica ERP Projects with External Systems (REST and SOAP API Examples)..151

Creation of a Pro Forma Invoice... 151
Managing of Account Groups.. 157
Running of Project Billing... 161
Creation of a GL Transaction with a Project Code That Does Not Produce a Project

Transaction...164
Time Entry... 166

Integration of Acumatica ERP with POS systems (SOAP API Examples)................................168
Entry of a Direct Sales Invoice... 168
Entry of a Direct Sales Invoice Along with a Return...172
Entry of a Credit Memo with Positive and Negative Lines..175
Entry of a Direct Sales Invoice in a Non-Default Currency.. 178
Entry of a Direct Sales Invoice for a Shipped Order and Return.................................181
Entry of a Direct Sales Invoice for an Unshipped Sales Order....................................186
Entry of a Direct Sales Invoice for a Partially Shipped Sales Order.............................189

 | Contents | 5

Entry of a Credit Memo for an Unshipped Sales Order... 195

 | Copyright | 6

Copyright

© 2018 Acumatica, Inc.
ALL RIGHTS RESERVED.

No part of this document may be reproduced, copied, or transmitted without the express prior consent
of Acumatica, Inc.

11235 SE 6th Street, Suite 140
Bellevue, WA 98004

Restricted Rights

The product is provided with restricted rights. Use, duplication, or disclosure by the United States
Government is subject to restrictions as set forth in the applicable License and Services Agreement
and in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 or subparagraphs (c)(1) and (c)(2) of the Commercial Computer Software-Restricted
Rights at 48 CFR 52.227-19, as applicable.

Disclaimer

Acumatica, Inc. makes no representations or warranties with respect to the contents or use of this
document, and specifically disclaims any express or implied warranties of merchantability or fitness for
any particular purpose. Further, Acumatica, Inc. reserves the right to revise this document and make
changes in its content at any time, without obligation to notify any person or entity of such revisions or
changes.

Trademarks

Acumatica is a registered trademark of Acumatica, Inc. HubSpot is a registered trademark of HubSpot,
Inc. Microsoft Exchange and Microsoft Exchange Server are registered trademarks of Microsoft
Corporation. All other product names and services herein are trademarks or service marks of their
respective companies.

Software Version: 2018 R2

Last updated:

 | Integration Development Guide | 7

Integration Development Guide

In this guide, you can find information about how to develop client applications that work with
Acumatica ERP through the web services.

In This Guide

• Authorizing Client Applications to Work with Acumatica ERP

• Configuring the Contract-Based REST and SOAP API

• Working with the Contract-Based REST API

• Working with the Contract-Based SOAP API

• Working with the Screen-Based SOAP API

• Working with Commands of the Screen-Based SOAP API

• Configuring Push Notifications

• Contract-Based REST API Reference

• Contract-Based SOAP API Reference

• Screen-Based SOAP API Reference

• Contract-Based API Examples

 | Authorizing Client Applications to Work with Acumatica ERP | 8

Authorizing Client Applications to Work with
Acumatica ERP

Acumatica ERP supports the OAuth 2.0 mechanism of authorization for applications that are integrated
with Acumatica ERP through application programming interfaces (APIs). When a client application of
Acumatica ERP uses the OAuth 2.0 mechanism of authorization, the client application does not operate
with the Acumatica ERP credentials to log in a user to Acumatica ERP; instead, the application obtains
an access token from Acumatica ERP and uses this token when it requests data from Acumatica ERP.

Depending on the OAuth 2.0 flow that the client application implements, the client application either
has no information on the credentials of an Acumatica ERP user or uses this information only once
to obtain the access token. The OAuth 2.0 mechanism of authorization improves the security of the
Acumatica ERP data accessed by the application and simplifies the management of access rights.

The client application that implements the OAuth 2.0 authorization mechanism can use one of the
OAuth 2.0 authorization flows supported by Acumatica ERP, which are the following:

• Authorization code

• Implicit

• Resource owner password credentials

In this chapter, you can find details on the OAuth 2.0 authorization flows and information about how to
register the OAuth 2.0 or OpenID Connect client applications and revoke access of the applications.

In This Chapter

• Authorization Code Flow

• Implicit Flow

• Resource Owner Password Credentials Flow

• Comparison of the Flows

• To Register a Client Application

• To Revoke the Access of a Connected
Application

Authorization Code Flow
When you implement OAuth 2.0 authorization in a client application to make the application work
with Acumatica ERP, you can use the authorization code flow. With this authorization flow, the
client application never gets the credentials of the applicable Acumatica ERP user. After the user is
authenticated in Acumatica ERP, the client application receives an authorization code, exchanges it for
an access token, and then uses the access token to work with data in Acumatica ERP. When the access
token expires, the client application can request a new access token by providing a refresh token.

The following diagram illustrates the authorization code flow, whose steps are described in the sections
of this topic.

 | Authorizing Client Applications to Work with Acumatica ERP | 9

Figure: Authorization code flow

For details on the OAuth 2.0 authorization mechanism, see the specification at https://tools.ietf.org/
html/rfc6749.

Granting Permission to a Client Application

Before an OAuth 2.0 client application can work with Acumatica ERP, you must register this application
in Acumatica ERP and provide credentials to the application, as described in To Register a Client
Application with the Authorization Code Flow. After the registration, you have the client ID and the
secret value of the client application.

Important:

• According to the OAuth 2.0 specification, a secure connection between an OAuth 2.0 client
application and the Acumatica ERP website with a Secure Socket Layer (SSL) certificate is required.
Therefore, you have to set up the Acumatica ERP website for HTTPS before the OAuth 2.0 client
application can work with data in Acumatica ERP. For more information, see Setting Up an HTTPS
Service in Web Server (IIS).

• When you are registering the client application, you have to be logged in to the company whose data
the client application needs to access.

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749

 | Authorizing Client Applications to Work with Acumatica ERP | 10

Connecting to the Authorization Endpoint

The client application connects to the authorization endpoint of Acumatica ERP by specifying the
following URL with parameters:

• URL

The client application can use one of the following options:

• If the client application supports OpenID Connect Discovery, the client application can
use the discovery endpoint address, which is https://<Acumatica ERP instance
URL>/identity/. In this address, <Acumatica ERP instance URL> is the URL of the
Acumatica ERP instance to which the client application is going to connect.

For example, for a local Acumatica ERP instance with the name AcumaticaDB, the discovery
endpoint address is https://localhost/AcumaticaDB/identity/.

: We recommend that the client application use the discovery endpoint address, which
eliminates the need to change the application if the authorization endpoint address changes.

• The client application can directly use the authorization endpoint address, which is
https://<Acumatica ERP instance URL>/identity/connect/authorize.
In this address, <Acumatica ERP instance URL> is the URL of the Acumatica ERP
instance to which the client application is going to connect.

For example, for a local Acumatica ERP instance with the name AcumaticaDB, the
authorization endpoint address is https://localhost/AcumaticaDB/identity/
connect/authorize.

• URL Parameters

The client application should specify the following URL parameters.

Parameter Description

response_type The type of the OAuth 2.0 flow, which must be set to code for the
authorization code flow.

client_id The client ID that was assigned to the client application during the
registration of the application in Acumatica ERP. The client ID must
have the format in which the ID was generated during the registration
of the application. That is, the client ID must include an auto-generated
string and the ID of the company, such as 88358B02-A48D-A50E-
F710-39C1636C30F6@MyCompany. The client application will have access
to the data of the company specified in the client ID.

redirect_uri The URI in the client application to which the response to the request should
be sent. The URI must exactly match one of the values specified for the
application in the Redirect URI column on the Redirect URIs tab of the
Connected Applications (SM303010) form.

scope The access scope that is requested by the client application. The scope can
be a combination of the following values, delimited by spaces:

• api: Requests access to a web services API. If a user grants this scope
to the application, the client application can work with either or both of
the following types of the web services API: contract-based SOAP API
or contract-based REST API.

If this scope is granted and the api:concurrent_access scope is
not granted, Acumatica ERP manages the sessions of the application
through tokens. Acumatica ERP issues the first access token along with
the session ID. If the client application requests a new access token

 | Authorizing Client Applications to Work with Acumatica ERP | 11

Parameter Description

by presenting a refresh token, Acumatica ERP reuses the session ID
that was issued for the first access token issued with the refresh token.
That is, the system uses a single session for each access granted to
the client application.

• offline_access: Requests that a refresh token be granted. If a user
grants this scope to the application, Acumatica ERP issues to the
client application a refresh token along with the access token. (For
information on issuing the access token, see Connecting to the Token
Endpoint in this topic.) When the access token has expired, the client
application can request a new access token by sending a request to the
token endpoint and providing the refresh token.

• api:concurrent_access: Requests permission for the concurrent use
of multiple types of web service APIs. If a user grants this scope to the
application, the client application can access data in Acumatica ERP in
concurrent mode. In this case, Acumatica ERP can maintain multiple
sessions for the client application, managing session IDs through
cookies. We recommend that the client application request this scope
only if concurrent access is required for the client application.

An example of a URL with parameters is shown below. (Line breaks are for display purposes only.)

https://localhost/AcumaticaDB/identity/connect/authorize?
response_type=code
&client_id=4B1DFD71-C5EE-0B21-A6BE-9A1F060A93BD
&redirect_uri=http%3A%2F%2Flocalhost%2Fclientapp%2F
&scope=api%20offline_access

Authorizing a User in Acumatica ERP and Granting Access

The authorization endpoint directs the user of the client application to the login page of Acumatica ERP,
where the user should enter the credentials to log in to a company configured in the Acumatica ERP
instance.

: The user must log in to the company that was specified in the client_id URL parameter passed to the
authorization endpoint. (This company is selected by default on the login page.)

If the credentials are accepted by Acumatica ERP, the system displays the consent form, where the
user can confirm that the application has access to the requested scopes. Only the scopes that were
requested by the application are displayed on the consent form.

Receiving the Authorization Code

Once the user grants access to the requested scopes, Acumatica ERP redirects the client application to
the redirect_uri address that was specified in the request, and adds the authorization code in the
code URL parameter.

Connecting to the Token Endpoint

The client application connects to the token endpoint of Acumatica ERP by specifying the following URL
and the following parameters in the request body:

• URL

The client application can use one of the following options:

• If the client application supports OpenID Connect Discovery, the client application can
use the discovery endpoint address, which is https://<Acumatica ERP instance

 | Authorizing Client Applications to Work with Acumatica ERP | 12

URL>/identity/. In this address, <Acumatica ERP instance URL> is the URL of the
Acumatica ERP instance to which the client application is going to connect.

For example, for a local Acumatica ERP instance with the name AcumaticaDB, the discovery
endpoint address is https://localhost/AcumaticaDB/identity/.

: We recommend that the client application use the discovery endpoint address, which
eliminates the need to change the application if the authorization endpoint address changes.

• The client application can directly use the token endpoint address, which is https://
<Acumatica ERP instance URL>/identity/connect/token. In this endpoint,
<Acumatica ERP instance URL> is the URL of the Acumatica ERP instance to which
the client application is going to connect.

For example, for a local Acumatica ERP instance with the name AcumaticaDB, the token
endpoint address is https://localhost/AcumaticaDB/identity/connect/token.

• Parameters in the Request Body

You specify the following parameters in the request body.

Parameter Description

grant_type The type of the OAuth 2.0 flow, which must be set to
authorization_code for the authorization code flow.

client_id The client ID that was assigned to the client application during the
registration of the application in Acumatica ERP. The client ID must
have the format in which the ID was generated during the registration
of the application. That is, the client ID must include an auto-generated
string and the ID of the company, such as 88358B02-A48D-A50E-
F710-39C1636C30F6@MyCompany. The client application will have access
to the data of the company specified in the client ID.

code The authorization code that the client application has received from the
authorization endpoint.

client_secret The value of the secret that was created for the client application during the
registration of the application in Acumatica ERP.

redirect_uri The URI in the client application to which the response to the request should
be sent. The URI must exactly match one of the values specified for the
application in the Redirect URI column on the Redirect URIs tab of the
Connected Applications (SM303010) form.

Receiving the Access Token

Acumatica ERP verifies the provided application credentials and issues the access token, which the
client application should provide with each data request to Acumatica ERP. During authentication in
Acumatica ERP, if the user has granted to the client application the offline_access scope, Acumatica
ERP issues the refresh token along with the access token. A successful response includes the following
parameters in the response body.

Parameter Description

token_type The type of the access token, which is Bearer.

access_token The access token.

expires_in The period of time during which the access token is valid.

 | Authorizing Client Applications to Work with Acumatica ERP | 13

Parameter Description

refresh_token The refresh token. The parameter is returned only if the offline_access scope
was granted.

Requesting Data with the Access Token

The client application should include the access token in the Authorization header of each
subsequent request to Acumatica ERP, as shown in the following HTTP example.

GET /AcumaticaDB/entity/Default/6.00.001/SalesOrder/SO/000001 HTTP/1.1
Host: localhost
Authorization: Bearer cde78a99a2dc6388eb8c7242a90cf9bc

Refreshing the Access Token

The access token is valid for a specific period of time, which is specified in the response that returns the
access token. When the access token expires, the client application can request a new access token by
providing the refresh token to the token endpoint. To request a new access token, the client application
should have the following URL and the following parameters specified in the request body:

• URL

The client application can use one of the following options:

• If the client application supports OpenID Connect Discovery, the client application can
use the discovery endpoint address, which is https://<Acumatica ERP instance
URL>/identity/. In this address, <Acumatica ERP instance URL> is the URL of the
Acumatica ERP instance to which the client application is going to connect.

For example, for a local Acumatica ERP instance with the name AcumaticaDB, the discovery
endpoint address is https://localhost/AcumaticaDB/identity/.

: We recommend that the client application use the discovery endpoint address, which
eliminates the need to change the application if the authorization endpoint address changes.

• The client application can directly use the token endpoint address, which is https://
<Acumatica ERP instance URL>/identity/connect/token. In this endpoint,
<Acumatica ERP instance URL> is the URL of the Acumatica ERP instance to which
the client application is going to connect.

For example, for a local Acumatica ERP instance with the name AcumaticaDB, the token
endpoint address is https://localhost/AcumaticaDB/identity/connect/token.

• Parameters in the Request Body

You specify the following parameters in the request body.

Parameter Description

grant_type The type of the request, which must be set to refresh_token for the
request of the refresh token.

client_id The client ID that was assigned to the client application during the
registration of the application in Acumatica ERP. The client ID must
have the format in which the ID was generated during the registration
of the application. That is, the client ID must include an auto-generated
string and the ID of the company, such as 88358B02-A48D-A50E-
F710-39C1636C30F6@MyCompany. The client application will have access
to the data of the company specified in the client ID.

 | Authorizing Client Applications to Work with Acumatica ERP | 14

Parameter Description

client_secret The value of the secret that was created for the client application during the
registration of the application in Acumatica ERP.

refresh_token The refresh token that the client application received from the
token endpoint along with the access token if the user granted the
offline_access scope to the client application.

Receiving the New Access Token

Acumatica ERP verifies the provided application credentials and issues the new access token. The
new refresh token is not issued. To request the access token once again, the client application should
use the refresh token issued with the first access token. A successful response includes the following
parameters in the response body.

Parameter Description

token_type The type of the access token, which is Bearer.

access_token The access token.

expires_in The period of time during which the access token is valid.

Logging Out from Acumatica ERP

To prevent issues with licenses that limit the number of concurrent user sessions, the client application
should directly call the logout method of the Acumatica ERP web services API when the application
finishes its work with Acumatica ERP.

Implicit Flow
When you implement OAuth 2.0 authorization in a client application to make the application work with
Acumatica ERP, you can use the implicit flow, which is a simplified variant of the authorization code
flow.

With the implicit flow, the client application never gets the credentials of the applicable Acumatica
ERP user. When the user is authenticated in Acumatica ERP, the client application does not receive an
authorization code (as with the authorization code flow); instead, the client application directly receives
an access token, and then uses the access token to work with data in Acumatica ERP. The access token
is valid for a limited period of time and cannot be renewed.

The following diagram illustrates the implicit flow, whose steps are described in the sections later in this
topic.

 | Authorizing Client Applications to Work with Acumatica ERP | 15

Figure: Implicit flow

This flow can be used for clients using a scripting language (such as JavaScript) or for mobile clients.
For details on the OAuth 2.0 authorization mechanism, see the specification at https://tools.ietf.org/
html/rfc6749.

Granting Permission to a Client Application

Before an OAuth 2.0 client application can work with Acumatica ERP, you must register this application
in Acumatica ERP and provide credentials to the application, as described in To Register a Client
Application with the Implicit Flow. After the registration, you have the client ID of the client application.

Important:

• According to the OAuth 2.0 specification, a secure connection between an OAuth 2.0 client
application and the Acumatica ERP website with a Secure Socket Layer (SSL) certificate is required.
Therefore, you have to set up the Acumatica ERP website for HTTPS before the OAuth 2.0 client
application can work with data in Acumatica ERP. For more information, see Setting Up an HTTPS
Service in Web Server (IIS).

• When you are registering the client application, you have to be logged in to the company whose data
the client application needs to access.

Connecting to the Authorization Endpoint

The client application connects to the authorization endpoint of Acumatica ERP by specifying the
following URL and parameters:

• URL

The client application can use one of the following options:

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749

 | Authorizing Client Applications to Work with Acumatica ERP | 16

• If the client application supports OpenID Connect Discovery, the client application can
use the discovery endpoint address, which is https://<Acumatica ERP instance
URL>/identity/. In this address, <Acumatica ERP instance URL> is the URL of the
Acumatica ERP instance to which the client application is going to connect.

For example, for a local Acumatica ERP instance with the name AcumaticaDB, the discovery
endpoint address is https://localhost/AcumaticaDB/identity/.

: We recommend that the client application use the discovery endpoint address, which
eliminates the need to change the application if the authorization endpoint address changes.

• The client application can directly use the authorization endpoint address, which is
https://<Acumatica ERP instance URL>/identity/connect/authorize.
In this address, <Acumatica ERP instance URL> is the URL of the Acumatica ERP
instance to which the client application is going to connect.

For example, for a local Acumatica ERP instance with the name AcumaticaDB, the
authorization endpoint address is https://localhost/AcumaticaDB/identity/
connect/authorize.

• URL Parameters

The client application should specify the following URL parameters.

Parameter Description

response_type The type of the OAuth 2.0 flow, which must be set to token for the implicit
flow.

client_id The client ID that was assigned to the client application during the
registration of the application in Acumatica ERP. The client ID must
have the format in which the ID was generated during the registration
of the application. That is, the client ID must include an auto-generated
string and the ID of the company, such as 88358B02-A48D-A50E-
F710-39C1636C30F6@MyCompany. The client application will have access
to the data of the company specified in the client ID.

redirect_uri The URI in the client application to which the response to the request should
be sent. The URI must exactly match one of the values specified for the
application in the Redirect URI column on the Redirect URIs tab of the
Connected Applications (SM303010) form.

scope The access scope that is requested by the client application. The scope can
be a combination of the following values delimited by spaces:

• api: Requests access to a web services API. If a user grants this scope
to the application, the client application can work with either or both of
the following types of the web services API: contract-based SOAP API
or contract-based REST API.

If this scope is granted and the api:concurrent_access scope is
not granted, Acumatica ERP manages the sessions of the application
through tokens. The system uses a single session for each access
granted to the client application.

• api:concurrent_access: Requests permission for the concurrent use
of multiple types of web service APIs. If a user grants this scope to the
application, the client application can access data in Acumatica ERP in
concurrent mode. In this case, Acumatica ERP can maintain multiple
sessions for the client application, managing session IDs through

 | Authorizing Client Applications to Work with Acumatica ERP | 17

Parameter Description

cookies. We recommend that the client application request this scope
only if concurrent access is required for the client application.

: The offline_access scope is not supported by the implicit flow.

An example of the HTTP request is shown below. (Line breaks are for display purposes only.)

http://localhost/AcumaticaDB/identity/connect/authorize?
response_type=token
&client_id=4B1DFD71-C5EE-0B21-A6BE-9A1F060A93BD
&redirect_uri=http%3A%2F%2Flocalhost%2Fclientapp%2F
&scope=api

Authorizing a User in Acumatica ERP and Granting Access

The authorization endpoint directs the user of the client application to the login page of Acumatica ERP,
where the user should enter the credentials to log in to a company configured in the Acumatica ERP
instance.

: The user must log in to the company that was specified in the client_id URL parameter passed to the
authorization endpoint. (This company is selected by default on the login page.)

If the credentials are accepted by Acumatica ERP, the system displays the consent form, where the
user can confirm that the application has access to the requested scopes. Only the scopes that were
requested by the application are displayed on the consent form.

Obtaining the Access Token

Once the user grants access to the requested scopes, Acumatica ERP redirects the client application to
the redirect_uri address, which was specified in the request, and adds the access token in the URL
parameters. The redirect URL includes the following URL parameters.

Parameter Description

token_type The type of the access token, which is Bearer.

access_token The access token.

expires_in The period of time during which the access token is valid.

: Refresh tokens are not supported by the implicit flow.

Requesting Data with the Access Token

The client application should include the access token in the Authorization header of each
subsequent request to Acumatica ERP, as shown in the following HTTP example.

GET /AcumaticaDB/entity/Default/6.00.001/SalesOrder/SO/000001 HTTP/1.1
Host: localhost
Authorization: Bearer cde78a99a2dc6388eb8c7242a90cf9bc

Logging Out from Acumatica ERP

To prevent issues with licenses that limit the number of concurrent user sessions, the client application
should directly call the logout method of the Acumatica ERP web services API when the application
finishes its work with Acumatica ERP.

 | Authorizing Client Applications to Work with Acumatica ERP | 18

Resource Owner Password Credentials Flow
When you implement OAuth 2.0 authorization in a client application to make the application work with
Acumatica ERP, you can use the resource owner password credentials flow.

With the resource owner password credentials flow, the credentials (username and password) of the
Acumatica ERP user are provided directly to the client application, which uses the credentials to obtain
the access token. When the access token expires, the client application can request a new access token
by providing a refresh token.

The following diagram illustrates the resource owner password credentials flow, whose steps are
described in the sections later in this topic.

Figure: Resource owner password credentials flow

For details on the OAuth 2.0 authorization mechanism, see the specification at https://tools.ietf.org/
html/rfc6749.

Granting Permission to a Client Application

Before an OAuth 2.0 client application can work with Acumatica ERP, you must register this application
in Acumatica ERP and provide credentials to the application, as described in To Register a Client
Application with the Resource Owner Password Flow. After the registration, you have the client ID and
secret value of the client application.

Important:

• According to the OAuth 2.0 specification, a secure connection between an OAuth 2.0 client
application and the Acumatica ERP website with a Secure Socket Layer (SSL) certificate is required.
Therefore, you have to set up the Acumatica ERP website for HTTPS before the OAuth 2.0 client

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749

 | Authorizing Client Applications to Work with Acumatica ERP | 19

application can work with data in Acumatica ERP. For more information, see Setting Up an HTTPS
Service in Web Server (IIS).

• When you are registering the client application, you have to be logged in to the company whose data
the client application needs to access.

Obtaining the Credentials of the Acumatica ERP User

The client application should obtain the username and password of the applicable Acumatica ERP user,
which can then be exchanged for an access token.

Connecting to the Token Endpoint

The client application connects to the token endpoint of Acumatica ERP by specifying the following URL
and parameters in the request body:

• URL

The client application can use one of the following options:

• If the client application supports OpenID Connect Discovery, the client application can
use the discovery endpoint address, which is https://<Acumatica ERP instance
URL>/identity/. In this address, <Acumatica ERP instance URL> is the URL of the
Acumatica ERP instance to which the client application is going to connect.

For example, for a local Acumatica ERP instance with the name AcumaticaDB, the discovery
endpoint address is https://localhost/AcumaticaDB/identity/.

: We recommend that the client application use the discovery endpoint address, which
eliminates the need to change the application if the authorization endpoint address changes.

• The client application can directly use the token endpoint address, which is https://
<Acumatica ERP instance URL>/identity/connect/token. In this endpoint,
<Acumatica ERP instance URL> is the URL of the Acumatica ERP instance to which
the client application is going to connect.

For example, for a local Acumatica ERP instance with the name AcumaticaDB, the token
endpoint address is https://localhost/AcumaticaDB/identity/connect/token.

• Parameters in the Request Body

You specify the following parameters in the request body.

Parameter Description

grant_type The type of the OAuth 2.0 flow, which must be set to password for the
resource owner password credentials flow.

client_id The client ID that was assigned to the client application during the
registration of the application in Acumatica ERP. The client ID must
have the format in which the ID was generated during the registration
of the application. That is, the client ID must include an auto-generated
string and the ID of the company, such as 88358B02-A48D-A50E-
F710-39C1636C30F6@MyCompany. The client application will have access
to the data of the company specified in the client ID.

client_secret The value of the secret that was created for the client application during the
registration of the application in Acumatica ERP.

username The username of an Acumatica ERP user.

 | Authorizing Client Applications to Work with Acumatica ERP | 20

Parameter Description

password The password for the specified username.

scope The access scope that is requested by the client application. The scope can
be a combination of the following values, delimited by spaces:

• api: Requests access to a web services API. If a user grants this scope
to the application, the client application can work with either or both of
the following types of the web services API: contract-based SOAP API
or contract-based REST API.

If this scope is granted and the api:concurrent_access scope is
not granted, Acumatica ERP manages the sessions of the application
through tokens. Acumatica ERP issues the first access token along with
the session ID. If the client application requests a new access token
by presenting a refresh token, Acumatica ERP reuses the session ID
that was issued for the first access token issued with the refresh token.
That is, the system uses a single session for each access granted to
the client application.

• offline_access: Requests that a refresh token be granted. If a user
grants this scope to the application, Acumatica ERP issues to the
client application a refresh token along with the access token. (For
information on issuing the access token, see Connecting to the Token
Endpoint in this topic.) When the access token has expired, the client
application can request a new access token by sending a request to the
token endpoint and providing the refresh token.

• api:concurrent_access: Requests permission for the concurrent use
of multiple types of web service APIs. If a user grants this scope to the
application, the client application can access data in Acumatica ERP in
concurrent mode. In this case, Acumatica ERP can maintain multiple
sessions for the client application, managing session IDs through
cookies. We recommend that the client application request this scope
only if concurrent access is required for the client application.

Receiving the Access Token

Acumatica ERP verifies the provided application credentials and issues the access token, which the
client application should provide with each data request to Acumatica ERP. During authentication in
Acumatica ERP, if the user has granted to the client application the offline_access scope, Acumatica
ERP issues the refresh token along with the access token. A successful response includes the following
parameters in the response body.

Parameter Description

token_type The type of the access token, which is Bearer.

access_token The access token.

expires_in The period of time during which the access token is valid.

refresh_token The refresh token. The parameter is returned only if the offline_access scope
was granted.

 | Authorizing Client Applications to Work with Acumatica ERP | 21

Requesting Data with the Access Token

The client application should include the access token in the Authorization header of each
subsequent request to Acumatica ERP, as shown in the following HTTP example.

GET /AcumaticaDB/entity/Default/6.00.001/SalesOrder/SO/000001 HTTP/1.1
Host: localhost
Authorization: Bearer cde78a99a2dc6388eb8c7242a90cf9bc

Refreshing the Access Token

The access token is valid for a specific period of time, which is specified in the response that returns the
access token. When the access token expires, the client application can request a new access token by
providing the refresh token to the token endpoint. To request a new access token, the client application
should have the following URL and the following parameters specified in the request body:

• URL

The client application can use one of the following options:

• If the client application supports OpenID Connect Discovery, the client application can
use the discovery endpoint address, which is https://<Acumatica ERP instance
URL>/identity/. In this address, <Acumatica ERP instance URL> is the URL of the
Acumatica ERP instance to which the client application is going to connect.

For example, for a local Acumatica ERP instance with the name AcumaticaDB, the discovery
endpoint address is https://localhost/AcumaticaDB/identity/.

: We recommend that the client application use the discovery endpoint address, which
eliminates the need to change the application if the authorization endpoint address changes.

• The client application can directly use the token endpoint address, which is https://
<Acumatica ERP instance URL>/identity/connect/token. In this endpoint,
<Acumatica ERP instance URL> is the URL of the Acumatica ERP instance to which
the client application is going to connect.

For example, for a local Acumatica ERP instance with the name AcumaticaDB, the token
endpoint address is https://localhost/AcumaticaDB/identity/connect/token.

• Parameters in the Request Body

You specify the following parameters in the request body.

Parameter Description

grant_type The type of the request, which must be set to refresh_token for the
request of the refresh token.

client_id The client ID that was assigned to the client application during the
registration of the application in Acumatica ERP. The client ID must
have the format in which the ID was generated during the registration
of the application. That is, the client ID must include an auto-generated
string and the ID of the company, such as 88358B02-A48D-A50E-
F710-39C1636C30F6@MyCompany. The client application will have access
to the data of the company specified in the client ID.

client_secret The value of the secret that was created for the client application during the
registration of the application in Acumatica ERP.

refresh_token The refresh token that the client application received from the
token endpoint along with the access token if the user granted the
offline_access scope to the client application.

 | Authorizing Client Applications to Work with Acumatica ERP | 22

Receiving the New Access Token

Acumatica ERP verifies the provided application credentials and issues the new access token. The
new refresh token is not issued. To request the access token once again, the client application should
use the refresh token issued with the first access token. A successful response includes the following
parameters in the response body.

Parameter Description

token_type The type of the access token, which is Bearer.

access_token The access token.

expires_in The period of time during which the access token is valid.

Logging Out from Acumatica ERP

To prevent issues with licenses that limit the number of concurrent user sessions, the client application
should directly call the logout method of the Acumatica ERP web services API when the application
finishes its work with Acumatica ERP.

Comparison of the Flows
The table below summarizes the characteristics of the authorization flows supported by Acumatica ERP.

Characteristic Authorization
Code

Implicit Resource Owner
Password
Credentials

The access token is returned from the
authorization endpoint.

No Yes No

The access token is returned from the
token endpoint.

Yes No Yes

The refresh token can be issued. Yes No Yes

The client application has access to
Acumatica ERP credentials (username
and password).

No No Yes

The client application is authenticated
in Acumatica ERP (that is, the client
application provides the client ID and
client secret).

Yes No Yes

To Register a Client Application
You use the Connected Applications (SM303010) form to register an OAuth 2.0 or OpenID Connect
client application.

To register a client application in Acumatica ERP, you need to know the OAuth 2.0 flow that this
application implements. For more information on the flows, see Authorization Code Flow, Implicit Flow,
and Resource Owner Password Credentials Flow.

Important:

• According to the OAuth 2.0 specification, a secure connection between an OAuth 2.0 client
application and the Acumatica ERP website with a Secure Socket Layer (SSL) certificate is required.
Therefore, you have to set up the Acumatica ERP website for HTTPS before the OAuth 2.0 client
application can work with data in Acumatica ERP. For more information, see Setting Up an HTTPS
Service in Web Server (IIS).

 | Authorizing Client Applications to Work with Acumatica ERP | 23

• When you are registering the client application, you have to be logged in to the company whose data
the client application needs to access.

To Register a Client Application with the Authorization Code Flow

1. On the System tab, click Integration. In the navigation pane, navigate to Configure >
Connected Applications.

2. In the Client Name box, type the name of the registered application.

: Leave the Client ID box blank. The system will fill it in when you save your changes on the form.

3. In the OAuth 2.0 Flow box, select Authorization Code.

4. On the Secrets tab, do the following for each client secret you want to add:

a. On the tab toolbar, click Add Shared Secret. The Add Shared Secret dialog box opens.

b. In the Description box, type the description of the shared secret.

c. Optional: In the Expires On (UTC) box, enter the date and time on which the secret
expires.

d. Copy and save the value that is displayed in the Value box. The client application should
use this client secret for authentication in Acumatica ERP.

Important: For security reasons, the value of the secret is displayed only once: when you
create the secret by invoking this dialog box.

e. Click OK to save the secret and close the dialog box.

5. On the Redirect URIs tab, do the following for each redirect URI you want to add:

a. On the tab toolbar, click Add Row.

b. In the Redirect URI column of the new row, type the exact redirect URI to which
Acumatica ERP should redirect the client application after the client application has been
authorized. The redirect URI must be absolute and must not have the fragment part (the
part preceded with #).

6. On the form toolbar, click Save. Notice that the client ID has been generated in the Client ID
box. The client application should use this client ID along with the client secret for authentication
in Acumatica ERP.

To Register a Client Application with the Implicit Flow

1. On the System tab, click Integration. In the navigation pane, navigate to Configure >
Connected Applications.

2. In the Client Name box, type the name of the registered application.

: Leave the Client ID box blank. The system will fill it in when you save your changes on the form.

3. In the OAuth 2.0 Flow box, select Implicit.

4. On the Redirect URIs tab, do the following for each redirect URI you want to add:

a. On the tab toolbar, click Add Row.

b. In the Redirect URI column of the new row, type the exact redirect URI to which
Acumatica ERP should redirect the client application after the client application has been
authorized. The redirect URI must be absolute and must not have the fragment part (the
part preceded with #).

 | Authorizing Client Applications to Work with Acumatica ERP | 24

5. On the form toolbar, click Save. Notice that the client ID has been generated in the Client ID
box. You should use this client ID to connect the client application to the authorization endpoint
of Acumatica ERP.

To Register a Client Application with the Resource Owner Password Flow

1. On the System tab, click Integration. In the navigation pane, navigate to Configure >
Connected Applications.

2. In the Client Name box, type the name of the registered application.

: Leave the Client ID box blank. The system will fill it in when you save your changes on the form.

3. In the OAuth 2.0 Flow box, select Resource Owner Password Credentials.

4. On the Secrets tab, do the following for each client secret you want to add:

a. On the tab toolbar, click Add Shared Secret. The Add Shared Secret dialog box opens.

b. In the Description box, type the description of the shared secret.

c. Optional: In the Expires On (UTC) box, enter the date and time on which the secret
expires.

d. Copy and save the value that is displayed in the Value box. The client application should
use this client secret for authentication in Acumatica ERP.

Important: For security reasons, the value of the secret is displayed only once: when you
create the secret by invoking this dialog box.

e. Click OK to save the secret and close the dialog box.

5. On the form toolbar, click Save. Notice that the client ID has been generated in the Client ID
box. The client application should use this client ID along with the client secret for authentication
in Acumatica ERP.

To Revoke the Access of a Connected Application
To revoke the access of an OAuth 2.0 or OpenID Connect client application, you use either the
Connected Applications (SM303010) form or the User Profile (SM203010) form.

On the Connected Applications form, you can revoke the access of any application registered in the
current company. On this form, you revoke all access granted to the application.

On the User Profile form, you can revoke the access of any application to which you (that is, the user
account to which you are logged in) have granted access. Any access granted to this application by
other users remains unchanged.

To Revoke All Access of a Client Application

1. On the System tab, click Integration. In the navigation pane, navigate to Configure >
Connected Applications.

2. In the Client ID box, select the application whose access you want to revoke.

3. On the form toolbar, click Revoke Access.

4. In the message box that opens, click OK to confirm that you want to revoke the access of the
application.

: After you have confirmed that you want to revoke access, all access tokens are removed from
the Acumatica ERP database, and these tokens cannot be used to access data in Acumatica

 | Authorizing Client Applications to Work with Acumatica ERP | 25

ERP. However, the client secrets remain valid until their expiration dates (if applicable), and the
application can use these secrets to request a new access token.

To Revoke Access You Have Provided

1. In the info area (in the upper-right corner of the screen), click your user name, and then click
User Profile.

2. On the toolbar of the User Profile form, which opens, click View Connected Applications.
The list of applications to which you have granted access is displayed on the Client Application
Permissions webpage.

3. For the application whose access you want to revoke, click Revoke Access.

: After you have revoked access, the access tokens that were created when you granted access to
the application are removed from the Acumatica ERP database, and these tokens cannot be used to
access data in Acumatica ERP. However, the client secrets remain valid until their expiration dates
(if applicable), and the application can use these secrets to request a new access token.

 | Configuring the Contract-Based REST and SOAP API | 26

Configuring the Contract-Based REST and SOAP
API

Acumatica ERP provides web services for integration with external systems. Through the web services
of Acumatica ERP, external systems can get data records from Acumatica ERP, process these records,
and save new or updated records to Acumatica ERP.

To access these web services, you can use the contract-based representational state transfer (REST)
API, the contract-based SOAP application programming interface (API), and the screen-based SOAP
API. In this chapter, you will find the main concepts that are related to the contract-based SOAP API
and the contract-based REST API.

In This Chapter

• Contract-Based Web Services API

• Endpoints and Contracts

• API Entities, Fields, and Actions

• Custom Fields

• Custom Endpoints and Endpoint Extensions

• Naming Rules for Endpoints

• Comparison of Contract Versions

• Comparison of System Endpoints

• To Create a Custom Endpoint

• To Extend an Existing Endpoint

• To Validate an Endpoint

Contract-Based Web Services API
Contract-based web services API operates with business logic objects that do not depend on Acumatica
ERP forms and their properties and methods. (In this context, contract-based means based on the
object model the web services API provides.) Each contract of the web service is fixed and does not
change based on system customization, localization, or any other changes made to Acumatica ERP.

For example, suppose that the contract of the web service contains the definition of the CustomerID
field, which accesses the Customer ID element on the Customers (AR303000) form. If you have
changed the name of the Customer ID element to Customer Identifier in a customization project,
the contract of the web service remains fully functional and does not require update; also, your
application requires no further modifications. You can access the Customer Identifier element on the
form through the same CustomerID field.

REST and SOAP Interfaces of the Contract-Based Web Services

You can work with the contract-based web services through either the REST interface or the SOAP
interface.

To use the contract-based REST or SOAP API in your application, first of all, you should decide which
endpoint to use. You can find more information on the endpoints and their contracts in Endpoints and
Contracts.

After that, you can use the REST API in your application. For details on the REST API, see Working with
the Contract-Based REST API. For the REST API reference, see Contract-Based REST API Reference.

After you have selected the endpoint, to use the contract-based SOAP API in your application, you
should obtain the WSDL description of the contract of this endpoint, import the WSDL file into your

 | Configuring the Contract-Based REST and SOAP API | 27

development environment (as described in To Configure the Client Application), and start developing
your application. You can find the description of the SOAP API methods in Contract-Based SOAP API
Reference.

You can find examples of how to use the contract-based SOAP and REST API in the I210 Integration:
Contract-Based Web Services training course.

Endpoints and Contracts
You access the contract-based REST and SOAP API through endpoints that you configure on the Web
Service Endpoints (SM207060) form.

Endpoints and Contracts

An endpoint is an entry point to the Acumatica ERP web services. For each endpoint that a web service
API provides, a contract of the endpoint defines the entities, with their actions and fields, that are
available through the endpoint and the methods that you can use to work with these entities.

The endpoint is identified by the URL that you use to access the web services API. You can see the
name and version of an endpoint in its URL. For example, the endpoint http://localhost/
AcumaticaDB/entity/Default/17.200.001?wsdl has the version 17.200.001 and the name
Default. The version of an endpoint defines the list of entities, with their actions and fields you can work
with through this endpoint.

The contract of an endpoint is identified by contract version. The version of a contract defines the
list of methods for working with entities that you can use when working with Acumatica ERP through
the endpoint with this version of the contract. For the difference between the contract versions, see
Comparison of Contract Versions.

: Contract Version 1 is not supported starting from Acumatica ERP 2018 R2.

System and Custom Endpoints

You can use two types of endpoints to access the web services:

• System endpoint: The system endpoints are precofigured in the system and have the Default
name. Each of these endpoints has a predefined contract, which includes the API that is
preconfigured in the system. You cannot change the contract of a system endpoint.

If the API that is available in the contract of a system endpoint is sufficient for the requirements
of your application, you should use the system endpoint for accessing Acumatica ERP web
services. You can use the same system endpoint in future versions of Acumatica ERP. For
example, if you use the system endpoint with Version 17.200.001 and Contract Version 3 to
access Acumatica ERP 2017 R2, you can use the same endpoint to access future versions of
Acumatica ERP.

: Acumatica ERP can include endpoints preconfigured in the system that have the names other
than Default. The system uses these endpoints internally. We do not recommend that you use these
endpoints.

• Custom endpoint: By default, there are no custom endpoints in the system. If the API provided
by the system endpoint is not sufficient for the requirements of your application, you can create
a custom endpoint. You can configure the contract of a custom endpoint by adding the needed
elements of the API to the contract.

If you need to use the same custom endpoint in future versions of Acumatica ERP, you should
maintain it in future versions.

https://openuni.acumatica.com/courses/integration/i210-contract-based-web-services/
https://openuni.acumatica.com/courses/integration/i210-contract-based-web-services/

 | Configuring the Contract-Based REST and SOAP API | 28

The following diagram provides an example of multiple endpoints configured in the system. The
diagram shows two system endpoints with Contract Versions 2 and 3 and two custom endpoints with
the names EastEndpoint and WestEndpoint.

Figure: Contract-based web services

API Entities, Fields, and Actions
The contract of an endpoint defines the following elements of the contract-based web services API:

• Entities: An entity corresponds to a business logic object that you are going to work with. For
example, the contract of a system endpoint includes the Warehouse entity, which represents
a warehouse and holds the data related to the warehouse. This entity is associated with the
Warehouses (IN204000) form.

For a custom endpoint, if you are going to use an entity to transfer data to or from Acumatica
ERP, you should associate this entity with a particular Acumatica ERP form. For example, you
can create a Vendor entity, which represents a vendor. This entity is associated with the Vendors
(AP303000) form.

• Fields: The fields of an entity correspond to the parameters of a business logic object. For
example, the Warehouse entity that is available through the system endpoint has the Description
and WarehouseID fields, among others. In the contract, these fields are mapped to the
Description and the Warehouse ID elements of the Summary area of the Warehouses form.

For a custom endpoint, if you need to connect the field with a particular element on an Acumatica
ERP form, you should map the field to this element. For example, if you have created the Vendor
entity, which designates a vendor, you can add the field VendorID to the entity and connect this
field with the Vendor ID element of the Summary area of the Vendors form.

• Actions: The actions of an entity correspond to the actions that can be applied to a business logic
object. For example, the TransferOrder entity, which is available through the system endpoint,
has the ReleaseTransferOrder action. This action corresponds to the Release button on the form
toolbar of the Transfers (IN304000) form.

For a custom endpoint, if you need to use an Acumatica ERP action, you should add this action to
the contract of the custom endpoint with the needed parameters. For example, suppose you want
to add an action that changes the customer ID of an existing customer, you can add the action

 | Configuring the Contract-Based REST and SOAP API | 29

ChangeID and map it to the Change ID action, which is available on the Customers form. The
new action should have one parameter, which specifies the new ID of a customer as the Change
ID action has.

When you add a new entity to a contract, you should specify the type of the entity, which can be one of
the following:

• Top-Level: Entities of this type are the main entities of the contract. A top-level entity usually
corresponds to an Acumatica ERP form. For example, the Warehouse entity of the contract of the
system endpoint is a top-level entity that corresponds to the Warehouses form.

• Detail: Detail entities correspond to the detail lines of a master-detail form. A detail entity exists
only as a part of a top-level entity. For example, the top-level entity SalesOrder of the contract of
the system endpoint contains the detail entity SalesOrderDetail, which corresponds to a detail line
on the Document Details tab of the Sales Orders (SO301000) form, as shown in the following
screenshot.

Figure: Detail entity

• Linked: Linked entities are supplementary entities of a contract. A linked entity usually
corresponds to a part of an Acumatica ERP form and is related to one top-level entity of the
contract or multiple such entities. For example, the top-level entity Contact of the contract of the
system endpoint contains the linked entity Address, which corresponds to the Address group of
fields on the Details tab of the Contacts (CR302000) form, as shown in the following screenshot.

 | Configuring the Contract-Based REST and SOAP API | 30

Figure: Linked entity

Custom Fields
Starting from Version 2 of the system contract of the contract-based web services application
programming interface (API), you can work with the values of the custom fields that are not included
in the entity definition. That is, custom fields can correspond to both the predefined elements on an
Acumatica ERP form that are not included in the entity definition and the elements that were added to
the Acumatica ERP form in a customization project.

To work with the needed custom field, you need to know the name of the data view that contains the
corresponding custom element and the name of the field, which are described in detail below.

Field Name and View Name

A field name is the internal name of a particular element of an Acumatica ERP form. A view name is the
name of the data view to which a particular element belongs. For example, the Posting Class element
on the General Settings tab of the Stock Items (IN202500) form has the PostClassID field name
and belong to the ItemSettings data view.

To find out the field name and view name, on the title bar of the form, you click Customization >
Inspect Element and click the needed element on the form. In the Element Properties dialog box,
which opens, you find the field name in the Data Field element and the view name in the View Name
element, as shown in the following screenshot.

 | Configuring the Contract-Based REST and SOAP API | 31

Figure: Field name and view name

In the contract-based REST API, you can also find out the field name and the view name through the
special URL. For details on the URL and the HTTP method, see Retrieval of the Schema of Custom
Fields.

In the contract-based SOAP API, you can find out the field name and the view name in code by using
the GetCustomFieldSchema() method. For details on the method, see GetCustomFieldSchema()
Method.

Use of Custom Fields

For details on retrieving the values of custom fields by using the contract-based REST API, see the
description of the $custom parameter in Parameters for Retrieving Records. For details on specifying
the values of custom fields, see Representation of a Record in JSON Format.

For details on working with custom elements through the contract-based SOAP API, see CustomFields
Property.

Custom Endpoints and Endpoint Extensions
If the API provided by the system endpoint of Acumatica ERP is not sufficient for the requirements of
your application, you can create a custom endpoint from scratch or by extending an existing endpoint.

An Extension of an Existing Endpoint

If you are creating an endpoint as an extension of an existing endpoint, for the API elements that were
inherited from the base endpoint, you cannot edit the names and types of the entities and fields, and
the names, types, and parameters of the actions. In the contract of the new endpoint, you can add new
top-level entities, new fields or entities to any entity, and new actions. Then you can use both the API
that you added to the contract of the endpoint and the API of the base endpoint in your application. For
information on how to extend an existing endpoint, see To Extend an Existing Endpoint.

The new endpoint that was created as an extension of an existing endpoint has the version of the
contract of the base endpoint; that is, the API methods for working with entities are the same for the

 | Configuring the Contract-Based REST and SOAP API | 32

base endpoint and the new endpoint. See Contract-Based REST API Reference and Contract-Based
SOAP API Reference for the description of the API methods of the needed contract version.

An Endpoint Created from Scratch

If you are creating an endpoint from scratch, you should add the needed elements of the API to the
contract. Then you can use these API elements in your application. For information on how to create an
endpoint from scratch, see To Create a Custom Endpoint.

The new endpoint that is created from scratch always has the latest version of the contract. For the
description of the API methods for working with entities that are available in the latest version of the
contract, see Contract-Based REST API Reference and Contract-Based SOAP API Reference.

Naming Rules for Endpoints
When you create a custom endpoint on the Web Service Endpoints (SM207060) form (either from
scratch or by extending a system endpoint), for the names of the entities, fields, actions, and action
parameters of the endpoint, and the endpoint name and version, you should make sure to adhere to
the following rules:

• The name of the endpoint can contain only English letters, digits, underscores, and periods, and
cannot start with a digit.

• The version of the endpoint can contain only English letters, digits, underscores, and periods.

• The name of the entity, field, action, or action parameter can contain only English letters, digits,
and underscores, and cannot start with a digit.

• The name of the field cannot match any of the following reserved names:

• ID

• RowNumber

• Note

• Delete

• CustomFields

• ReturnBehavior

• Entity

• Action

• The name of the field must be unique among the names of the fields of the entity.

• The name of the parameter must be unique among the names of the parameters of the action.

• The name of the entity or action must be unique among the names of the entities and actions of
the endpoint.

The system checks whether the names used in the endpoint satisfy these rules each time you enter the
name of a new entity, field, action, or action parameter. You can also validate the endpoint manually, as
described in To Validate an Endpoint.

Comparison of Contract Versions
Acumatica ERP 2018 R2 supports two versions of system contracts. In this topic, you can learn the
main differences between the contract versions.

 | Configuring the Contract-Based REST and SOAP API | 33

: Contract Version 1 is not supported starting from Acumatica ERP 2018 R2.

Comparison of Contract Versions

Characteristic Contract Version
3

Contract Version
2

The REST API is supported for the endpoints with this
contract version.

Yes Yes

The SOAP API is supported for the endpoints with this
contract version.

Yes Yes

You can specify particular fields of the entity to be returned
from the system.

Yes Yes

By default, the system returns all fields of the entity
(including fields of the linked and detail entities defined
within the entity).

No For the SOAP API:
Yes

For the REST API:
No

By default, the system returns only the fields of the entity
itself (without the fields of the linked and detail entities
defined within the entity).

Yes For the SOAP API:
No

For the REST API:
Yes

Through the endpoint, you can work with the elements that
were added to the Acumatica ERP form in a customization
project.

Yes Yes

Through the endpoint, you can work with the predefined
elements on an Acumatica ERP form that are not included in
the entity definition.

Yes Yes

When optimization for speed of the retrieval of the list of
records fails, the system behaves as follows.

The system
returns an error.

The system
retrieves data in
an unoptimized
way (slow).

Custom endpoints created from scratch have this contract
version.

Yes No

The system endpoint that has this contract version is
included in Acumatica ERP 2018 R2.

Yes (Endpoint
Version
default/17.200.001)

Yes (Endpoint
Version
default/6.00.001)

Comparison of System Endpoints
Acumatica ERP 2018 R2 supports three system endpoints. In this topic, you can learn the differences
between these endpoints.

Contract Versions of the Endpoints

: For the differences between the versions of system contracts, see Comparison of Contract Versions.

 | Configuring the Contract-Based REST and SOAP API | 34

Endpoint Contract Version

Default/18.200.001 3

Default/17.200.001 3

Default/6.00.001 2

Changes to the Entities, Fields, and Actions of the Default/18.200.001 Endpoint as Compared
to the Default/17.200.001 Endpoint

The following tables contain the new, modified, or removed elements of the Default/18.200.001
endpoint as compared to the Default/17.200.001 endpoint.

New Entities

The entities listed in the table (except ProFormaInvoice) can be created, retrieved, updated, and
deleted through the standard API methods. ProFormaInvoice can be created only by invocation of the
RunProjectBilling action of Project.

Entity Related Form Name and ID

AccountGroup Account Groups (PM201000)

Activity Activity (CR306010)

AllocationRule Allocation Rules (PM207500)

ChangeOrder Change Orders (PM308000)

ChangeOrderClass Change Order Classes (PM203000)

CommonTask Common Tasks (PM208030)

CompanyFinancialPeriod Company Financial Calendar (GL201100)

CostCode Cost Codes (PM209500)

ExpenseClaim Expense Claim (EP301000)

ExpenseReceipt Expense Receipt (EP301020)

ExternalCommitment External Commitments (PM209000)

LaborCostRate Labor Cost Rates (PM209900)

ManageFinancialPeriods Manage Financial Periods (GL503000)

ProFormaInvoice Pro Forma Invoices (PM307000)

Project Projects (PM301000)

ProjectBilling Run Project Billing (PM503000)

ProjectBillingRules Billing Rules (PM207000)

ProjectBudget Project Budget (PM309000)

ProjectTask Project Tasks (PM302000)

ProjectTemplate Project Templates (PM208000)

ProjectTemplateTask Project Template Tasks (PM208010)

TimeEntry Time Entry (PM209100)

UnionLocal Union Locals (PM209700)

 | Configuring the Contract-Based REST and SOAP API | 35

Entity Related Form Name and ID

WorkClassCompensationCode Work Class Compensation Codes (PM209800)

Changed Entities

Entity Related Form Name and ID Change

Email.TimeActivity Email Activity (CR306015) The object name has
been changed from
EmailTimeActivity to
TimeActivity.

Employee Employees (EP203000) The mapping of the entity has
been fully changed.

New Fields and Actions

Field or Action Name Related Form Name and ID

AccountLocation.Address.Validated Account Locations (CR303010)

Bill.Details.CalculateDiscountsOnImport Bills and Adjustments
(AP301000)

Bill.Details.CostCode Bills and Adjustments
(AP301000)

Bill.Details.InventoryID Bills and Adjustments
(AP301000)

Bill.Details.POLine Bills and Adjustments
(AP301000)

Bill.Details.POReceiptLine Bills and Adjustments
(AP301000)

Bill.Details.POReceiptNbr Bills and Adjustments
(AP301000)

Bill.Project Bills and Adjustments
(AP301000)

BusinessAccount.Activities.NoteID Business Accounts (CR303000)

BusinessAccount.LastModifiedDateTime Business Accounts (CR303000)

BusinessAccount.MainAddress.Validated Business Accounts (CR303000)

BusinessAccount.ShippingAddress.Validated Business Accounts (CR303000)

Case.Activities.CostCode Cases (CR306000)

Case.Activities.NoteID Cases (CR306000)

CashSale.Details.CostCode Cash Sales (AR304000)

CashSale.Details.ProjectTask Cash Sales (AR304000)

CashSale.Project Cash Sales (AR304000)

Contact.Activities.NoteID Contacts (CR302000)

Contact.Address.Validated Contacts (CR302000)

 | Configuring the Contract-Based REST and SOAP API | 36

Field or Action Name Related Form Name and ID

Contact.LastModifiedDateTime Contacts (CR302000)

Email.TimeActivity.CostCode Email Activity (CR306015)

FinancialPeriod.Details.Status Master Financial Calendar
(GL201000)

JournalTransaction.Details.CostCode Journal Transactions (GL301000)

JournalTransaction.Details.IsNonPM Journal Transactions (GL301000)

JournalTransaction.Details.ProjectTransactionID Journal Transactions (GL301000)

InventoryReceipt.Details.CostCode Receipts (IN301000)

InventoryReceipt.Details.Project Receipts (IN301000)

InventoryReceipt.Details.ProjectTask Receipts (IN301000)

Invoice.Details.CalculateDiscountsOnImport Invoices and Memos (AR301000)

Invoice.Details.CostCode Invoices and Memos (AR301000)

Invoice.DiscountDetails Invoices and Memos (AR301000)

Lead.Activities.NoteID Leads (CR301000)

Lead.Address.Validated Leads (CR301000)

Opportunity.Activities.NoteID Opportunities (CR304000)

Opportunity.Address.Validated Opportunities (CR304000)

Payment.PaymentLoadDocuments Payments and Applications
(AR302000)

Payment.PaymentLoadOrders Payments and Applications
(AR302000)

PhysicalInventoryReview.CreatedDateTime Payments and Applications
(AR302000)

ProjectTransaction.Details.Billed Project Transactions (PM304000)

ProjectTransaction.Details.CostCode Project Transactions (PM304000)

ProjectTransaction.Details.ExternalRefNbr Project Transactions (PM304000)

ProjectTransaction.ReleaseTransactions Project Transactions (PM304000)

PurchaseOrder.Branch Purchase Orders (PO301000)

PurchaseOrder.Details.CalculateDiscountsOnImport Purchase Orders (PO301000)

PurchaseOrder.Details.CostCode Purchase Orders (PO301000)

PurchaseOrder.Details.Project Purchase Orders (PO301000)

PurchaseOrder.Details.ProjectTask Purchase Orders (PO301000)

PurchaseOrder.EnterAPBill Purchase Orders (PO301000)

PurchaseOrder.EnterPOReceipt Purchase Orders (PO301000)

PurchaseOrder.LastModifiedDateTime Purchase Orders (PO301000)

PurchaseOrder.Project Purchase Orders (PO301000)

 | Configuring the Contract-Based REST and SOAP API | 37

Field or Action Name Related Form Name and ID

PurchaseOrder.ShippingInstructions.ShipToAddress.Validated Purchase Orders (PO301000)

PurchaseOrder.TaxDetails Purchase Orders (PO301000)

PurchaseOrder.Terms Purchase Orders (PO301000)

PurchaseOrder.VendorTaxZone Purchase Orders (PO301000)

PurchaseReceipt.BillDate Purchase Receipts (PO302000)

PurchaseReceipt.Branch Purchase Receipts (PO302000)

PurchaseReceipt.CreateAPBill Purchase Receipts (PO302000)

PurchaseReceipt.Description Purchase Receipts (PO302000)

PurchaseReceipt.TransferOrderNbr Purchase Receipts (PO302000)

PurchaseReceipt.TransferOrderType Purchase Receipts (PO302000)

PurchaseReceipt.TransferShipmentNbr Purchase Receipts (PO302000)

PurchaseReceipt.UnbilledQuantity Purchase Receipts (PO302000)

PurchaseReceipt.Warehouse Purchase Receipts (PO302000)

SalesInvoice.ApplicationsCreditMemo Invoices (SO303000)

SalesInvoice.ApplicationsInvoice Invoices (SO303000)

SalesInvoice.BillToSettings.BillToAddress.Validated Invoices (SO303000)

SalesInvoice.BillToSettings.CustomerLocation Invoices (SO303000)

SalesInvoice.CashDiscount Invoices (SO303000)

SalesInvoice.Commissions Invoices (SO303000)

SalesInvoice.CreditHold Invoices (SO303000)

SalesInvoice.Currency Invoices (SO303000)

SalesInvoice.Details.CostCode Invoices (SO303000)

SalesInvoice.Details.ProjectTask Invoices (SO303000)

SalesInvoice.Details.CalculateDiscountsOnImport Invoices (SO303000)

SalesInvoice.Details.DiscountAmount Invoices (SO303000)

SalesInvoice.Details.DiscountPercent Invoices (SO303000)

SalesInvoice.Details.ExpirationDate Invoices (SO303000)

SalesInvoice.Details.InventoryDocType Invoices (SO303000)

SalesInvoice.Details.InventoryRefNbr Invoices (SO303000)

SalesInvoice.Details.Location Invoices (SO303000)

SalesInvoice.Details.LotSerialNbr Invoices (SO303000)

SalesInvoice.Details.ManualDiscount Invoices (SO303000)

SalesInvoice.Details.OrderLineNbr Invoices (SO303000)

SalesInvoice.Details.OrigInvLineNbr Invoices (SO303000)

 | Configuring the Contract-Based REST and SOAP API | 38

Field or Action Name Related Form Name and ID

SalesInvoice.Details.OrigInvNbr Invoices (SO303000)

SalesInvoice.Details.OrigInvType Invoices (SO303000)

SalesInvoice.Details.Subitem Invoices (SO303000)

SalesInvoice.Details.TaxCategory Invoices (SO303000)

SalesInvoice.Details.TransactionDescr Invoices (SO303000)

SalesInvoice.Details.WarehouseID Invoices (SO303000)

SalesInvoice.DiscountDetails Invoices (SO303000)

SalesInvoice.FinancialDetails Invoices (SO303000)

SalesInvoice.Project Invoices (SO303000)

SalesInvoice.SalesInvoiceAddOrder Invoices (SO303000)

SalesInvoice.SalesInvoiceAutoApply Invoices (SO303000)

SalesInvoice.TaxDetails Invoices (SO303000)

SalesInvoice.Totals Invoices (SO303000)

SalesInvoice.VATExemptTotal Invoices (SO303000)

SalesInvoice.VATTaxableTotal Invoices (SO303000)

SalesOrder.AutoRecalculateDiscounts Sales Orders (SO301000)

SalesOrder.BillToAddress.Validated Sales Orders (SO301000)

SalesOrder.Details.CalculateDiscountsOnImport Sales Orders (SO301000)

SalesOrder.Details.CostCode Sales Orders (SO301000)

SalesOrder.DisableAutomaticDiscountUpdate Sales Orders (SO301000)

SalesOrder.DiscountDetails.Description Sales Orders (SO301000)

SalesOrder.DiscountDetails.ExternalDiscountCode Sales Orders (SO301000)

SalesOrder.OpenSalesOrder Sales Orders (SO301000)

SalesOrder.PaymentProfileID Sales Orders (SO301000)

SalesOrder.ReleaseFromCreditHoldSalesOrder Sales Orders (SO301000)

SalesOrder.SalesOrderAddInvoice Sales Orders (SO301000)

SalesOrder.SalesOrderAddStockItem Sales Orders (SO301000)

SalesOrder.SalesOrderCreatePurchaseOrder Sales Orders (SO301000)

SalesOrder.SalesOrderCreateReceipt Sales Orders (SO301000)

SalesOrder.SalesOrderCreateShipment Sales Orders (SO301000)

SalesOrder.ShipToAddress.Validated Sales Orders (SO301000)

Shipment.PrepareInvoice Shipments (SO302000)

Shipment.ShipToSettings.ShipToAddress.Validated Shipments (SO302000)

Task.RelatedActivities.NoteID Task (CR306020)

 | Configuring the Contract-Based REST and SOAP API | 39

Field or Action Name Related Form Name and ID

Task.TimeActivity.CostCode Task (CR306020)

Renamed Actions

Action Name (Action Name in Default/17.200.001) Related Form Name and ID

Email.CreateContactFromEmail (Email.CreateContactEmail) Email Activity (CR306015)

Email.CreateEventFromEmail (Email.CreateEventEmail) Email Activity (CR306015)

Email.CreateLeadFromEmail (Email.CreateLeadEmail) Email Activity (CR306015)

Email.CreateOpportunityFromEmail
(Email.CreateOpportunityEmail)

Email Activity (CR306015)

Email.CreateExpenseReceiptFromEmail
(Email.CreateExpenseReceiptEmail)

Email Activity (CR306015)

Email.CreateCaseFromEmail (Email.CreateCaseEmail) Email Activity (CR306015)

Email.CreateTaskFromEmail (Email.CreateTaskEmail) Email Activity (CR306015)

Email.LinkEntityToEmail (Email.SelectRelatedEntityEmail) Email Activity (CR306015)

Event.LinkEntityToEvent (Event.SelectRelatedEntityEvent) Event (CR306030)

Task.LinkEntityToTask (Task.SelectRelatedEntityTask) Task (CR306020)

Removed Fields and Actions

Field or Action Name Related Form Name and ID

Email.SelectSourceEmail Email Activity (CR306015)

FinancialPeriod.Details.Active Master Financial Calendar (GL201000)

FinancialPeriod.Details.ClosedInGL Master Financial Calendar (GL201000)

FinancialPeriod.Details.ClosedInPR Master Financial Calendar (GL201000)

PurchaseReceipt.Details.Project Purchase Receipts (PO302000)

PurchaseReceipt.Details.ProjectTask Purchase Receipts (PO302000)

To Create a Custom Endpoint
You use the Web Service Endpoints (SM207060) form to create a custom endpoint.

If you need to use a custom endpoint, you can either create an endpoint from scratch or extend an
existing endpoint with the needed API. This procedure describes how to create a custom endpoint from
scratch. To learn how to extend an existing endpoint, see To Extend an Existing Endpoint.

To Create an Endpoint from Scratch

1. Open the Web Service Endpoints (SM207060) form by searching for or navigating to it.

: You can search for a form by its name or its form ID (without periods). For more information
about search capabilities, see Search in the Modern UI.

2. In the Endpoint Name box, type the name of the new endpoint.

 | Configuring the Contract-Based REST and SOAP API | 40

: For details on the characters that can be used in the endpoint name and version, see Naming
Rules for Endpoints.

3. In the Endpoint Version box, type the version of the new endpoint.

4. Add the needed entities, fields, and actions to the contract of the created endpoint, as described
in the sections below.

5. Click Save on the form toolbar.

To Add a Top-Level Entity to the Contract of the Endpoint

1. In the Endpoint Name box, select the name of the endpoint to which you want to add an entity.

2. In the Endpoint Version box, select the version of the endpoint to which you want to add an
entity.

3. In the left pane, select the Endpoint node.

4. On the toolbar of the left pane, click Insert, and in the Create Entity dialog box, specify the
values as follows, and click OK:

a. In the Object Name box, type the name of the entity. This is the name of the API object
that you will use in the code of your application to work with the entity.

: For details on the characters that can be used in the entity names, see Naming Rules for
Endpoints.

b. In the Screen ID lookup box, select the form to which the entity should correspond.

5. Add the needed fields, actions, or nested entities to the entity, as described in the sections
below.

To Add a Linked or Detail Entity to Another Entity

1. In the Endpoint Name box, select the name of the endpoint to which you want to add an entity.

2. In the Endpoint Version box, select the version of the endpoint to which you want to add an
entity.

3. In the left pane, select the entity node to which you want to add a linked or detail entity.

4. On the toolbar of the left pane, click Insert.

5. In the Field Name box of the Create Entity dialog box, which opens, type the name of the field
that should be used to access the nested entity, and specify the values of other elements in one
of the following ways:

• If you want to insert an entity that already exists in the contract, select the Use Existing
Entity check box, and select the needed entity in the Entity Type box.

• If you want to insert a new entity, in the Object Name box, type the name of the entity,
and in the Object Type box, select the type of the entity: Top-Level, Linked, or Detail. If
you have selected the top-level entity to be inserted, in the Screen ID lookup box, specify
the form to which the entity should correspond.

: For details on the characters that can be used in the entity names, see Naming Rules for
Endpoints.

6. Click OK. The new entity appears in the contract.

7. Add fields to the created entity, as described in the following section.

 | Configuring the Contract-Based REST and SOAP API | 41

To Add Fields to an Entity

1. In the Endpoint Name box, select the name of the endpoint to which you want to add an entity.

2. In the Endpoint Version box, select the version of the endpoint to which you want to add an
entity.

3. In the left pane, select the entity node to which you want to add fields.

4. On the Fields tab of the right pane, do one of the following:

• Click Populate on the tab toolbar. In the Populate Fields dialog box, select the
Acumatica ERP object whose fields you want to include in the entity and the fields that you
want to include, and click OK. The selected fields are added to the contract.

• Click Add Row on the tab toolbar; then type the name of the new field in the Field Name
column of the added row, select the Acumatica ERP object whose field you want to include
in the entity in the Mapped Object column, and select the field that you want to include in
the Mapped Field column.

:

• For some fields to be included in the entity, the corresponding Acumatica ERP feature or
features must be enabled on the Enable/Disable Features (CS100000) form. For information
on Acumatica ERP basic functionality and add-on features, see Overview of the Acumatica
ERP Features.

• For details on the characters that can be used in the field names, see Naming Rules for
Endpoints.

5. Click Save on the form toolbar.

To Add an Action to an Entity

1. In the Endpoint Name box, select the name of the endpoint to which you want to add an entity.

2. In the Endpoint Version box, select the version of the endpoint to which you want to add an
entity.

3. On the left pane, select the Actions node in the needed entity.

4. On the toolbar, click Insert.

5. In the Create Action dialog box, which opens, select the needed Acumatica ERP action, type the
name that should be used to invoke this action through the API, and click OK. The new action is
added to the contract.

: For details on the characters that can be used in the action names, see Naming Rules for
Endpoints.

6. Click Save on the form toolbar.

To Extend an Existing Endpoint
You use the Web Service Endpoints (SM207060) form to create an endpoint as an extension of an
existing endpoint.

You may need to create an extension of an endpoint if you want to use the entities that are defined
in the contract of the existing endpoint but you also need some additional entities, fields, and
actions in the contract. For example, the contract of the system endpoint with the name Default and
Version 6.00.001 contains the Address entity, which includes the following fields: AddressLine1,
AddressLine2, City, Country, PostalCode, and State. Suppose that you want to add the new
GPSCoordinates field to the Address entity of the contract and use it with other API of the contract.

 | Configuring the Contract-Based REST and SOAP API | 42

You cannot edit the contract of the system endpoint; instead, you should create an endpoint that is
based on this system endpoint, and add the new GPSCoordinates field to the Address entity of the
contract of the new endpoint.

This procedure describes how to create an endpoint that is based on an existing endpoint.

To Extend an Existing Endpoint

1. Open the Web Service Endpoints (SM207060) form by searching for or navigating to it.

: You can search for a form by its name or its form ID (without periods). For more information
about search capabilities, see Search in the Modern UI.

2. Select the endpoint that you want the new endpoint to be based on as follows:

a. Select the name of the base endpoint in the Endpoint Name box.

b. Select the version of the base endpoint in the Endpoint Version box.

3. Click Extend Endpoint on the form toolbar.

4. In the Extend Current Endpoint dialog box, which opens, make sure the correct name and
version of the base endpoint are specified in the Base Endpoint Name and Base Endpoint
Version boxes. Specify the name of the new endpoint in the Endpoint Name box and the
version of the new endpoint in the Endpoint Version box and click OK.

: For details on the characters that can be used in the endpoint name and version, see Naming
Rules for Endpoints.

The new endpoint with the name and version you specify appears on the form. On the left pane
of the form, you can see the list of entities that were inherited from the base endpoint.

5. Add the needed entities, fields, and actions to the contract of the created endpoint, as described
in To Create a Custom Endpoint, or extend the entities inherited from the base endpoint, as
described in To Extend an Existing Entity.

6. Click Save on the form toolbar.

To Extend an Existing Entity

1. Select the extended endpoint in which you want to extend an entity inherited from the base
endpoint as follows:

a. In the Endpoint Name box, select the name of the extended endpoint.

b. In the Endpoint Version box, select the version of the extended endpoint.

2. In the left pane, select the entity inherited from the base endpoint to which you want to add new
fields.

3. On the toolbar of the Fields tab in the right pane, click Extend Endpoint.

4. Use the Add Row, Delete Row, and Populate buttons, which have become available on the
tab toolbar, to add and delete fields of the entity. For more details, see To Add Fields to an
Entity.

5. Click Save on the form toolbar.

To Validate an Endpoint
You use the Web Service Endpoints (SM207060) form to validate an endpoint, an entity, or an action.
During this validation, the system makes sure the following criteria are met for the elements of the
endpoint, entity, or action:

 | Configuring the Contract-Based REST and SOAP API | 43

• The names of the elements satisfy the naming rules. For details on these rules, see Naming Rules
for Endpoints.

• The elements are mapped to objects, fields, and actions that exist in the system.

The validation of the name of a new entity, field, action, or action parameter is performed automatically
once you have entered the name on the form. You can validate an endpoint, entity, or action manually,
as described in this topic.

To Validate an Endpoint

1. Open the Web Service Endpoints (SM207060) form by searching for or navigating to it.

: You can search for a form by its name or its form ID (without periods). For more information
about search capabilities, see Search in the Modern UI.

2. Select the endpoint that you want to validate as follows:

a. In the Endpoint Name box, select the name of the endpoint.

b. In the Endpoint Version box, select the version of the endpoint.

3. On the form toolbar, click Validate Endpoint. The long-running validation operation starts.

Once the validation is finished, the system displays a message with results of the validation.
If the validation has failed, the error message contains the names of all fields that caused the
error.

4. If any errors occur, correct the endpoint accordingly.

To Validate an Entity

1. Open the Web Service Endpoints (SM207060) form by searching for or navigating to it.

: You can search for a form by its name or its form ID (without periods). For more information
about search capabilities, see Search in the Modern UI.

2. Select the endpoint that contains the entity that you want to validate as follows:

a. In the Endpoint Name box, select the name of the endpoint.

b. In the Endpoint Version box, select the version of the endpoint.

3. In the left pane, click the entity that you want to validate.

4. On the toolbar of the Fields tab of the right pane, click Validate Entity.

Once the validation is finished, the system displays a message with results of the validation.
If the validation has failed, the error message contains the names of all fields that caused the
error.

5. If any errors occur, correct the entity accordingly.

To Validate an Action

1. Open the Web Service Endpoints (SM207060) form by searching for or navigating to it.

: You can search for a form by its name or its form ID (without periods). For more information
about search capabilities, see Search in the Modern UI.

2. Select the endpoint that contains the action that you want to validate as follows:

a. In the Endpoint Name box, select the name of the endpoint.

b. In the Endpoint Version box, select the version of the endpoint.

 | Configuring the Contract-Based REST and SOAP API | 44

3. In the left pane, click the action that you want to validate.

4. On the toolbar of the Parameters tab of the right pane, click Validate Action.

Once the validation is finished, the system displays a message with results of the validation.
If the validation has failed, the error message contains the names of all fields that caused the
error.

5. If any errors occur, correct the action accordingly.

 | Working with the Contract-Based REST API | 45

Working with the Contract-Based REST API

The contract-based representational state transfer (REST) application programming interface (API) of
Acumatica ERP provides the REST interface of the Acumatica ERP contract-based web services through
which external systems can get data records from Acumatica ERP, process these records, and save new
or updated records to Acumatica ERP.

This chapter includes the topics that are specific to the contract-based REST API. For general
information on the contract-based web services, see Configuring the Contract-Based REST and SOAP
API. You can find examples of how to use the contract-based SOAP API in the I210 Integration:
Contract-Based Web Services training course and in Contract-Based API Examples. For the API
reference, see Contract-Based REST API Reference.

In This Chapter

• Representation of a Record in JSON Format

• Login to the Service

• Logout from the Service

• Creation of a Record

• Update of a Record

• Retrieval of a Record by Key Fields

• Retrieval of a Record by ID

• Retrieval of Records by Conditions

• Retrieval of Data from an Inquiry Form

• Parameters for Retrieving Records

• Removal of a Record

• Execution of an Action

• Attachment of a File to a Record

• Retrieval of a File Attached to a Record

• Retrieval of the Schema of Custom Fields

• Multi-Language Fields

Representation of a Record in JSON Format
By using the contract-based REST API, you obtain existing records from Acumatica ERP, create new
records, update, and delete them. You work with the records in Acumatica ERP by using the entities
that are defined in the contract of the endpoint that you use to access the service. You pass records to
and receive them from the contract-based REST API in JavaScript object notation (JSON) format. JSON
is a text format for transmitting data objects that consist of key-value pairs.

To represent a record in JSON format, you use the rules that are described in the following sections. You
do not need to specify the values of all fields of an entity; you can specify the values of only the needed
fields.

https://openuni.acumatica.com/courses/integration/i210-contract-based-web-services/
https://openuni.acumatica.com/courses/integration/i210-contract-based-web-services/

 | Working with the Contract-Based REST API | 46

System Fields

You specify the value of a system field (such as ID, RowNumber, and Note) of an entity in the following
format.

<Field name> : <Value>

For example, if you need to specify the note Imported for an entity, you use the following string.

"Note" : "Imported"

General Fields

You specify the value of a general field (that is, a field that is not a system field) of an entity in the
following format.

<Field name> : {value : <Value>}

For example, if you need to specify JOHNGOOD as the customer ID of a customer record, you use the
following string.

"CustomerID" : {value : "JOHNGOOD"}

Linked Entities

You specify the values of the fields of a linked entity in the following format.

<Field name> :
 {
 <List of fields of the linked entity with values
 }

For example, if you need to specify the values of an email address and the address of a customer main
contact, you use the following string.

"MainContact" :
 {
 "Email" : {value : "demo@gmail.com" },
 "Address" :
 {
 "AddressLine1" : {value : "4030 Lake Washington Blvd NE" },
 "AddressLine2" : {value : "Suite 100" },
 "City" : {value : "Kirkland" },
 "State" : {value : "WA" },
 "PostalCode" : {value : "98033" }
 }
 }

Detail Entities

You specify the values of the fields of a detail entity in the following format.

<Field name> :
 [
 {
 <List of fields of the detail entity with the values}
 },
 {
 <List of fields of the detail entity with the values>
 },
 …
]

 | Working with the Contract-Based REST API | 47

For example, if you need to specify the values of two detail lines of a sales order, you use the following
string.

"Details" : [
 {
 "InventoryID" : {value: "AALEGO500"},
 "Quantity" : {value: 10},
 "UOM" : {value: "PIECE"},
 },
 {
 "InventoryID" : {value: "CONGRILL"},
 "Quantity" : {value: 1},
 "UOM" : {value: "PIECE"},
 }
]

Custom Fields

You specify the values of the custom fields (that is, the fields that are not included in the contract of the
endpoint) in the following format.

"custom" :
 {
 <View name> :
 {
 <Field name> :
 {
 "type" : <value>,
 "value" : <value>
 }
 }
 }

You use this block in the JSON representation of the entity (top-level, detail, or linked) that contains
this custom field.

: For details on how to find out the field name and the name of the data view, see Custom Fields.

For example, suppose that you added the Personal ID element to the Main Contact area of the
Customers (AR303000) form in a customization project. The Contact entity, which is available through
the MainContact property of the Customer entity, contains the Personal ID custom element. This
element has the UsrPersonalID field name and belongs to the DefContact data view. The type
of the element depends on the contract version (in Contract Version 2, String; in Contract Version 3,
CustomStringField). Therefore, to specify the value AB123456 of the Personal ID custom element
for the customer with ID JOHNGOOD through the REST API, you use one of the following strings
depending on the contract version of the endpoint:

• For Contract Version 2

{
 "CustomerID" : {value : "JOHNGOOD" } ,
 "MainContact" :
 {
 "custom" :
 {
 "DefContact" :
 {
 "UsrPersonalID" :
 {
 "type" : "String",
 "value" : "AB123456"
 }
 }
 }

 | Working with the Contract-Based REST API | 48

 }
}

• For Contract Version 3

{
 "CustomerID" : {value : "JOHNGOOD" } ,
 "MainContact" :
 {
 "custom" :
 {
 "DefContact" :
 {
 "UsrPersonalID" :
 {
 "type" : "CustomStringField",
 "value" : "AB123456"
 }
 }
 }
 }
}

Login to the Service
Each time your application starts work with the Acumatica ERP contract-based REST service, you have
to log in to Acumatica ERP. To log in to Acumatica ERP, you access the needed URL address with the
POST HTTP method and pass the credentials in the request body. See details on the URL, parameters,
HTTP method, and response format in the following sections.

URL

When you need to log in to Acumatica ERP, you use the following URL.

http://<Acumatica ERP URL>/entity/auth/login

You replace <Acumatica ERP URL> with the URL of your Acumatica ERP instance.

For example, suppose that you want to log in to a local Acumatica ERP instance with the name
AcumaticaDB. You should use the following URL: http://localhost/AcumaticaDB/entity/
auth/login.

Parameters

You use no parameters when you log in to Acumatica ERP.

HTTP Method

You use the POST HTTP method and pass the credentials for accessing Acumatica ERP in JSON format,
as shown in the following example.

{
 "name" : "admin",
 "password" : "123",
 "company" : "MyCompany",
 "branch" : "MYSTORE",
 "locale" : "en-US"
}

 | Working with the Contract-Based REST API | 49

Response

The response of a successful method call is 204 No Content.

Example

The following code shows an example of a class that implements a login to Acumatica ERP through the
REST application programming interface (API).

public class RestService: IDisposable
{
 private readonly HttpClient _httpClient;

 private readonly string _acumaticaBaseUrl;

 public RestService(
 string acumaticaBaseUrl, string userName, string password,
 string company, string branch, string locale)
 {
 _acumaticaBaseUrl = acumaticaBaseUrl;
 _httpClient = new HttpClient(
 new HttpClientHandler
 {
 UseCookies = true,
 CookieContainer = new CookieContainer()
 })
 {
 BaseAddress = new Uri(acumaticaBaseUrl +
 "/entity/Default/6.00.001/"),
 DefaultRequestHeaders =
 {
 Accept = {MediaTypeWithQualityHeaderValue.Parse("text/json")}
 }
 };

 //Log in to Acumatica ERP
 _httpClient.PostAsJsonAsync(
 acumaticaBaseUrl + "/entity/auth/login", new
 {
 name = userName,
 password = password,
 company = company,
 branch = branch,
 locale = locale
 }).Result
 .EnsureSuccessStatusCode();
 }

 void IDisposable.Dispose()
 {
 _httpClient.PostAsync(_acumaticaBaseUrl + "/entity/auth/logout",
 new ByteArrayContent(new byte[0])).Wait();
 _httpClient.Dispose();
 }
}

The following code logs in to Acumatica ERP when an instance of the RestService class, which is
defined in the code fragment above, is created.

RestService rs = new RestService(
 Properties.Settings.Default.AcumaticaBaseUrl,
 Properties.Settings.Default.UserName,
 Properties.Settings.Default.Password,
 Properties.Settings.Default.Company,
 Properties.Settings.Default.Branch,
 Properties.Settings.Default.Locale
);

 | Working with the Contract-Based REST API | 50

Logout from the Service
Each time your application finishes work with the Acumatica ERP contract-based REST service, you have
to log out from Acumatica ERP. To log out from Acumatica ERP, you access the needed URL address
with the POST HTTP method and pass the credentials in the request body. See the following sections for
details on the URL, parameters, HTTP method, and response format.

URL

When you need to log out from Acumatica ERP, you use the following URL.

http://<Acumatica ERP URL>/entity/auth/logout

You replace <Acumatica ERP URL> with the URL of your Acumatica ERP instance.

For example, suppose that you want to log out from a local Acumatica ERP instance with the name
AcumaticaDB. You should use the following URL: http://localhost/AcumaticaDB/entity/
auth/logout.

Parameters

You use no parameters when you log out from Acumatica ERP.

HTTP Method

You use the POST HTTP method to log out from Acumatica ERP.

Response

The response of a successful method call is 204 No Content.

Example

The following code shows an example of a class that implements a logout from Acumatica ERP through
the REST application programming interface (API). Logout is performed each time an instance of the
RestService class is released.

public class RestService: IDisposable
{
 private readonly HttpClient _httpClient;

 private readonly string _acumaticaBaseUrl;

 public RestService(
 string acumaticaBaseUrl, string userName, string password,
 string company, string branch)
 {
 _acumaticaBaseUrl = acumaticaBaseUrl;
 _httpClient = new HttpClient(
 new HttpClientHandler
 {
 UseCookies = true,
 CookieContainer = new CookieContainer()
 })
 {
 BaseAddress = new Uri(acumaticaBaseUrl +
 "/entity/Default/6.00.001/"),
 DefaultRequestHeaders =
 {
 Accept = {MediaTypeWithQualityHeaderValue.Parse("text/json")}
 }
 };

 | Working with the Contract-Based REST API | 51

 _httpClient.PostAsJsonAsync(
 acumaticaBaseUrl + "/entity/auth/login", new
 {
 name = userName,
 password = password,
 company = company,
 branch = branch
 }).Result
 .EnsureSuccessStatusCode();
 }

 //Log out from Acumatica ERP
 void IDisposable.Dispose()
 {
 _httpClient.PostAsync(_acumaticaBaseUrl + "/entity/auth/logout",
 new ByteArrayContent(new byte[0])).Wait();
 _httpClient.Dispose();
 }
}

Creation of a Record
When you need to create a record by using the contract-based REST API, you access the needed URL
address with the PUT HTTP method and pass the record representation in JSON format in the request
body. See the following sections for details on the URL, parameters, HTTP method, and response
format.

URL

If you need to create a record in Acumatica ERP, you use the following URL.

http://<Base endpoint URL>/<Top-level entity>

The URL has the following components:

• <Base endpoint URL> is the URL of the contract-based endpoint through which you are
going to work with Acumatica ERP, which has the following format: http://<Acumatica ERP
instance URL>/entity/<Endpoint name>/<Endpoint version>/.

• <Top-level entity> is the name of the entity for which you are going to create a record.

For example, suppose that you want to create a stock item record in a local Acumatica ERP instance
with the name AcumaticaDB by using the system endpoint with the name Default and Version 6.00.001.
You should use the following URL to create a record: http://localhost/AcumaticaDB/entity/
Default/6.00.001/StockItem.

Parameters

You can use the following parameters when you retrieve a record from Acumatica ERP:

• $expand: To specify the linked and detail entities to be expanded

• $select: To specify the fields of the entity to be returned

• $custom: To specify the fields that are not defined in the contract to be returned

For detailed descriptions of the parameters, see Parameters for Retrieving Records.

 | Working with the Contract-Based REST API | 52

HTTP Method

You use the PUT HTTP method and pass a record in JSON format in the request body. You can find
details on how to represent a record in JSON format in Representation of a Record in JSON Format. See
below for an example of a customer record representation in JSON format.

{
 "CustomerID" : {value : "JOHNGOOD" } ,
 "CustomerName" : {value : "John Good" },
 "MainContact" :
 {
 "Email" : {value : "demo@gmail.com" },
 "Address" :
 {
 "AddressLine1" : {value : "4030 Lake Washington Blvd NE" },
 "AddressLine2" : {value : "Suite 100" },
 "City" : {value : "Kirkland" },
 "State" : {value : "WA" },
 "PostalCode" : {value : "98033" }
 }
 }
}

Response

The response of a successful method call contains the created record in JSON format in the response
body. The response includes only the values of the fields of the created record that were specified
during creation of the record or that were specified to be returned by using the parameters of the
request.

Example

The following code shows an example of a class that implements the creation of a record in Acumatica
ERP through the REST API.

public class RestService: IDisposable
{
 private readonly HttpClient _httpClient;

 private readonly string _acumaticaBaseUrl;

 public RestService(
 string acumaticaBaseUrl, string userName, string password,
 string company, string branch)
 {
 _acumaticaBaseUrl = acumaticaBaseUrl;
 _httpClient = new HttpClient(
 new HttpClientHandler
 {
 UseCookies = true,
 CookieContainer = new CookieContainer()
 })
 {
 BaseAddress = new Uri(acumaticaBaseUrl +
 "/entity/Default/6.00.001/"),
 DefaultRequestHeaders =
 {
 Accept = {MediaTypeWithQualityHeaderValue.Parse("text/json")}
 }
 };
 _httpClient.PostAsJsonAsync(
 acumaticaBaseUrl + "/entity/auth/login", new
 {
 name = userName,
 password = password,
 company = company,

 | Working with the Contract-Based REST API | 53

 branch = branch
 }).Result
 .EnsureSuccessStatusCode();
 }

 void IDisposable.Dispose()
 {
 _httpClient.PostAsync(_acumaticaBaseUrl + "/entity/auth/logout",
 new ByteArrayContent(new byte[0])).Wait();
 _httpClient.Dispose();
 }

 //Data submission
 public string Put(string entityName, string parameters, string entity)
 {
 var res = _httpClient
 .PutAsync(_acumaticaBaseUrl + "/entity/Default/6.00.001/" +
 entityName + "?" + parameters,
 new StringContent(entity, Encoding.UTF8, "application/json"))
 .Result
 .EnsureSuccessStatusCode();

 return res.Content.ReadAsStringAsync().Result;
 }
}

The following code uses the RestService.Put() method, which is defined in the previous code
fragment, to create a customer record.

public static void CreateCustomer()
{
 //Path to a source text file that contains
 //the new customer record in JSON format
 string entitySource = @"..\..\Input\Customer.txt";

 //Initialize the REST service
 RestService rs = new RestService(
 Properties.Settings.Default.AcumaticaBaseUrl,
 Properties.Settings.Default.UserName,
 Properties.Settings.Default.Password,
 Properties.Settings.Default.Company,
 Properties.Settings.Default.Branch
);

 using (StreamReader sr = new StreamReader(entitySource))
 {
 //Read the customer record in JSON format from the file
 string entityAsString = sr.ReadToEnd().ToString();

 //Create a customer record
 string customer = rs.Put("Customer", null, entityAsString);
 }
}

Update of a Record
When you need to update an existing record by using the contract-based REST API, you access the
needed URL with the PUT HTTP method and pass the record representation in JSON format in the
request body. See the following sections for details on the URL, parameters, HTTP method, and
response format.

 | Working with the Contract-Based REST API | 54

URL

If you need to update a record in Acumatica ERP, you use the following URL.

http://<Base endpoint URL>/<Top-level entity>

The URL has the following components:

• <Base endpoint URL> is the URL of the contract-based endpoint through which you are
going to work with Acumatica ERP, which has the following format: http://<Acumatica ERP
instance URL>/entity/<Endpoint name>/<Endpoint version>/.

• <Top-level entity> is the name of the entity for which you are going to update a record.

For example, suppose that you want to update a stock item record in a local Acumatica ERP instance
with the name AcumaticaDB by using the system endpoint with the name Default and Version 6.00.001.
You would use the following URL to update a record: http://localhost/AcumaticaDB/entity/
Default/6.00.001/StockItem.

Parameters

You can use the following parameters when you are updating a record in Acumatica ERP:

• $filter: To specify filtering conditions that identify the record to be updated

• $expand: To specify the linked and detail entities to be expanded

• $select: To specify the fields of the entity to be returned

• $custom: To specify the fields that are not defined in the contract to be returned

For detailed descriptions of the parameters, see Parameters for Retrieving Records.

HTTP Method

You use the PUT HTTP method and pass a record in JSON format in the request body. You can find
details on how to represent a record in JSON format in Representation of a Record in JSON Format.

To make it possible for the record to be found by Acumatica ERP, you can use any of the following
approaches:

• Specify the values of the key fields in the record representation in JSON format.

• Specify the value of the ID property in the record representation in JSON format.

• Specify the filtering conditions that identify the record in the $filter parameter of the method. For
details on the parameter, see the Parameters section in this topic.

If you want to delete a detail line during update, you should specify true as the value of the delete
property of the corresponding detail entity: "delete" : true. To identify the detail line to be
deleted, you can specify either the values of the key fields of the detail line or the value of the ID
property.

Response

The response of a successful method call contains the updated record in JSON format in the response
body. The response includes only the values of the fields of the updated record that were specified
during the update or that were specified to be returned by using the parameters of the request.

 | Working with the Contract-Based REST API | 55

Example

The following code shows an example of a class that implements the update of a record in Acumatica
ERP through the REST API.

public class RestService: IDisposable
{
 private readonly HttpClient _httpClient;

 private readonly string _acumaticaBaseUrl;

 public RestService(
 string acumaticaBaseUrl, string userName, string password,
 string company, string branch)
 {
 _acumaticaBaseUrl = acumaticaBaseUrl;
 _httpClient = new HttpClient(
 new HttpClientHandler
 {
 UseCookies = true,
 CookieContainer = new CookieContainer()
 })
 {
 BaseAddress = new Uri(acumaticaBaseUrl +
 "/entity/Default/6.00.001/"),
 DefaultRequestHeaders =
 {
 Accept = {MediaTypeWithQualityHeaderValue.Parse("text/json")}
 }
 };
 _httpClient.PostAsJsonAsync(
 acumaticaBaseUrl + "/entity/auth/login", new
 {
 name = userName,
 password = password,
 company = company,
 branch = branch
 }).Result
 .EnsureSuccessStatusCode();
 }

 void IDisposable.Dispose()
 {
 _httpClient.PostAsync(_acumaticaBaseUrl + "/entity/auth/logout",
 new ByteArrayContent(new byte[0])).Wait();
 _httpClient.Dispose();
 }

 //Data submission
 public string Put(string entityName, string parameters, string entity)
 {
 var res = _httpClient
 .PutAsync(_acumaticaBaseUrl + "/entity/Default/6.00.001/" +
 entityName + "?" + parameters,
 new StringContent(entity, Encoding.UTF8, "application/json"))
 .Result
 .EnsureSuccessStatusCode();

 return res.Content.ReadAsStringAsync().Result;
 }
}

The following code uses the RestService.PutWithFilter() method, which is defined in the
previous code fragment, to update an existing customer record that has the demo@gmail.com email
address.

public static void UpdateCustomer()
{

 | Working with the Contract-Based REST API | 56

 //Path to a source text file that contains an updated customer record in JSON
 format
 string entitySource = @"..\..\Input\Customer_Upd.txt";

 //REST service initialization
 RestService rs = new RestService(
 Properties.Settings.Default.AcumaticaBaseUrl,
 Properties.Settings.Default.UserName,
 Properties.Settings.Default.Password,
 Properties.Settings.Default.Company,
 Properties.Settings.Default.Branch
);

 using (StreamReader sr = new StreamReader(entitySource))
 {
 //Read customer record in JSON format from file
 string entityAsString = sr.ReadToEnd().ToString();

 //Specify filtering parameters that identify the customer
 string parameter = "$filter=MainContact/Email eq 'demo@gmail.com'";

 //Update the customer record
 string customer = rs.Put("Customer", parameter, entityAsString);
 }
}

Retrieval of a Record by Key Fields
To retrieve a record by the values of its key fields from Acumatica ERP by using the contract-based
REST API, you access the needed URL with the GET HTTP method and specify the fields that should
be returned in the parameters of the method. See the following sections for details on the URL,
parameters, HTTP method, and response format.

URL

If you need to obtain a particular record with the known key fields, you use the following URL

http://<Base endpoint URL>/<Top-level entity>/<Key value 1>/<Key value 2>

The URL has the following components:

• <Base endpoint URL> is the URL of the contract-based endpoint through which you are
going to work with Acumatica ERP, which has the following format: http://<Acumatica ERP
instance URL>/entity/<Endpoint name>/<Endpoint version>/.

• <Top-level entity> is the name of the entity for which you are going to retrieve a record.

• <Key value 1> and <Key value 2> are the values of the key fields of the record to be
retrieved. You use the number and order of key fields as they are defined on the corresponding
Acumatica ERP form.

: You can pass the key fields separated by vertical bar (|) instead of slash(/).

For example, suppose that you want to retrieve the sales order with order type SO and order number
000123 from a local Acumatica ERP instance with the name AcumaticaDB by using the system endpoint
with the name Default and Version 6.00.001. You should use the following URL to retrieve the sales
order: http://localhost/AcumaticaDB/entity/Default/6.00.001/SalesOrder/
SO/000123.

 | Working with the Contract-Based REST API | 57

Parameters

You can use the following parameters when you retrieve a record from Acumatica ERP:

• $expand: To specify the linked and detail entities to be expanded

• $custom: To specify the fields that are not defined in the contract to be returned

• $select: To specify the fields of the entity to be returned

For detailed descriptions of the parameters, see Parameters for Retrieving Records.

HTTP Method

You use the GET HTTP method to retrieve records.

Response

The response of a successful method call contains the retrieved record in JSON format in the response
body. For details on record representation in JSON format, see Representation of a Record in JSON
Format.

Example

The following code shows an example of a class that implements the retrieval of a record in Acumatica
ERP through the REST API.

public class RestService: IDisposable
{
 private readonly HttpClient _httpClient;

 private readonly string _acumaticaBaseUrl;

 public RestService(
 string acumaticaBaseUrl, string userName, string password,
 string company, string branch)
 {
 _acumaticaBaseUrl = acumaticaBaseUrl;
 _httpClient = new HttpClient(
 new HttpClientHandler
 {
 UseCookies = true,
 CookieContainer = new CookieContainer()
 })
 {
 BaseAddress = new Uri(acumaticaBaseUrl +
 "/entity/Default/6.00.001/"),
 DefaultRequestHeaders =
 {
 Accept = {MediaTypeWithQualityHeaderValue.Parse("text/json")}
 }
 };
 _httpClient.PostAsJsonAsync(
 acumaticaBaseUrl + "/entity/auth/login", new
 {
 name = userName,
 password = password,
 company = company,
 branch = branch
 }).Result
 .EnsureSuccessStatusCode();
 }

 void IDisposable.Dispose()
 {
 _httpClient.PostAsync(_acumaticaBaseUrl + "/entity/auth/logout",
 new ByteArrayContent(new byte[0])).Wait();

 | Working with the Contract-Based REST API | 58

 _httpClient.Dispose();
 }

 //Retrieval of a record by key fields
 public string GetByKeys(string entityName, string keys, string parameters)
 {
 var res = _httpClient.GetAsync(
 _acumaticaBaseUrl + "/entity/Default/6.00.001/" +
 entityName + "/" + keys + "?" + parameters)
 .Result
 .EnsureSuccessStatusCode();

 return res.Content.ReadAsStringAsync().Result;
 }
}

The following code uses the RestService.GetByKeys() method, which is defined in the previous
code fragment, to retrieve a sales order with detail lines from Acumatica ERP.

public static void ExportSODetails()
{
 //Sales order data
 string orderType = "SO";
 string orderNbr = "000001";

 //Initialize the REST service
 RestService rs = new RestService(
 Properties.Settings.Default.AcumaticaBaseUrl,
 Properties.Settings.Default.UserName,
 Properties.Settings.Default.Password,
 Properties.Settings.Default.Company,
 Properties.Settings.Default.Branch
);

 //Specify the parameter to obtain the details of a sales order
 string parameters = "$expand=Details";

 //Retrieve a sales order by keys
 string stockItems = rs.GetByKeys("SalesOrder" , orderType + "/" + orderNbr,
 parameters);
}

Retrieval of a Record by ID
To retrieve a record by the value of the session entity ID from Acumatica ERP by using the contract-
based REST API, you access the needed URL with the GET HTTP method and specify the fields that
should be returned in the parameters of the method. See the following sections for details on the URL,
parameters, HTTP method, and response format.

: The session entity ID is a GUID that is assigned to each entity you work with during an Acumatica ERP
session. You can obtain the value of the session entity ID from the ID property of an entity returned from
Acumatica ERP.

The session entity ID is different for each new session with Acumatica ERP. That is, after a new login to
Acumatica ERP, you cannot use the session entity ID that you received in the previous session to work with
the entity.

URL

If you need to obtain a particular record with the session entity ID, you use the following URL.

http://<Base endpoint URL>/<Top-level entity>/<Session entity ID>

The URL has the following components:

 | Working with the Contract-Based REST API | 59

• <Base endpoint URL> is the URL of a contract-based endpoint through which you are going
to work with Acumatica ERP. This URL has the following format: http://<Acumatica ERP
instance URL>/entity/<Endpoint name>/<Endpoint version>/.

• <Top-level entity> is the name of the entity for which you are going to retrieve a record.

• <Session entity ID> is the session ID of the record to be retrieved.

For example, suppose that you want to retrieve the sales order with session entity ID
03efa858-2351-4bd5-ae06-3d9fb3b3c1e6 from a local Acumatica ERP instance with the name
AcumaticaDB by using the system endpoint with the name Default and Version 6.00.001. You should
use the following URL to retrieve the sales order: http://localhost/AcumaticaDB/entity/
Default/6.00.001/SalesOrder/03efa858-2351-4bd5-ae06-3d9fb3b3c1e6.

Parameters

You can use the following parameters when you retrieve a record from Acumatica ERP:

• $expand: To specify the linked and detail entities to be expanded

• $select: To specify the fields of the entity to be returned

• $custom: To specify the fields that are not defined in the contract to be returned

For detailed descriptions of the parameters, see Parameters for Retrieving Records.

HTTP Method

You use the GET HTTP method to retrieve records.

Response

The response of a successful method call contains the retrieved record in JSON format in the response
body. For details on record representation in JSON format, see Representation of a Record in JSON
Format.

Retrieval of Records by Conditions
To retrieve records that satisfy the specified conditions from Acumatica ERP by using the contract-
based REST API, you access the needed URL address with the GET HTTP method and specify filtering
conditions in the parameters of the method. See the following sections for details on the URL,
parameters, HTTP method, and response format.

URL

If you need to retrieve the list of records that satisfies the specified conditions, you use the following
URL.

http://<Base endpoint URL>/<Top-level entity>

The URL has the following components:

• <Base endpoint URL> is the URL of the contract-based endpoint through which you are
going to work with Acumatica ERP, which has the following format: http://<Acumatica ERP
instance URL>/entity/<Endpoint name>/<Endpoint version>/.

• <Top-level entity> is the name of the entity for which you are going to retrieve the list of
records.

For example, suppose that you want to retrieve the list of stock item records from a local Acumatica
ERP instance with the name AcumaticaDB by using the system endpoint with the name Default

 | Working with the Contract-Based REST API | 60

and Version 6.00.001. You should use the following URL to retrieve the list of records: http://
localhost/AcumaticaDB/entity/Default/6.00.001/StockItem.

Parameters

You can use the following parameters when you retrieve records from Acumatica ERP:

• $filter: To specify filtering conditions on the records to be returned

• $skip: To specify the number of records to be skipped from the list of returned records

• $top: To specify the number of records to be returned in the list

• $expand: To specify the linked and detail entities to be expanded

• $select: To specify the fields of the entity to be returned

• $custom: To specify the fields that are not defined in the contract to be returned

For detailed descriptions of the parameters, see Parameters for Retrieving Records.

HTTP Method

You use the GET HTTP method to retrieve records.

Response

The response of a successful method call contains the retrieved records in JSON format in the response
body. For details on record representation in JSON format, see Representation of a Record in JSON
Format.

Example

The following code shows an example of a class that implements the retrieval of records from
Acumatica ERP through the REST API.

public class RestService: IDisposable
{
 private readonly HttpClient _httpClient;

 private readonly string _acumaticaBaseUrl;

 public RestService(
 string acumaticaBaseUrl, string userName, string password,
 string company, string branch)
 {
 _acumaticaBaseUrl = acumaticaBaseUrl;
 _httpClient = new HttpClient(
 new HttpClientHandler
 {
 UseCookies = true,
 CookieContainer = new CookieContainer()
 })
 {
 BaseAddress = new Uri(acumaticaBaseUrl +
 "/entity/Default/6.00.001/"),
 DefaultRequestHeaders =
 {
 Accept = {MediaTypeWithQualityHeaderValue.Parse("text/json")}
 }
 };
 _httpClient.PostAsJsonAsync(
 acumaticaBaseUrl + "/entity/auth/login", new
 {
 name = userName,
 password = password,
 company = company,

 | Working with the Contract-Based REST API | 61

 branch = branch
 }).Result
 .EnsureSuccessStatusCode();
 }

 void IDisposable.Dispose()
 {
 _httpClient.PostAsync(_acumaticaBaseUrl + "/entity/auth/logout",
 new ByteArrayContent(new byte[0])).Wait();
 _httpClient.Dispose();
 }

 public string Get(string entityName, string parameters)
 {
 var res = _httpClient.GetAsync(
 _acumaticaBaseUrl + "/entity/Default/6.00.001/"
 + entityName + "?" + parameters).Result
 .EnsureSuccessStatusCode();

 return res.Content.ReadAsStringAsync().Result;
 }
}

The following code uses the RestService.Get() method, which is defined in the previous code
fragment, to retrieve the list of stock item records that have the Active status in Acumatica ERP and
have been modified within the past month. The code uses the $expand parameter to retrieve the
vendor details of each record.

public static void ExportStockItems()
{
 //Initialize the REST service
 RestService rs = new RestService(
 Properties.Settings.Default.AcumaticaBaseUrl,
 Properties.Settings.Default.UserName,
 Properties.Settings.Default.Password,
 Properties.Settings.Default.Company,
 Properties.Settings.Default.Branch
);

 //Specify the parameter to filter records by status and last modified date
 string parameters1 =
 "$filter=ItemStatus eq 'Active' and LastModified gt datetimeoffset'" +
 WebUtility.UrlEncode(new DateTimeOffset(DateTime.Now.AddMonths(-1))
 .ToString("yyyy-MM-ddTHH:mm:ss.fffK")) + "'";

 //Specify the parameter to obtain vendor details
 string parameters2 = "$expand=VendorDetails";

 //Retrieve the list of stock items
 string stockItems = rs.Get("StockItem", parameters1 + "&" + parameters2);
}

Usage Notes for Endpoints with Contract Version 3

When multiple records are retrieved from Acumatica ERP through an endpoint with Contract Version 3,
the system tries to optimize the retrieval of the records and obtain all needed records in one request
to the database (instead of requesting the records one by one). If the optimization fails, the system
returns an error, which specifies the entities or fields that caused the failure of the optimized request.
To prevent the error from occurring, you can do any of the following:

• If you do not need to retrieve the entities or fields that caused the failure, you can exclude these
entities or fields from the request as follows:

• Exclude the entities from the entities specified in the $expand parameter.

 | Working with the Contract-Based REST API | 62

• Explicitly specify the other fields to be returned (while excluding the fields that caused the
failure) by using the $select parameter.

• If you need to retrieve the entities or fields that caused the failure, you can retrieve the needed
records one by one either by key fields, or by IDs.

Retrieval of Data from an Inquiry Form
To retrieve data from an inquiry form of Acumatica ERP by using the contract-based REST API,
you access the needed URL with the PUT HTTP method and pass the parameters of the inquiry in
JSON format in the request body. See the following sections for details on and examples of the URL,
parameter, HTTP method, and response format.

URL

If you need to retrieve data from an inquiry form, you use the following URL.

http://<Base endpoint URL>/<Top-level entity>

The URL includes the following components:

• <Base endpoint URL> is the URL of the contract-based endpoint through which you are
going to work with Acumatica ERP, which has the following format: http://<Acumatica ERP
instance URL>/entity/<Endpoint name>/<Endpoint version>/.

• <Top-level entity> is the name of the entity that corresponds to the inquiry form from
which you are going to retrieve data.

For example, suppose that you want to retrieve data from the Inventory Summary (IN401000) form
in a local Acumatica ERP instance with the name AcumaticaDB by using the system endpoint with
the name Default and Version 6.00.001. You would use the following URL to retrieve data: http://
localhost/AcumaticaDB/entity/Default/6.00.001/InventorySummaryInquiry.

Parameter

When you are retrieving data from an inquiry form, you should use the $expand parameter to expand
the detail entity, which contains the results of the inquiry. For a detailed description of the parameter,
see Parameters for Retrieving Records.

HTTP Method

You use the PUT HTTP method and pass parameters of the inquiry in JSON format in the request body.
See below for an example of the representation of parameters of the Inventory Summary inquiry form
in JSON format.

{
 "InventoryID" : {value : "AALEGO500" } ,
 "WarehouseID" : {value : "MAIN" }
}

Response

The response of a successful method call contains the data returned from an inquiry form in JSON
format in the response body.

 | Working with the Contract-Based REST API | 63

Example

The following code shows an example of a class that implements the retrieval of data from an inquiry
form of Acumatica ERP through the REST API.

public class RestService: IDisposable
{
 private readonly HttpClient _httpClient;

 private readonly string _acumaticaBaseUrl;

 public RestService(
 string acumaticaBaseUrl, string userName, string password,
 string company, string branch)
 {
 _acumaticaBaseUrl = acumaticaBaseUrl;
 _httpClient = new HttpClient(
 new HttpClientHandler
 {
 UseCookies = true,
 CookieContainer = new CookieContainer()
 })
 {
 BaseAddress = new Uri(acumaticaBaseUrl +
 "/entity/Default/6.00.001/"),
 DefaultRequestHeaders =
 {
 Accept = {MediaTypeWithQualityHeaderValue.Parse("text/json")}
 }
 };
 _httpClient.PostAsJsonAsync(
 acumaticaBaseUrl + "/entity/auth/login", new
 {
 name = userName,
 password = password,
 company = company,
 branch = branch
 }).Result
 .EnsureSuccessStatusCode();
 }

 void IDisposable.Dispose()
 {
 _httpClient.PostAsync(_acumaticaBaseUrl + "/entity/auth/logout",
 new ByteArrayContent(new byte[0])).Wait();
 _httpClient.Dispose();
 }

 //Data submission
 public string Put(string entityName, string parameters, string entity)
 {
 var res = _httpClient
 .PutAsync(_acumaticaBaseUrl + "/entity/Default/6.00.001/" +
 entityName + "?" + parameters,
 new StringContent(entity, Encoding.UTF8, "application/json"))
 .Result
 .EnsureSuccessStatusCode();

 return res.Content.ReadAsStringAsync().Result;
 }
}

The following code uses the RestService.Put() method, which is defined in the previous code
fragment, to retrieve the quantities of a stock item from the Inventory Summary inquiry form.

public static void ExportItemQty()
{
 //Path to a source text file that contains the parameters of
 //the inquiry in JSON format

 | Working with the Contract-Based REST API | 64

 string entitySource = @"..\..\Input\InventorySummaryInquiry.txt";

 //REST service initialization
 RestService rs = new RestService(
 Properties.Settings.Default.AcumaticaBaseUrl,
 Properties.Settings.Default.UserName,
 Properties.Settings.Default.Password,
 Properties.Settings.Default.Company,
 Properties.Settings.Default.Branch
);

 using (StreamReader sr = new StreamReader(entitySource))
 {
 //Read inquiry parameters in JSON format from a file
 string entityAsString = sr.ReadToEnd().ToString();

 //Specify the parameter to expand results of the inquiry
 string parameters = "$expand=Results";

 //Retrieve data from the inquiry
 string stockItems =
 rs.Put("InventorySummaryInquiry", parameters, entityAsString);
 }
}

Parameters for Retrieving Records
When you retrieve records from Acumatica ERP by using the contract-based REST API, you can use
the URL parameters, which are described in this topic, to filter records by the specified conditions,
expand particular entities, and retrieve the values of the fields that are not defined in the contract of
the endpoint.

$filter Parameter

You use this parameter to specify the conditions that determine which records should be selected from
Acumatica ERP. You use OData URI conventions to specify the value of the parameter. The following
examples illustrate the use of this parameter:

• $filter=ItemStatus eq 'Active': Obtains stock item records that have the Active status in
Acumatica ERP.

• $filter=MainContact/Email eq 'demo@gmail.com': Obtains a customer record that has the
demo@gmail.com email address. (The Email field is defined in a linked entity, which is available
through the MainContact property.)

• $filter=ItemStatus eq 'Active' and LastModified gt
datetimeoffset'2016-07-15T10%3A31%3A28.402%2B03%3A00': Obtains stock item records that
have the Active status in Acumatica ERP and have been modified later than July 15, 2016.

: You should encode date and time values in URL format before passing them as the value
of the parameter. For example, you can encode the current date and time by using the
System.Net.WebUtility.URLEncode() method as follows: WebUtility.UrlEncode(new
DateTimeOffset(DateTime.Now).ToString("yyyy-MM-ddTHH:mm:ss.fffK")).

: For one field, multiple conditions cannot be specified in the $filter parameter. The
only exception is the ge X and le Y condition, such as $filter=CreatedDateTime ge
DateTimeOffset'2015-12-31T00%3A00%3A00%2B000' and CreatedDateTime le
DateTimeOffset'2015-01-01T00%3A00%3A00%2B000'.

When you specify the value of the parameter, you can use the following functions as they are defined in
OData:

• substringof

http://www.odata.org/documentation/odata-version-3-0/url-conventions/

 | Working with the Contract-Based REST API | 65

• startswith

• endswith

You can also use the following custom function to filter records by the values of the elements that
are not defined in the contract of the endpoint: cf.<Type name>(f='<View name>.<Field
name>'), where <Type name> is the type of the custom element, <View name> is the name
of the data view that contains the element, and <Field name> is the name of the element. For
example, if you want to obtain all records on the Stock Items (IN202500) form that have the value
of the Post Class ID element equal to STOCKITEM, you would use the following parameter string:
$filter=cf.String(f='ItemSettings.PostClassID') eq 'STOCKITEM'.

: For details on how to find out the name of a custom element and the name of its data view, see Custom
Fields.

$top Parameter

You use this parameter to specify the number of records to be returned from Acumatica ERP. That is, if
you specify N as the value of this parameter, the first N records will be returned from Acumatica ERP.
For example, if you want to obtain only first five records from the list, you use the following parameter
string: $top=5.

$skip Parameter

You use this parameter to specify the number of records to be skipped from the list of returned records.
That is, if you specify N as the value of this parameter, the first N records will be skipped from the list of
returned records. For example, if you do not want to obtain the first five records from the list, you use
the following parameter string: $skip=5.

If you use the $skip and $top parameters together, the $skip parameter is applied first.

$expand Parameter

You use this parameter to specify the linked and detail entities that should be expanded. By default, no
linked or detail entities are expanded; that is, only fields of the top-level entity are returned.

You use OData URI conventions to specify the value of this parameter. For example, if you want to
obtain the values of the warehouse detail lines of stock item records, you use the following parameter
string: $expand=WarehouseDetails.

You explicitly specify each linked or detail entity to be expanded. For example, if you specify
$expand=MainContact for the Customer entity, only the Contact linked entity of the Customer entity is
expanded, but the Address linked entity within MainContact is not. To expand the Address entity, you
should explicitly specify the Address entity to be expanded: $expand=MainContact/Address.

$select Parameter

You use this parameter to specify the fields of the entity to be returned from Acumatica ERP. By default,
all fields of the entity are returned.

You use OData URI conventions to specify the value of this parameter. For example, if you want to
obtain only the order types and order numbers of sales orders, you use the following parameter string:
$select=OrderType,OrderNbr.

$custom Parameter

You use this parameter to specify the fields that are not defined in the contract of the endpoint to
be returned from Acumatica ERP. That is, you can use this parameter to obtain both the values of
predefined elements on an Acumatica ERP form that are not included in the entity definition and the
values of elements that were added to the Acumatica ERP form in a customization project.

http://www.odata.org/documentation/odata-version-3-0/url-conventions/
http://www.odata.org/documentation/odata-version-3-0/url-conventions/

 | Working with the Contract-Based REST API | 66

You specify the element whose value should be returned in the following format: <View
name>.<Field name>, where you replace <View name> with the name of the data view that
contains the element and <Field name> with the internal name of the element. For example, if you
want to obtain the value of the Post Class ID element of the Stock Items (IN202500) form, you use
the following parameter string: $custom=ItemSettings.PostClassID. For details on how to find out the
field name and the name of the data view, see Custom Fields.

: If you want to obtain the value of a custom field of a linked or detail entity, you have to specify this entity
in the $expand parameter.

If you want to obtain the values of multiple custom elements, you specify the custom elements to be
returned divided by commas.

Removal of a Record
In the contract-based REST API, you can delete the record by the value of its key fields or by its session
identifier. To delete a record from Acumatica ERP, you access the needed URL address with the DELETE
HTTP method. See the following sections for details on the possible URL, parameters, HTTP method, and
response format.

: If you need to delete a detail line of a record, you should use the PUT HTTP method, as described in
Update of a Record.

URL for Removing by Key Fields

If you need to delete a record with known key fields, you use the following URL.

http://<Base endpoint URL>/<Top-level entity>/<Key value 1>/<Key value 2>

The URL has the following components:

• <Base endpoint URL> is the URL of the contract-based endpoint through which you are
going to work with Acumatica ERP, which has the following format: http://<Acumatica ERP
instance URL>/entity/<Endpoint name>/<Endpoint version>/.

• <Top-level entity> is the name of the entity for which you are going to delete a record.

• <Key value 1> and <Key value 2> are the values of the key fields of the record to be
deleted. You use the number and order of key fields as they are defined on the corresponding
Acumatica ERP form.

: You can pass the key fields separated by vertical bar (|) instead of slash(/).

For example, suppose that you want to delete the sales order with order type SO and order number
000123 from a local Acumatica ERP instance with the name AcumaticaDB by using the system endpoint
with the name Default and Version 6.00.001. You should use the following URL to delete the sales
order: http://localhost/AcumaticaDB/entity/Default/6.00.001/SalesOrder/
SO/000123.

URL for Removing by ID

If you need to delete a record with a known session ID, you use the following URL.

http://<Base endpoint URL>/<Top-level entity>/<Session entity ID>

You replace <Base endpoint URL> with the URL of the contract-based endpoint through which you
are going to work with Acumatica ERP, which has the following format: http://<Acumatica ERP
instance URL>/entity/<Endpoint name>/<Endpoint version>/. You replace <Top-level

 | Working with the Contract-Based REST API | 67

entity> with the name of the entity for which you are going to retrieve the list of records. You replace
<Session entity ID> with the session entity ID (which is the GUID).

For example, suppose that you want to delete the sales order with session entity ID
03efa858-2351-4bd5-ae06-3d9fb3b3c1e6 from a local Acumatica ERP instance with the name
AcumaticaDB by using the system endpoint with the name Default and Version 6.00.001. You should
use the following URL to delete the sales order: http://localhost/AcumaticaDB/entity/
Default/6.00.001/SalesOrder/03efa858-2351-4bd5-ae06-3d9fb3b3c1e6.

Parameters

You use no parameters when deleting a record.

HTTP Method

You use the DELETE HTTP method to retrieve records. You pass no content in the request body.

Response

The response of a successful method call is 204 No Content.

Example

The following code shows an example of a class that implements the removal of a record from
Acumatica ERP through the REST API.

public class RestService: IDisposable
{
 private readonly HttpClient _httpClient;

 private readonly string _acumaticaBaseUrl;

 public RestService(
 string acumaticaBaseUrl, string userName, string password,
 string company, string branch)
 {
 _acumaticaBaseUrl = acumaticaBaseUrl;
 _httpClient = new HttpClient(
 new HttpClientHandler
 {
 UseCookies = true,
 CookieContainer = new CookieContainer()
 })
 {
 BaseAddress = new Uri(acumaticaBaseUrl +
 "/entity/Default/6.00.001/"),
 DefaultRequestHeaders =
 {
 Accept = {MediaTypeWithQualityHeaderValue.Parse("text/json")}
 }
 };
 _httpClient.PostAsJsonAsync(
 acumaticaBaseUrl + "/entity/auth/login", new
 {
 name = userName,
 password = password,
 company = company,
 branch = branch
 }).Result
 .EnsureSuccessStatusCode();
 }

 void IDisposable.Dispose()
 {
 _httpClient.PostAsync(_acumaticaBaseUrl + "/entity/auth/logout",
 new ByteArrayContent(new byte[0])).Wait();

 | Working with the Contract-Based REST API | 68

 _httpClient.Dispose();
 }

 //Removal of a record
 public string Delete(string entityName, string keys)
 {
 var res = _httpClient.DeleteAsync(_acumaticaBaseUrl
 + "/entity/Default/6.00.001/" + entityName + "/" + keys).Result
 .EnsureSuccessStatusCode();

 return res.Content.ReadAsStringAsync().Result;
 }
}

The following code uses the RestService.Delete() method, which is defined in the previous code
fragment, to delete a stock item record.

public static void DeleteStockItem()
{
 //Stock item data
 string inventoryID = "ASDF";

 //Initialize the REST service
 RestService rs = new RestService(
 Properties.Settings.Default.AcumaticaBaseUrl,
 Properties.Settings.Default.UserName,
 Properties.Settings.Default.Password,
 Properties.Settings.Default.Company,
 Properties.Settings.Default.Branch
);

 //Remove the stock item
 string stockItem = rs.Delete("StockItem", inventoryID);
}

Execution of an Action
To perform an action by using the contract-based REST API, you access the needed URL address with
the POST HTTP method and pass the record representation in JSON format and parameters of the
action in the request body. See the following sections for details on the URL, parameters, HTTP method,
and response format.

URL

If you need to perform an action on an Acumatica ERP form, you use the following URL.

http://<Base endpoint URL>/<Top-level entity>/<Action name>

The URL has the following components:

• <Base endpoint URL> is the URL of the contract-based endpoint through which you are
going to work with Acumatica ERP, which has the following format: http://<Acumatica ERP
instance URL>/entity/<Endpoint name>/<Endpoint version>/.

• <Top-level entity> is the name of the entity for which you are going to perform an action.

• <Action name> is the name of the action that you are going to perform.

For example, suppose that you want to confirm a shipment in a local Acumatica ERP instance with the
name AcumaticaDB by using the system endpoint with the name Default and Version 6.00.001. You
should use the following URL to confirm a shipment: http://localhost/AcumaticaDB/entity/
Default/6.00.001/Shipment/ConfirmShipment.

 | Working with the Contract-Based REST API | 69

Parameters

You use no parameters when performing an action.

HTTP Method

You use the POST HTTP method and pass the record to which the action should be applied and the
parameters of the action in the request body in JSON format as follows.

{
 "entity" : <record in JSON format>,
 "parameters" : <parameters in JSON format>
}

You can find details on how to represent a record in JSON format in Representation of a Record in JSON
Format.

Response

If the long-running operation that was initiated by the action is completed or wasn't created, the
response is 204 No Content. If the long-running operation is in progress, the response is 202 Accepted;
it has the Location header, which contains a URL that can be used to check the status of the
operation by using the GET HTTP method. When the GET HTTP method with this URL returns 204 No
Content, the operation is completed.

Example

The following code shows an example of a class that implements the execution of an action in
Acumatica ERP through the REST API.

public class RestService: IDisposable
{
 private readonly HttpClient _httpClient;

 private readonly string _acumaticaBaseUrl;

 public RestService(
 string acumaticaBaseUrl, string userName, string password,
 string company, string branch)
 {
 _acumaticaBaseUrl = acumaticaBaseUrl;
 _httpClient = new HttpClient(
 new HttpClientHandler
 {
 UseCookies = true,
 CookieContainer = new CookieContainer()
 })
 {
 BaseAddress = new Uri(acumaticaBaseUrl +
 "/entity/Default/6.00.001/"),
 DefaultRequestHeaders =
 {
 Accept = {MediaTypeWithQualityHeaderValue.Parse("text/json")}
 }
 };
 _httpClient.PostAsJsonAsync(
 acumaticaBaseUrl + "/entity/auth/login", new
 {
 name = userName,
 password = password,
 company = company,
 branch = branch
 }).Result
 .EnsureSuccessStatusCode();
 }

 | Working with the Contract-Based REST API | 70

 void IDisposable.Dispose()
 {
 _httpClient.PostAsync(_acumaticaBaseUrl + "/entity/auth/logout",
 new ByteArrayContent(new byte[0])).Wait();
 _httpClient.Dispose();
 }

 //Invocation of an action
 public string Post(string entityName, string actionName,
 string entityAndParameters)
 {
 var result = _httpClient
 .PostAsync(_acumaticaBaseUrl + "/entity/Default/6.00.001/"
 + entityName + "/" + actionName,
 new StringContent(entityAndParameters,
 Encoding.UTF8, "application/json"));
 var res = result.Result;
 var cont = res.Content.ReadAsStringAsync().Result;
 res.EnsureSuccessStatusCode();

 var dt = DateTime.Now;
 while (true)
 {
 switch (res.StatusCode)
 {
 case HttpStatusCode.NoContent:
 return "No content";
 case HttpStatusCode.Accepted:
 if ((DateTime.Now - dt).Seconds > 30)
 throw new TimeoutException();
 Thread.Sleep(500);
 res = _httpClient.GetAsync(res.Headers.Location)
 .Result.EnsureSuccessStatusCode();
 continue;
 default:
 throw new InvalidOperationException(
 "Invalid process result: " + res.StatusCode);
 }
 }
 }
}

The following code uses the RestService.Post() method, which is defined in the previous code
fragment, to release a sales order invoice.

public static void ReleaseSOInvoice()
{
 //Invoice to be released
 string invoice = "{\"Type\" : {value : \"Invoice\"}, "
 + "\"ReferenceNbr\" : {value : \"INV000045\"} }";

 //Initialize the REST service
 RestService rs = new RestService(
 Properties.Settings.Default.AcumaticaBaseUrl,
 Properties.Settings.Default.UserName,
 Properties.Settings.Default.Password,
 Properties.Settings.Default.Company,
 Properties.Settings.Default.Branch
);

 //Release the invoice
 invoice = rs.Post("SalesInvoice", "ReleaseSalesInvoice",
 "{\"entity\" : " + invoice + ", \"parameters\" : null}");
}

 | Working with the Contract-Based REST API | 71

Attachment of a File to a Record
When you need to attach a file to a record by using the contract-based REST API, you access the
needed URL address with the PUT HTTP method and pass the file in the request body. See the following
sections for details on the URL, parameters, HTTP method, and response format.

URL

If you need to attach a file to a record in Acumatica ERP, you use the following URL.

http://<Base endpoint URL>/<Top-level entity>/<Key value 1>/<Key value 2>/files/
<File name>

The URL has the following components:

• <Base endpoint URL> is the URL of the contract-based endpoint through which you are
going to work with Acumatica ERP, which has the following format: http://<Acumatica ERP
instance URL>/entity/<Endpoint name>/<Endpoint version>/.

• <Top-level entity> is the name of the entity to which you are going to attach a file.

• <Key value 1> and <Key value 2> are the values of the key fields of the record to which
you are going to attach a file. You use the number and order of key fields as they are defined on
the corresponding Acumatica ERP form.

: You can pass the key fields separated by vertical bar (|) instead of slash(/).

• <File name> is the name of the file that you are going to attach with the extension.

For example, suppose that you want to attach the Sample.jpg file to the stock item record with
inventory ID AALEGO500 in a local Acumatica ERP instance with name AcumaticaDB by using the
system endpoint with the name Default and Version 6.00.001. You should use the following URL to
attach the file: http://localhost/AcumaticaDB/entity/Default/6.00.001/StockItem/
AALEGO500/files/Sample.jpg.

Parameters

You use no parameters when you attach a file to a record.

HTTP Method

You use the PUT HTTP method and pass the file to be attached in the request body.

Response

The response of a successful method call is 204 No Content.

Example

The following code shows an example of a class that implements the attachment of a file to a record in
Acumatica ERP through the REST API.

public class RestService: IDisposable
{
 private readonly HttpClient _httpClient;

 private readonly string _acumaticaBaseUrl;

 public RestService(
 string acumaticaBaseUrl, string userName, string password,

 | Working with the Contract-Based REST API | 72

 string company, string branch)
 {
 _acumaticaBaseUrl = acumaticaBaseUrl;
 _httpClient = new HttpClient(
 new HttpClientHandler
 {
 UseCookies = true,
 CookieContainer = new CookieContainer()
 })
 {
 BaseAddress = new Uri(acumaticaBaseUrl +
 "/entity/Default/6.00.001/"),
 DefaultRequestHeaders =
 {
 Accept = {MediaTypeWithQualityHeaderValue.Parse("text/json")}
 }
 };
 _httpClient.PostAsJsonAsync(
 acumaticaBaseUrl + "/entity/auth/login", new
 {
 name = userName,
 password = password,
 company = company,
 branch = branch
 }).Result
 .EnsureSuccessStatusCode();
 }

 void IDisposable.Dispose()
 {
 _httpClient.PostAsync(_acumaticaBaseUrl + "/entity/auth/logout",
 new ByteArrayContent(new byte[0])).Wait();
 _httpClient.Dispose();
 }

 //Attachment of a file to a record
 public string PutFile(string entityName, string keys,
 string fileName, System.IO.Stream file)
 {
 var res = _httpClient.PutAsync(_
 acumaticaBaseUrl + "/entity/Default/6.00.001/"
 + entityName + "/" + keys + "/files/" + fileName,
 new StreamContent(file)).Result
 .EnsureSuccessStatusCode();
 return res.Content.ReadAsStringAsync().Result;
 }
}

The following code uses the RestService.PutFile() method, which is defined in the previous code
fragment, to attach a file to a stock item record.

public static void PutFile()
{
 //Input data
 string inventoryID = "AALEGO500";
 string fileName = "T2MCRO.jpg";
 string entitySource = @"..\..\Input\T2MCRO.jpg";

 //Initialize the REST service
 RestService rs = new RestService(
 Properties.Settings.Default.AcumaticaBaseUrl,
 Properties.Settings.Default.UserName,
 Properties.Settings.Default.Password,
 Properties.Settings.Default.Company,
 Properties.Settings.Default.Branch
);

 using (StreamReader sr = new StreamReader(entitySource))
 {

 | Working with the Contract-Based REST API | 73

 //Attach a file to a stock item record
 string stockItem = rs.PutFile("StockItem", inventoryID, fileName,
 sr.BaseStream);
 }

}

Retrieval of a File Attached to a Record
To retrieve a file that is attached to a record from Acumatica ERP by using the contract-based REST API,
you access the URL address of the file with the GET HTTP method. See the following sections for details
on the URL, parameters, HTTP method, and response format.

URL

If you need to obtain a file attached to a record, you use the following URL.

http://<Base endpoint URL>/files/<File identifier>

The URL has the following components:

• <Base endpoint URL> is the URL of the contract-based endpoint through which you are
going to work with Acumatica ERP, which has the following format: http://<Acumatica ERP
instance URL>/entity/<Endpoint name>/<Endpoint version>/.

• <File identifier> is the internal identifier of the file in the system.

To get this URL for a particular file attached to a record, you should obtain the record from Acumatica
ERP and, in the returned JSON representation of the record, find the value of the href property of the
needed file in the files array. For information on how to retrieve a record from Acumatica ERP, see
Retrieval of a Record by Key Fields and Retrieval of a Record by ID.

For example, suppose that you retrieved the stock item record that contains the following files array
from a local Acumatica ERP instance with the name AcumaticaDB.

{
 ...,
 "files":[
 {
 "id":"9be45eb7-f97d-400b-96a5-1c4cf82faa96",
 "filename":"Stock Items (AAMACHINE1)\\T2MCRO.jpg",
 "href":
"/AcumaticaDB/entity/Default/6.00.001/files/9be45eb7-f97d-400b-96a5-1c4cf82faa96"
 }
]
}

You should use the following URL to retrieve the T2MCRO.jpg file attached to the stock item record:
http://localhost/AcumaticaDB/entity/Default/6.00.001/files/9be45eb7-
f97d-400b-96a5-1c4cf82faa96.

Parameters

You use no parameters when retrieving a file.

HTTP Method

You use the GET HTTP method to retrieve a file.

 | Working with the Contract-Based REST API | 74

Response

The response of a successful method call contains the retrieved file in the response body.

Example

The following code shows an example of a class that implements the retrieval of a file attached to a
record in Acumatica ERP through the REST API.

public class RestService: IDisposable
{
 private readonly HttpClient _httpClient;

 private readonly string _acumaticaBaseUrl;

 public RestService(
 string acumaticaBaseUrl, string userName, string password,
 string company, string branch)
 {
 _acumaticaBaseUrl = acumaticaBaseUrl;
 _httpClient = new HttpClient(
 new HttpClientHandler
 {
 UseCookies = true,
 CookieContainer = new CookieContainer()
 })
 {
 BaseAddress = new Uri(acumaticaBaseUrl +
 "/entity/Default/6.00.001/"),
 DefaultRequestHeaders =
 {
 Accept = {MediaTypeWithQualityHeaderValue.Parse("text/json")}
 }
 };
 _httpClient.PostAsJsonAsync(
 acumaticaBaseUrl + "/entity/auth/login", new
 {
 name = userName,
 password = password,
 company = company,
 branch = branch
 }).Result
 .EnsureSuccessStatusCode();
 }

 void IDisposable.Dispose()
 {
 _httpClient.PostAsync(_acumaticaBaseUrl + "/entity/auth/logout",
 new ByteArrayContent(new byte[0])).Wait();
 _httpClient.Dispose();
 }

 //Retrieval of a record by key fields
 public string GetByKeys(string entityName, string keys, string parameters)
 {
 var res = _httpClient.GetAsync(
 _acumaticaBaseUrl + "/entity/Default/6.00.001/" +
 entityName + "/" + keys + "?" + parameters)
 .Result
 .EnsureSuccessStatusCode();

 return res.Content.ReadAsStringAsync().Result;
 }

 //Retrieving of a file
 public System.IO.Stream GetFile(string href)
 {
 var res = _httpClient.GetAsync(href).Result.EnsureSuccessStatusCode();
 return res.Content.ReadAsStreamAsync().Result;

 | Working with the Contract-Based REST API | 75

 }
}

The following code uses the RestService.GetByKeys() and RestService.GetFile() methods,
which are defined in the previous code fragment, to retrieve a file attached to a stock item record from
Acumatica ERP.

public static void GetFile()
{
 //Specify stock item data
 string inventoryID = "AAMACHINE1";

 //Initialize the REST service
 RestService rs = new RestService(
 Properties.Settings.Default.AcumaticaBaseUrl,
 Properties.Settings.Default.UserName,
 Properties.Settings.Default.Password,
 Properties.Settings.Default.Company,
 Properties.Settings.Default.Branch
);

 //Retrieve the stock item
 string stockItem = rs.GetByKeys("StockItem", inventoryID, null);

 //Find href and the file name of the needed file
 //(using Newtonsoft.Json.Linq and System.IO)
 JObject jItem = JObject.Parse(stockItem);
 JArray jFiles = jItem.Value<JArray>("files");
 string fileRef = jFiles[0].Value<string>("href");
 string fullFileName = jFiles[0].Value<string>("filename");
 string fileName = Path.GetFileName(fullFileName);

 //Obtain the file
 Stream file = rs.GetFile(fileRef);

 using (var outputFile = File.Create(@"..\..\Output\" + fileName))
 {
 file.Seek(0, SeekOrigin.Begin);
 file.CopyTo(outputFile);
 }
}

Retrieval of the Schema of Custom Fields
To retrieve the schema of custom fields of an entity—that is, the field name, view name, and type of the
fields that are not defined in the contract of the endpoint for this entity—by using the contract-based
REST API, you access the needed URL with the GET HTTP method. See the following sections for details
on and examples of the URL, parameters, HTTP method, and response format.

URL

If you need to obtain the schema of custom fields of an entity, you use the following URL.

http://<Base endpoint URL>/<Top-level entity>/$adHocSchema

The URL includes the following components:

• <Base endpoint URL> is the URL of the contract-based endpoint through which you are
going to work with Acumatica ERP, which has the following format: http://<Acumatica ERP
instance URL>/entity/<Endpoint name>/<Endpoint version>/.

• <Top-level entity> is the name of the entity for which you are going to retrieve the schema
of custom fields.

 | Working with the Contract-Based REST API | 76

For example, suppose that you want to obtain the schema of custom fields of a stock item entity from
a local Acumatica ERP instance with the name AcumaticaDB by using the system endpoint with the
name Default and Version 6.00.001. You would use the following URL to retrieve the schema: http://
localhost/AcumaticaDB/entity/Default/6.00.001/StockItem/$adHocSchema.

Parameters

You use no parameters when retrieving the schema of custom fields of an entity.

HTTP Method

You use the GET HTTP method to retrieve the schema of custom fields.

Response

The response of a successful method call contains the schema of custom fields in JSON format in the
response body.

Multi-Language Fields
For some text boxes on Acumatica ERP forms, users can type values in multiple languages if multiple
locales are configured in Acumatica ERP. For example, if your Acumatica ERP instance has English
and French locales activated and multilingual user input configured, you can specify the value of the
Description box on the Stock Items (IN202500) form in English and French. For the list of elements
that support multiple languages, see Boxes that Have Multi-Language Support. For details on how to
turn on multilingual user input, see Enabling Multilingual User Input.

Specifying Localized Values of a Multi-Language Field

When you need to specify localized values of a text box by using the contract-based REST API, you
specify the value of the field that corresponds to the box as a string in JSON format with the localized
values. In this string, you use the two-letter ISO code of the language with which the value should be
associated.

In the example that is mentioned at the beginning of the topic, if you need to specify values in English
and French in the Description box on the Stock Items form, you specify the value of the Description
field of the StockItem entity in the following format: [{en:English description},{fr:French
description}]. See below for an example of a stock item record with localized Description field
values in JSON format. For details on how to pass the record to the service, see Creation of a Record
and Update of a Record.

{
 "InventoryID" : {value : "BASESERV" } ,
 "Description" : {value : "[{en:Item},{fr:Pièce}]" }
}

: In the JSON-formatted string, you should specify the actual values of the field in all languages that are
configured for multilingual user input. If you specify the values of the field in particular languages, the
values of the field in other languages configured for multilingual user input become empty. For example,
suppose that in your instance of Acumatica ERP, multi-language fields can have values in English and
French. If you pass the value of a field in the following format [{en:English description}], the
French value of the field becomes empty.

If you specify the value of a multi-language field as plain text, this text is saved as the value of the
corresponding box in the current language of Acumatica ERP (that is, the language that you specified
when you logged in to Acumatica ERP). For details on how to specify the language on login through the
contract-based REST API, see Login to the Service.

 | Working with the Contract-Based REST API | 77

Retrieving Localized Values of a Multi-Language Field

If you need to retrieve localized values of a text box that supports multiple input languages, you
retrieve the value a special custom field that contains all localized values of the text box and has the
Translations suffix in its field name.

To find out the field name and the view name of the needed custom field with localized values, you
find out the field name and the view name of the multi-language text box and append Translations
to the field name. (For details on how to find out the field name and the view name of an element on
the form, see Custom Fields.) For example, the multi-language Description box on the Stock Items
form has the Descr field name and the Item view name; therefore, the custom field that contains the
localized descriptions of a stock item has the DescrTranslations field name and the Item view name.

You obtain the value of the needed custom field by using the $custom parameter. For example,
suppose that you need to obtain the localized values of the Description element of the Stock
Items form. In this case, you should use the following parameter string in the request URL:
$custom=Item.DescrTranslations. For details on how to retrieve a record, see Retrieval of a Record by
Key Fields and Retrieval of Records by Conditions.

The returned value of a Translations custom field is a string in JSON format with the available
localized values of the field. The language to which the value belongs is identified by the two-letter ISO
code of the language. For example, suppose that the Description element of the Stock Items form
has the value Item in English and Pièce in French. In this case, the value of the DescrTranslations
custom field, which corresponds to the Description element, is the following string: [{en:Item},
{fr:Pièce}].

 | Working with the Contract-Based SOAP API | 78

Working with the Contract-Based SOAP API

The contract-based SOAP application programming interface (API) of Acumatica ERP provides the
SOAP interface of the Acumatica ERP contract-based web services through which external systems
can get data records from Acumatica ERP, process these records, and save new or updated records to
Acumatica ERP.

This chapter includes the topics that are specific for the contract-based SOAP API. For general
information on the contract-based web services, see Configuring the Contract-Based REST and SOAP
API. You can find examples of how to use the contract-based SOAP API in the I210 Integration:
Contract-Based Web Services training course and in Contract-Based API Examples. For the API
reference, see Contract-Based SOAP API Reference.

In This Chapter

• Multi-Language Fields

• To Configure the Client Application

Multi-Language Fields
For some text boxes on Acumatica ERP forms, users can type values in multiple languages if multiple
locales are configured in Acumatica ERP. For example, if your Acumatica ERP instance has English
and French locales activated and multilingual user input configured, you can specify the value of the
Description box on the Stock Items (IN202500) form in English and French. For the list of elements
that support multiple languages, see Boxes that Have Multi-Language Support. For details on how to
turn on multilingual user input, see Enabling Multilingual User Input.

Specifying Localized Values of a Multi-Language Field

When you need to specify localized values of a text box by using the contract-based SOAP API, you
specify the value of the field that corresponds to the box as a string in JSON format with the localized
values. In this string, you use the two-letter ISO code of the language with which the value should be
associated.

In the example that is mentioned at the beginning of the topic, if you need to specify values in English
and French in the Description box on the Stock Items form, you specify the value of the Description
field of the StockItem entity in the following format: [{en:English description},{fr:French
description}], as shown in the following code fragment.

public static void CreateStockItem(DefaultSoapClient soapClient)
{
 //Specify the values of the new stock item
 StockItem stockItemToBeCreated = new StockItem
 {
 InventoryID = new StringValue { Value = "BASESERV" },
 Description = new StringValue { Value = "[{en:Item},{fr:Pièce}]" },
 ItemClass = new StringValue { Value = "STOCKITEM" },
 };
 //Create a stock item with the specified values
 StockItem newStockItem = (StockItem)soapClient.Put(stockItemToBeCreated);
}

: In the JSON-formatted string, you should specify the actual values of the field in all languages that are
configured for multilingual user input. If you specify the values of the field in particular languages, the
values of the field in other languages configured for multilingual user input become empty. For example,
suppose that in your instance of Acumatica ERP, multi-language fields can have values in English and

https://openuni.acumatica.com/courses/integration/i210-contract-based-web-services/
https://openuni.acumatica.com/courses/integration/i210-contract-based-web-services/

 | Working with the Contract-Based SOAP API | 79

French. If you pass the value of a field in the following format [{en:English description}], the
French value of the field becomes empty.

If you specify the value of a multi-language field as plain text, this text is saved as the value of the
corresponding box in the current language of Acumatica ERP (that is, the language that you specified
when you logged in to Acumatica ERP). For details on how to specify the language on login through the
contract-based SOAP API, see Login() Method.

Retrieving Localized Values of a Multi-Language Field

If you need to retrieve localized values of a text box that supports multiple input languages, you
retrieve the value of a special custom field that contains all localized values of the text box and has the
Translations suffix in its field name.

To find out the field name and the view name of the needed custom field with localized values, you
find out the field name and the view name of the multi-language text box and append Translations
to the field name. (For details on how to find out the field name and the view name of an element on
the form, see Custom Fields.) For example, the multi-language Description box on the Stock Items
form has the Descr field name and the Item view name; therefore, the custom field that contains the
localized descriptions of a stock item has the DescrTranslations field name and the Item view name.

The following code shows how to retrieve the localized values of the Description element of the Stock
Items form. (The code below uses Contract Version 2.)

public static void ExportStockItem(DefaultSoapClient soapClient)
{
 StockItem stockItem = new StockItem
 {
 InventoryID = new StringValue { Value = "BASESERV" },
 //Specify the localized values to be returned
 CustomFields = new[]
 {
 new CustomStringField
 {
 fieldName = "DescrTranslations",
 viewName = "Item",
 Value = new StringReturn(),
 }
 }
 };
 //Retrieve the stock item record
 StockItem stockItemToRetrieve = (StockItem)client.Get(stockItem);
}

The returned value of a Translations custom field is a string in JSON format with the available
localized values of the field. The language to which the value belongs is identified by the two-letter ISO
code of the language. For example, suppose that the Description element of the Stock Items form
has the value Item in English and Pièce in French. In this case, the value of the DescrTranslations
custom field, which corresponds to the Description element, is the following string: [{en:Item},
{fr:Pièce}].

To Configure the Client Application
In this topic, you will learn how to import the WSDL description of the Acumatica ERP web services into
a Visual Studio project. Do the following:

1. In Visual Studio, create a new application.

: To create a new application, select File > New > Project in the menu. In the New Project
dialog box that appears, select the needed template, specify the name and location of the
application, and click OK.

 | Working with the Contract-Based SOAP API | 80

2. Add to the project a reference to the Acumatica ERP web service as follows:

a. In the menu, select Project > Add Service Reference.

b. In the Address box of the Add Service Reference dialog box, which appears, specify
the URL of the needed endpoint (see item 1 in the following screenshot).

: To get the URL of the service, on the Web Service Endpoints (SM207060) form, select
the name of the endpoint contract in the Endpoint Name box and the version of the
contract in the Endpoint Version box, click View Endpoint Service > WSDL on the form
toolbar, and copy the URL from the address line in the browser for the page that opens.
For example, the URL of the Default endpoint of the version 17.200.001 is https://
localhost/WebServiceAPITest/entity/Default/17.200.001?wsdl.

c. Click Go (item 2 in the screenshot) to make Visual Studio connect to the web service.

: If your Acumatica ERP website uses a self-signed certificate, Visual Studio displays
security alert windows with warnings on the certificate. Click Yes in these windows to
proceed.

d. In the Namespace box, type the name of the namespace for the web service classes
generated by Visual Studio based on the WSDL description of the service, such as
Default (3).

e. Click OK (4) to add to the project the reference to the specified service.

Figure: Add Service Reference dialog box

Visual Studio adds to the project the service reference in the Service References folder,
as shown in the following screenshot.

 | Working with the Contract-Based SOAP API | 81

Figure: Solution Explorer

3. Modify the app.config file of the project as shown below. Cookies are required for the client
application to log in to Acumatica ERP. The security mode Transport indicates that API calls to
Acumatica ERP will be made through HTTPS (which is the recommended approach).

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 ...
 <system.serviceModel>
 <bindings>
 <basicHttpBinding>
 <binding name="Acumatica" allowCookies="true"
 maxReceivedMessageSize="6553600">
 <security mode="Transport" />
 </binding>
 ...
 </basicHttpBinding>
 </bindings>
 <client>
 <endpoint address=
 "https://localhost/WebServiceAPITest/entity/Default/17.200.001"
 binding="basicHttpBinding" bindingConfiguration="Acumatica"
 contract="Default.DefaultSoap" name="DefaultSoap" />
 </client>
 </system.serviceModel>
</configuration>

: You can make API calls to Acumatica ERP through HTTP if requirements to your application do not
include secure data transfer between the application and Acumatica ERP. If you do not need to use
HTTPS, you can use the configuration shown below in the app.config file. Notice that you use the
HTTP address of the endpoint instead of HTTPS address. The security tag is not used for HTTP
connection.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 ...
 <system.serviceModel>
 <bindings>
 <basicHttpBinding>
 <binding name="Acumatica" allowCookies="true"
 maxReceivedMessageSize="6553600">
 </binding>
 </basicHttpBinding>
 </bindings>
 <client>
 <endpoint address=
 "http://localhost/WebServiceAPITest/entity/Default/17.200.001"

 | Working with the Contract-Based SOAP API | 82

 binding="basicHttpBinding" bindingConfiguration="Acumatica"
 contract="Default.DefaultSoap" name="DefaultSoap" />
 </client>
 </system.serviceModel>
</configuration>

4. Rebuild the project.

You have created a Visual Studio application and added to it the reference to the Acumatica ERP web
service. Now you can start developing your application. For the description of the SOAP API methods,
see Contract-Based SOAP API Reference.

 | Working with the Screen-Based SOAP API | 83

Working with the Screen-Based SOAP API

The screen-based SOAP API of Acumatica ERP provides the SOAP interface of the Acumatica ERP
contract-based web services through which external systems can get data records from Acumatica ERP,
process these records, and save new or updated records to Acumatica ERP.

In This Chapter

• Screen-Based Web Services API

• API Objects Related to Acumatica ERP Forms

• Screen-Based API Wrapper

• To Generate the WSDL File of the Web Services

• To Import the WSDL File Into the Development Environment

• To Use the Screen-Based API Wrapper

Screen-Based Web Services API
The screen-based web services API is a part of Acumatica ERP integration services, which provides
integration with external data sources and third-party systems by using a SOAP interface.

External applications and systems that use the Acumatica ERP web services API can access the data
managed by Acumatica ERP and the business functionality of Acumatica ERP. For example, you can
integrate Acumatica ERP with eCommerce or an online store system, so that an external system pushes
all information about customers, sales orders, and payments to Acumatica ERP, and Acumatica ERP
provides information on the availability of stock items and processes all incoming data.

The screen-based web services API works with Acumatica ERP forms. That is, it provides API objects
and methods for working with elements on Acumatica ERP forms.

To upload data to and from Acumatica ERP by using the screen-based web services API, you define the
sequence of commands for the system to work with elements on an Acumatica ERP form. This sequence
of commands reflects the sequence of actions to be executed for a data record as if the record is being
manipulated by a user through an Acumatica ERP form. That is, when you enter data into the system
manually, you perform a sequence of actions. You open the needed data entry form and start entering
data. As you add a new record, you use the UI elements one by one—you type text, select values from
combo boxes, clear or select check boxes, and click buttons. In the sequence of commands for the web
services, you compose exactly the same sequence of actions by specifying a command for each user
action on the form. For more information on the commands you can use, see Working with Commands
of the Screen-Based SOAP API.

: This sequence of commands is similar to the sequence of commands you configure when you create
import and export scenarios. You can find more information on import and export scenarios in Configuring
Import Scenarios and Configuring Export Scenarios.

To use screen-based web services API in your application, you should generate the WSDL file of the
web service, as described in To Generate the WSDL File of the Web Services, and import this file to
your development project as described in To Import the WSDL File Into the Development Environment.
After that, you can start developing your application. You can find the description of the API methods in
Screen-Based SOAP API Reference.

You can find more details on screen-based web services API and examples of use of the API in the I200
Screen-Based Web Services training course.

 | Working with the Screen-Based SOAP API | 84

API Objects Related to Acumatica ERP Forms
The main object, which provides access to all other objects and methods of the Acumatica ERP web
services API, is a Screen object. By using the methods of a Screen object, you can log in to Acumatica
ERP and retrieve, insert, update, and delete data. You can also use the methods to perform any actions
that are exposed by Acumatica ERP forms available through the web service.

Screen Object

After you have logged in to Acumatica ERP by using the web services API, you can access data on
Acumatica ERP forms available through the web service. The Screen class provides the same set of
API methods for working with all Acumatica ERP forms available through the service. You can find out
which form a method accesses by noting the prefix in the name of the method, which is the form ID.
For example, the Export() method that you use to export data from the Stock Items (IN202500) form
is IN202500Export().

Content Object

To get the description of the structure (schema) of a form, you should use the GetSchema() method
of the Screen object. This method is specific for each Acumatica ERP form, and you should use the
method with the ID of the needed form in the prefix of the method name. The method returns the
schema of the form as the corresponding Content object, which is specific for each form. For example,
to get the schema of the Stock Items form, you should call the IN202500GetSchema() method of the
Screen object. You will receive the result as a IN202500Content object, as the following code shows.

Screen context = new Screen();
...
IN202500Content stockItemsSchema = context.IN202500GetSchema();

Command Object

By using subobjects of a Content object, you configure the sequence of commands that should be
executed during data import, data export, or data processing through the web service. You configure
the sequence of commands inside an array of objects of the Command type. When you are reflecting the
selection of an element on a form in the sequence of commands, you have to select the object of the
Acumatica ERP form whose element you want to access. The objects that are available inside a Content
object have names that are similar to the names of the UI elements that you see on the form and have
the ID of the form as a prefix.

For example, to be able to select the Item Class element, which is located in the Item Defaults group
on the General Settings tab of the Stock Items form (shown in the following screenshot), you would
select the GeneralSettingsItemDefaults property of the IN202500Content object. This property
provides access to the IN202500GeneralSettingsItemDefaults object, which includes the ItemClass
property.

Each element on an Acumatica ERP form (such as a text box, combo box, or table column) is associated
with a particular web services API class and is available through corresponding property of this class.
The property has a similar name to that of the corresponding box on the form, such as ItemClass, as
the following screenshot shows.

 | Working with the Screen-Based SOAP API | 85

Figure: API object on an Acumatica ERP form

The following code shows an example of configuring a list of commands for the Stock Items form inside
an array of Command objects.

//stockItemsSchema is a IN202500Content object
var commands = new Command[]
{
 stockItemsSchema.StockItemSummary.ServiceCommands.EveryInventoryID,
 stockItemsSchema.StockItemSummary.InventoryID,
 stockItemsSchema.StockItemSummary.Description,
 stockItemsSchema.GeneralSettingsItemDefaults.ItemClass,
 stockItemsSchema.GeneralSettingsUnitOfMeasureBaseUnit.BaseUnit
};

For more information on the commands, see Working with Commands of the Screen-Based SOAP API.

Actions Object

To insert an action to a sequence of commands, such as clicking a button, you use the corresponding
property of the special API object Actions (which has a prefix with the ID of the form in the name).
The Actions object is available through the Actions property of the Content object that corresponds
to the form. The properties of the Actions object have names that are similar to the names of
corresponding buttons on the form, such as Delete.

You can view the classes available through the web services API by using Object Browser in Visual
Studio.

Screen-Based API Wrapper
Because of the connection of the screen-based SOAP API with Acumatica ERP forms, the applications
that are developed based on this API are sensitive to the UI changes in the system. That is, any
changes made to the UI after the application is created require the application to be updated and
recompiled. If you want your application to not depend on the UI changes in the system, you should
use the screen-based API wrapper, which is described in this topic.

 | Working with the Screen-Based SOAP API | 86

How a Client Application Based on the Screen-Based API Works

A client application that uses the screen-based web services API includes the WSDL description of
the service, which contains the API elements that the application can use to work with the service.
The API elements have names that are similar to the names of the elements in the UI of Acumatica
ERP. For example, the Customer ID element of the Customers (AR303000) form corresponds to the
Customer.CustomerSummary.CustomerID property.

When the application calls the Screen.GetSchema() method, it retrieves from Acumatica ERP the
schema of an Acumatica ERP form. The schema of the form is a Content object, which defines the
correspondence between the API elements and the internal data fields that are used for operations
with data by Acumatica ERP. If something has been changed in the schema of an Acumatica ERP
form, the Content object that is returned by the Screen.GetSchema() method contains a different
correspondence between the API elements and internal data fields than the correspondence for which
the application is compiled, and the application fails.

For example, suppose that a client application requests the customer ID by the
Customer.CustomerSummary.CustomerID property. Suppose also that in an update of Acumatica ERP,
the Customer ID element of the Customers form was renamed to Customer, and therefore it should
be requested by using the Customer.CustomerSummary.Customer property from the API. The client
application requests the customer ID by using the Customer.CustomerSummary.CustomerID property
and fails.

What the Screen-Based API Wrapper Is

The screen-based API wrapper is a special wrapper designed to prevent the UI changes in the system
from causing application failure. The wrapper works with any changes in the schema of an Acumatica
ERP form. That is, the wrapper makes the application work regardless of the changes in the names of
UI elements and the changes in the internal names of data fields and objects.

The wrapper is distributed as the PX.Soap.dll file, which is installed automatically during Acumatica
ERP installation. You can find the PX.Soap.dll file in the ScreenBasedAPIWrapper folder of your
Acumatica ERP installation folder.

The PX.Soap library, which the wrapper provides, includes the Helper.GetSchema() method, which
you should use instead of the Screen.GetSchema() method of the screen-based web services API. For
information on how to use the screen-based API wrapper, see To Use the Screen-Based API Wrapper.

How the Screen-Based API Wrapper Works

When the client application is executed for the first time and requests the schema of an Acumatica ERP
form by using the Helper.GetSchema() method, the wrapper requests the schema from the Acumatica
ERP screen-based web service by using the Screen.GetSchema() method of the screen-based API.
The web service interacts with the Acumatica ERP import and export engine and returns the current
schema of the form. The wrapper saves the schema in an XML file and returns the schema to the client
application as a Content object. The client application uses this schema to work with Acumatica ERP.

: Instead of the Helper.GetSchema() method you can use the Helper.ReuseStoredSchema()
method to upload a schema that was saved earlier by the wrapper.

The following diagram illustrates the way the screen-based API wrapper works during the first execution
of a client application.

 | Working with the Screen-Based SOAP API | 87

Figure: First execution of an application

When the client application is executed for the second time and all subsequent times and it requests the
schema of an Acumatica ERP form by using the Helper.GetSchema() method, the wrapper retrieves
the XML schema that is saved locally and submits this schema to the Acumatica ERP screen-based web
service by using the Screen.SetSchema() method of the screen-based API. The web service interacts
with the Acumatica ERP import and export engine, which replaces the current schema of the form
that is stored on the server with the one that was saved locally. The wrapper returns the schema that
was saved locally to the client application. The client application uses the local schema to work with
Acumatica ERP.

: The schema that is submitted to Acumatica ERP by using the screen-based API wrapper is used on the
server during the current session and is discarded after the end of the session.

The following diagram illustrates the way the screen-based API wrapper works during the second
execution and all subsequent executions of a client application.

 | Working with the Screen-Based SOAP API | 88

Figure: Subsequent executions of the application

: You should distribute the XML file with the schema along with your client application. If the wrapper has
not found the XML file, it requests the new schema.

The name of the XML file with the schema contains a hash code that depends on the WSDL description. If
you update the WSDL description in your application, the wrapper works in the same way as it did during
the first execution of the application and creates a new XML file with the schema.

To Generate the WSDL File of the Web Services
The WSDL description of the Acumatica ERP screen-based web services API contains the descriptions of
the API objects and methods that you can use to access Acumatica ERP forms.

Because of the connection of the API with Acumatica ERP forms, each generated WSDL description of
this API reflects the current state of the system. That is, the WSDL description does not include any
changes made to the system after the WSDL file was generated, and each time you change the system,
you should regenerate the WSDL description and update your application accordingly.

: You can prevent breaking changes in your application and omit regeneration of the WSDL description for
each change in the system by using the screen-based API wrapper. For details on how to use the wrapper,
see To Use the Screen-Based API Wrapper.

For example, suppose that you generated a WSDL description of the web service that contains the
definition of the CustomerID property, which corresponds to the Customer ID element on the
Customers (AR303000) form. Further, suppose that you changed the name of the Customer ID
element to Customer Identifier in a customization project. To access the Customer Identifier
element on the form through the screen-based web services API, you need to regenerate the WSDL

 | Working with the Screen-Based SOAP API | 89

description so that it contains the definition of the CustomerIdentifier property that corresponds
to the Customer Identifier element, and update your application accordingly.

You can generate the WSDL file of an Acumatica ERP web service in one of the following ways.

To Generate a WSDL File for One Acumatica ERP Form

If your application needs to work with only one Acumatica ERP form, you can generate the web service
that provides access to only this form.

To generate a WSDL file for a form, on the title bar of this form, click Tools > Web Service in
the modern UI or Help > Web Service in the classic UI. This opens the page that contains the
description of the web service, with the following URL: http(s)://<ApplicationPath>/Soap/
<FormID>.asmx. In this URL, <ApplicationPath> is replaced with the actual URL of your
application, and <FormID> is replaced with the ID of the form. For example, suppose that you
generated a web service for the Customers form of the WebServiceAPITest application, which is
accessed under a secure connection and is running on a local computer. The URL of this service is
https://localhost/WebServiceAPITest/Soap/AR303000.asmx.

To Generate a WSDL File for Multiple Acumatica ERP Forms

If your application needs to work with multiple Acumatica ERP forms, you can generate one web service
that provides access to all needed forms.

To generate a WSDL file for multiple forms, on the Web Services (SM207040) form, you should do the
following:

1. Type the ID of the web service in the Service ID box of the Summary area of the form. This ID
will be used in the URL of the generated service.

2. Select the Acumatica ERP forms that your application needs to use on the left pane of the form,
and click Add to Grid for each form.

3. Select the types of integration these forms should provide (which can include importing data,
exporting data, and submitting data) by selecting the appropriate check boxes (any combination
of Import, Export, or Submit) for corresponding rows on the right pane of the form.

4. Click Generate.

: The modules that expose the selected forms should be properly configured and the forms should open
in a web browser. If a form could not be opened in a web browser, the web service definition will not be
generated for this form.

After the web service is generated, you can view the WSDL description by clicking View Generated
on the form toolbar. This opens the page that contains the description of the web service with the
following URL: http(s)://<ApplicationPath>/Soap/<ServiceID>.asmx. In this URL,
<ApplicationPath> is replaced with the actual URL of your application, and <ServiceID> is
replaced with the ID of the service that you specified in the Service ID box when configuring the
service. For example, suppose that you generated a web service for multiple forms with the MYSTORE
service ID for the WebServiceAPITest application, which is accessed under a secure connection and is
running on a local computer. The URL of this service is https://localhost/WebServiceAPITest/
Soap/MYSTORE.asmx.

To Import the WSDL File Into the Development Environment
When the WSDL file is generated, you must import it into your development environment to generate
proxy classes. If necessary, see the documentation of your development environment to find out the
correct way of building the proxy classes based on the WSDL definition.

In this topic, you will find instructions on how to implement the proxy classes by using Visual Studio
2012 or later.

 | Working with the Screen-Based SOAP API | 90

To Generate Proxy Classes from the WSDL Definition by Using Visual Studio 2012 or Later

1. In Microsoft Visual Studio, create a new project as follows:

a. Select File > New > Project.

b. In the New Project window that appears, select the required template.

c. Define the name of the project and solution, as shown in the figure below, and click OK.

2. Add a web service reference to the project as follows:

a. In the menu, select Project > Add Service Reference.

b. In the Add Service Reference dialog box, which appears, click Advanced.

c. In the Service Reference Settings dialog box, which appears, click Add Web
Reference.

d. In the URL box of the Add Web Reference dialog box, which appears, specify the URL
of the web service (see item 1 in the following screenshot).

: To get the URL of the service, on the Web Services (SM207040) form, select the needed
web service in the Service ID box, click View Generated on the form toolbar, and copy
the URL from the address line in the browser for the page that opens, such as https://
localhost/WebServiceAPITest/Soap/MYSTORE.asmx.

: You can make API calls to Acumatica ERP through HTTP if requirements to your
application does not include secure data transfer between the application and Acumatica
ERP. If you do not need to use HTTPS, use the HTTP address of the application instead of
HTTPS, such as http://localhost/WebServiceAPITest/Soap/MYSTORE.asmx.

e. Click Go (2 in the screenshot) to make Visual Studio connect to the web service.

: If your Acumatica ERP website uses a self-signed certificate, Visual Studio displays
security alert windows with warnings on the certificate. Click Yes in these windows to
proceed.

f. In the Web reference name box, type the name of the web reference (3). This name
will be used as a namespace for the web service classes generated by Visual Studio based
on the WSDL description of the service.

g. Click Add Reference (4) to add to the project the reference to the specified service.

 | Working with the Screen-Based SOAP API | 91

Figure: Add Web Reference dialog box

Visual Studio adds to the project the Web References folder with the web service
reference in it, as shown in the following screenshot.

Figure: Solution Explorer

: If you need to update a web reference to the Acumatica ERP web service in a Visual
Studio project, you can update the WSDL description in Acumatica ERP and update the
web reference in the project by right-clicking the web reference in Solution Explorer and
selecting Update Web Reference, as shown in the following screenshot.

 | Working with the Screen-Based SOAP API | 92

Figure: Update Web Reference menu item

3. Rebuild the project.

To Use the Screen-Based API Wrapper
The screen-based SOAP API depends on the user interface of Acumatica ERP forms. That is, each
generated WSDL description of this API includes the API elements that correspond to the current names
of UI elements of the system. Therefore, if any changes have been made to the user interface of the
system after the WSDL file was generated, the WSDL description will not include these changes, and
the client application that uses this WSDL will fail when it works with the system.

To prevent application failures and omit the regeneration of the WSDL description for each change of
the user interface of the system, you can use the screen-based API wrapper, as described in this topic.
You can find more information on the screen-based API wrapper in Screen-Based API Wrapper.

To Use the Screen-Based Web Services API Wrapper in a Client Application

1. Add to your project a reference to PX.Soap.dll.

: The PX.Soap.dll file is installed automatically during Acumatica ERP installation. You can find
this file in the ScreenBasedAPIWrapper folder of your Acumatica ERP installation folder.

2. Use the Helper.GetSchema() method from the PX.Soap library in the code of your application
instead of the corresponding Screen.GetSchema() method to obtain the schema of each form.
For example, the following code retrieves the schema of the Customers (AR303000) form by
using the screen-based API wrapper.

Screen context = new Screen();
context.CookieContainer = new System.Net.CookieContainer();
context.Url = Properties.Settings.Default.MyStoreIntegration_MyStore_Screen;
context.Login
(
 Properties.Settings.Default.Login,

 | Working with the Screen-Based SOAP API | 93

 Properties.Settings.Default.Password
);

AR303000Content custSchema =
 PX.Soap.Helper.GetSchema<AR303000Content>(context);

3. Work with the retrieved Content object by using the standard screen-based web services API
methods.

 | Working with Commands of the Screen-Based SOAP API | 94

Working with Commands of the Screen-Based
SOAP API

To upload data to and from Acumatica ERP by using the screen-based SOAP API, you should define
the sequence of commands for the system as it works with elements on an Acumatica ERP form. This
sequence of commands reflects the sequence of actions to be executed for a data record as if the
record is being manipulated by a user through an Acumatica ERP form.

In This Chapter

• Commands for Retrieving the Values of Elements

• Selection of a Group of Records for Export

• Commands for Setting the Values of Elements

• Commands for Clicking Buttons on a Form

• Commands for Adding Detail Lines

• Commands for Pop-Up Dialog Boxes and Pop-Up Forms

• Commands for Pop-Up Panels

• Commands for Record Searching: Filter Service Command

• Commands for Record Searching: Key Command

• Commands for Record Searching: Custom Field

• Commands That Require a Commit

• Commands for Working with Attachments

• Commands for Working with Multi-Language Fields

Commands for Retrieving the Values of Elements
You configure the sequence of commands that should be executed during data import, data export, or
data processing through the web service by using an array of objects of the Command type.

As you specify this sequence of commands, when you need to reflect obtaining the value of an element
on a form, you should use a Field object. To specify the element whose value you need to obtain, you
can do one of the following:

• Select the needed Field object from the subobjects of the Field type of a Content object that
corresponds to the needed Acumatica ERP form

• Create an object of the Field type and specify its properties

Both of these ways are described in detail in the following sections of this topic.

Selection of the Fields Available in a Content Object

If you want to obtain the value of an element on an Acumatica ERP form, you can select the needed
Field object from the subobjects of the Field type of the Content object that corresponds to the form.
For example, if you want to export the values of the Inventory ID and Description elements on the
Stock Items (IN202500) form, you can use the following code.

//stockItemsSchema is an IN202500Content object

 | Working with Commands of the Screen-Based SOAP API | 95

var commands = new Command[]
{
 ...
 stockItemsSchema.StockItemSummary.InventoryID,
 stockItemsSchema.StockItemSummary.Description,
 ...
};

Field Object Creation

You can retrieve the values of not only the fields that are available on the Acumatica ERP form, but also
the data fields of the data access classes (DACs) underlying the form. Some of these data fields are not
available directly through the elements of the form. That is, you cannot select the needed Field object
among the subobjects of the Content object.

If you want to retrieve the value of an element that is not available on the form, you can create a Field
object and specify its properties so that it specifies the needed data field of the DAC. You should specify
the name of the object that corresponds to the needed DAC as the ObjectName and type the name
of the data field in FieldName. The following code illustrates the creation of a Field object for the
LastModifiedDateTime data field (which specifies the date and time when a record was modified)
that is available through the DAC underlying the StockItemSummary object of the Stock Items form.

: To find the names of the data fields that belong to DACs, you should read the applicable Acumatica
ERP code. You can find the source code of Acumatica ERP on the Source Code (SM204570) form or in
<ApplicationFolder>\App_Data\CodeRepository\PX.Objects\, where <ApplicationFolder> is replaced with
the path to the folder of the Acumatica ERP application instance. You can learn the details of working with
the source code of Acumatica ERP in the T300 Acumatica Customization Platform training course.

//stockItemsSchema is an IN202500Content object
var commands = new Command[]
{
 ...
 new Field
 {
 ObjectName = stockItemsSchema.StockItemSummary.InventoryID.ObjectName,
 FieldName = "LastModifiedDateTime"
 },
 ...
};

: You can create Field objects for the elements that are available on a form. If you want to create a
Field object for an element available on the form, set the ObjectName property to the ObjectName
property of the needed subobject of the Field type of a Content object, and set the FieldName property
to the FieldName property of this Field object. The following code illustrates the creation of a Field
object for the InventoryID field of the Stock Items form.

new Field
{
 ObjectName = stockItemsSchema.StockItemSummary.InventoryID.ObjectName,
 FieldName = stockItemsSchema.StockItemSummary.InventoryID.FieldName
}

Selection of a Group of Records for Export
Each record in the system is identified by the values of the key elements on the applicable Acumatica
ERP form. For example, a record on the Stock Items (IN202500) form is identified by the value of the
Inventory ID key element. Key elements are available through the Summary object of a form. You
can use the key element or elements of the form to select all records of the form for export. The other
way to specify a group of records for export is to use the elements of the Summary area of the form in
custom filters. Both ways of selecting records are described in detail below.

 | Working with Commands of the Screen-Based SOAP API | 96

Export of All Records from a Form

If you want to export every record from an Acumatica ERP form, in the array of Command objects that
you pass to the Export() method, you should insert the service command of the EveryValue type for
the corresponding key element on the form. The EveryValue service command is available through
the ServiceCommands subobject of the Summary object of the Content object that corresponds to the
form. This service command specifies that every record of the specific type should be processed during
export.

For example, if you want to export all stock item records available in the system, you should insert the
EveryInventoryID service command, as the following code shows.

//stockItemsSchema is an IN202500Content object
var commands = new Command[]
{
 stockItemsSchema.StockItemSummary.ServiceCommands.EveryInventoryID,
 ...
};

Export of a Group of Records from a Form
You can filter the data available in the Acumatica ERP database to select the records for export. For
example, you can configure the system to export only the records that have a particular status.

To define a filter for the data being exported, you should create an array of Filter objects and add the
needed filters to it. To define a filter, you should specify:

• The UI element whose value should be used for filtering (in the Field property of the Filter
object).

• The value or values with which the value of the element should be compared (in the Value
property or Value and Value2 properties of the Filter object).

• The condition of comparison (in the Condition property of the Filter object).

If you define multiple filters in the array, you should also specify the logical operator (either And or Or)
that defines how to apply these filters. If filters are passed to an Export() method, during export, the
system selects only the records that conform to the specified condition (or conditions) and exports only
these records.

For example, suppose that you want to export only the stock item records that have the Active status.
In this case, you can specify the filtering condition that the Item Status element should be equal to
Active, as the following code shows. During export, the system processes the records that match the
filtering conditions and exports only the records with the Active status.

var filters = new Filter[]
{
 new Filter
 {
 Field = stockItemsSchema.StockItemSummary.ItemStatus,
 Condition = FilterCondition.Equals,
 Value = "Active",
 }
};

For filtering records, you can use either the data fields of the Summary object of the form from which
you are exporting data, or the data fields of the data access class (DAC) underlying the Summary
object. (In Acumatica Framework, this DAC is called the main DAC of the primary data view.) If a data
field of the DAC is not available directly through the elements of the Summary object, you cannot select
the needed Field object among the subobjects of a Content object, as the previous code example
shows for the ItemStatus data field. Instead, you should create a new Field object and specify its
properties as follows: Specify the name of the Summary object as ObjectName (that is, the object name

 | Working with Commands of the Screen-Based SOAP API | 97

that corresponds to the object to which the key data field belongs), and type the name of the data field
as FieldName in the code directly.

The following example shows filtering by the LastModifiedDateTime data field (which specifies
the date and time when a record was modified) that is available through the DAC underlying the
StockItemSummary object of the Stock Items form.

new Filter
{
 Field = new Field
 {
 ObjectName = stockItemsSchema.StockItemSummary.InventoryID.ObjectName,
 FieldName = "LastModifiedDateTime"
 },
 Condition = FilterCondition.Greater,
 Value = DateTime.Now.AddMonths(-1).ToLongDateString()
}

Commands for Setting the Values of Elements
As you specify the sequence of commands in an array of Command objects, when you need to specify the
value of an element on a form, you should use Value commands.

To set the value of an element on a form, you should do the following:

1. Create a Value object.

2. Specify the value of the element on the form in the Value property of the created Value object.

3. Specify the element on the form whose value should be set by using the LinkedCommand
property of the Value object.

The following code illustrates setting the value of the Customer Name element on the Customers
(AR303000) form.

//custSchema is an AR303000Content object
var commands = new Command[]
{
 ...
 new Value
 {
 Value = "John Good",
 LinkedCommand = custSchema.CustomerSummary.CustomerName
 },
 ...
}

Commands for Clicking Buttons on a Form
As you specify the sequence of commands in an array of Command objects, when you need to reflect the
clicking of a button on a form (such as clicking Save, Delete, or Release to perform the action on a
document), you should use the corresponding Action command. Actions are available for all buttons on
the form.

In an array of Command objects, to use an Action command, you have to select the needed action in the
Actions subobject of the Content object that corresponds to the form. Actions have names that are
similar to the names of the buttons on the form.

The following code reflects the clicking of the Save button on the Customers (AR303000) form in a
command.

//custSchema is an AR303000Content object
var commands = new Command[]

 | Working with Commands of the Screen-Based SOAP API | 98

{
 ...
 custSchema.Actions.Save,
 ...
};

Commands for Adding Detail Lines
When you need to add a detail line to an Acumatica ERP form, you can use one of the following
approaches:

• Add detail lines one by one on the Details tab of the form. For example, on the Sales Orders
(SO301000) form, you can click Add Row on the Document Details tab and specify the values
of the elements of each detail line.

• Add detail lines by using a pop-up panel. For example, on the Shipments (SO302000) form, you
can use the Add Sales Order pop-up panel, which is opened when you click Add Order on the
table toolbar of the Document Details tab.

In this topic, you will find the description of the NewRow command, which imitates the first approach
listed above in the screen-based API. The second approach is described in Commands for Pop-Up
Panels.

NewRow Service Command

When you are specifying the sequence of commands in an array of Command objects for a processing
method and you need to add a new detail line to a document, you should use commands as follows:

1. To add a new row, use the NewRow service command, which is an available service command of
the Details subobject of a Content object.

2. To specify the values of the elements of the created row, use the Value commands
corresponding to the elements.

The following code shows an example of an order line being added to a sales order.

//orderSchema is an SO301000Content object
var commands = new Command[]
{
 ...
 orderSchema.DocumentDetails.ServiceCommands.NewRow,
 new Value
 {
 Value = "AALEGO500",
 LinkedCommand = orderSchema.DocumentDetails.InventoryID
 },
 new Value
 {
 Value = "10.0",
 LinkedCommand = orderSchema.DocumentDetails.Quantity
 },
 new Value
 {
 Value = firstItemUOM,
 LinkedCommand = orderSchema.DocumentDetails.UOM
 },
 ...
}

 | Working with Commands of the Screen-Based SOAP API | 99

Commands for Pop-Up Dialog Boxes and Pop-Up Forms
In this topic, you will learn how to enter data to pop-up dialog boxes and pop-up forms by using the
screen-based SOAP API.

Pop-Up Dialog Boxes

When you update specific fields on some forms under certain circumstances, the system displays pop-
up dialog boxes where you need to respond to a question (by clicking a button) in order to proceed.
For example, when you update the Customer Class value on the Customers (AR303000) form for
an existing customer, the system displays a Warning dialog box with the text Please confirm if you
want to update current customer settings with the customer class defaults. Otherwise, original settings
will be preserved. and the Yes and No buttons. You should click Yes to proceed with changing the
customer class.

When you are specifying the sequence of commands in an array of Command objects for a processing
method and you need to specify an answer to a question that would appear in a pop-up dialog box if
the data was being entered manually, you should create a Value command and set its properties as
follows:

• In the Value property, specify the answer that you select in the dialog box during manual entry of
a record.

• In the LinkedCommand property, use a DialogAnswer service command, which is available through
the ServiceCommands subobject of an object that invokes the appearance of the pop-up dialog
box.

You should insert this Value command directly before the field that causes the appearance of the dialog
box.

The following code shows how you would update the customer class in an existing customer record on
the Customers form.

//custSchema is an AR303000Content object
var commands = new Command[]
{
 ...
 new Value
 {
 Value = "Yes",
 LinkedCommand = custSchema.CustomerSummary.ServiceCommands.DialogAnswer
 },
 new Value
 {
 Value = "INTL",
 LinkedCommand = custSchema.GeneralInfoFinancialSettings.CustomerClass
 },
 ...
};

Pop-Up Forms

When you click specific buttons on some forms, the system opens a pop-up window with another
Acumatica ERP form where you can specify or edit the values of elements as needed. For example, if
you click Add Contact on the Contacts tab of the Customers form, the system displays the Contacts
(CR302000) form.

: Do not confuse a situation when the system opens a pop-up window that contains an Acumatica ERP
form with a situation when the system opens a pop-up panel (where you can specify needed settings
but no Acumatica ERP form is shown). A pop-up window that contains a form has an address line in the

 | Working with Commands of the Screen-Based SOAP API | 100

browser where you can see the ID of the form. A pop-up panel looks like a dialog box and does not have an
address line.

When you are specifying a sequence of commands in an array of Command objects for a processing
method and you need to reflect the setting of values of elements of a pop-up form in these commands,
you should perform the following steps:

1. Call an action that invokes a pop-up form as follows:

a. By using the GetSchema() method of the PX.Soap.Helper class, get the Content
object that corresponds to the form that invokes a pop-up form.

b. Specify the command that invokes a pop-up form in the sequence of commands by using
the corresponding Action command.

c. Submit this sequence of commands to the form that invokes the pop-up form by using
the corresponding Submit() method.

2. Specify the values on the pop-up form as follows:

a. By using the GetSchema() method of the PX.Soap.Helper class, get the Content
object that corresponds to the form that appears as a pop-up.

b. Specify the list of commands that specifies the values of needed elements of the pop-up
form.

c. Add the Save action to the list of commands.

d. Submit this sequence of commands to the pop-up form by using the corresponding
Submit() method.

The following code illustrates the setting of the values of the Contacts form, which appears as a pop-up
after the user clicks Add Contact on the Contacts tab of the Customers form.

//context is a Screen object
//custSchema is an AR303000Content object
var commands = new Command[]
{
 new Value
 {
 Value = customerID,
 LinkedCommand = custSchema.CustomerSummary.CustomerID
 },

 custSchema.Actions.NewContact
};
context.AR303000Submit(commands);

//contSchema is a CR302000Content object
commands = new Command[]
{
 new Value
 {
 Value = "Green",
 LinkedCommand = contSchema.DetailsSummary.LastName
 },
 contSchema.Actions.Save,
};
context.CR302000Submit(commands);

Commands for Pop-Up Panels
In some instances, when you click a specific button on some form, the system opens a pop-up panel,
where you can set the values of needed elements. This pop-up panel looks like a dialog box and does
not contain an Acumatica ERP form. For example, if you click Add Order on the table toolbar of the

 | Working with Commands of the Screen-Based SOAP API | 101

Document Details tab of the Shipments (SO302000) form, the system displays the Add Sales Order
pop-up panel.

: Do not confuse a situation when the system opens a pop-up panel (where you can set needed settings
but no Acumatica ERP form is shown) with a situation when the system opens a pop-up window that
contains an Acumatica ERP form. A pop-up window that contains a form has an address line in the browser
where you can see the ID of the form. A pop-up panel looks like a dialog box and does not have an address
line.

When you are specifying a sequence of commands in an array of Command objects for a processing
method and you need to reflect the setting of values of elements on a pop-up panel in these
commands, you should perform the following steps:

1. Insert the DialogAnswer service command of the pop-up panel object before the action that
opens the panel, and set the Commit property to true for this command.

2. Specify the action that opens the pop-up panel, and set the Commit property of the action to
true.

3. Specify the values of elements as needed on the pop-up panel.

4. Specify the action that closes the panel, and set the Commit property of the action to true.

: For some pop-up panels, you need to specify only one action to select values from the pop-up
panel. For example, you need to specify only one action if you are creating a shipment by using
the Create Shipment action on the Sales Orders (SO301000) form, which displays the Specify
Shipment Parameters pop-up panel.

The following code illustrates the setting of the values on the Add Sales Order pop-up panel, which
appears after a user clicks Add Order on the toolbar of the Document Details tab of the Shipments
form.

//shipmentSchema is a SO302000Content object
//Force a commit for the SelectSO action
var selectSOwithCommit = shipmentSchema.Actions.SelectSO;
selectSOwithCommit.Commit = true;

//Force a commit for the AddSO action
var addSOwithCommit = shipmentSchema.Actions.AddSO;
addSOwithCommit.Commit = true;

//Configure the list of commands
var commands = new Command[]
{
 ...
 //Open the Add Sales Order panel
 new Value
 {
 Value = "OK",
 LinkedCommand =
 shipmentSchema.AddSalesOrderOperation.ServiceCommands.DialogAnswer,
 Commit = true
 },
 selectSOwithCommit,

 //Specify the first order number on the Add Sales Order panel
 //and get the values of item elements
 new Value
 {
 Value = firstOrderNbr,
 LinkedCommand = shipmentSchema.AddSalesOrderOperation.OrderNbr
 },
 new Value
 {
 Value = "True",
 LinkedCommand = shipmentSchema.AddSalesOrder.Selected
 },
 shipmentSchema.AddSalesOrder.InventoryID,
 shipmentSchema.AddSalesOrder.Quantity,
 shipmentSchema.AddSalesOrder.OpenQty,
 shipmentSchema.AddSalesOrder.LineDescription,

 | Working with Commands of the Screen-Based SOAP API | 102

};
//context is a Screen object
//Submit the commands to the form
var soLines = context.SO302000Submit(commands);

//Select all items of the first order for shipment
List<Command> commandList = new List<Command>();
for (int index = 0; index < soLines.Length; index++)
{
 commandList.Add(new Value
 {
 Value = index.ToString(),
 LinkedCommand = shipmentSchema.AddSalesOrder.ServiceCommands.RowNumber
 });
 commandList.Add(new Value
 {
 Value = "True",
 LinkedCommand = shipmentSchema.AddSalesOrder.Selected,
 Commit = index < soLines.Length - 1
 });
}

//Add items to the shipment
commandList.Add(addSOwithCommit);
context.SO302000Submit(commandList.ToArray());

Commands for Record Searching: Filter Service Command
The system uses the key element or elements on a form to find records that belong to different
documents. For example, on the Invoices and Memos (AR301000) form, there are two key elements:
Type and Reference Nbr.

If you know the values of the key element or elements of the needed record, you can select this record
for update by specifying the key values in the sequence of commands that you pass to the processing
method of the web services API. In the sequence of commands, you should first specify key element or
elements to identify the record that you are going to update. After you have specified the values of key
element or elements, you should specify the values of other elements in the order in which you would
specify them on the form.

If you do not know the values of the key element or elements of the needed record, you can update
records in the system by searching for them using their unique field values that you know. For example,
you can identify customers by email addresses or phone numbers. To search for a record, you have to
imitate the use of a column of a Select dialog box, declare a custom key, or declare a custom field in
the sequence of commands that you pass to a processing method. In this topic, you will find a detailed
description of the Filter service command, which imitates the use of a selector column. You can find a
description of two other approaches in Commands for Record Searching: Key Command and Commands
for Record Searching: Custom Field.

Filter Service Command

Selector columns on an Acumatica ERP form appear when a user clicks the Magnifier icon of the key
element of the form to bring up the Select dialog box. Service commands for selector columns have
the Filter prefix in their names. For example, to search for a customer record, you can use the
FilterCity, FilterCountry, FilterEmail, and FilterPhone1 service commands.

To use a column of a Select dialog box for a search, you have to do the following:

1. Create a Field object, and initialize its properties with the values of the properties of the key
field.

 | Working with Commands of the Screen-Based SOAP API | 103

2. Concatenate the FieldName property of this object (which is now equal to the value of the
FieldName property of the key field) with ! and the FieldName property of the needed Filter
service command.

3. In the Value command in the array of Command objects, set the Value property to the value that
should be used for the search and the LinkedCommand property to the created Field object.

For example, the following code searches for a customer record by email address.

//custSchema is an AR303000Content object
Field customerIDSelector = custSchema.CustomerSummary.CustomerID;
customerIDSelector.FieldName += "!" +
 custSchema.CustomerSummary.ServiceCommands.FilterEmail.FieldName;

var commands = new Command[]
{
 new Value
 {
 Value = "demo@gmail.com",
 LinkedCommand = customerIDSelector
 },
 ...
};

: If you need to get the value of the field that was used for a search as a result of the processing, you
should assign an initial FieldName to the field before getting the value. For example, the following code
shows how to get the value of the Customer ID element after you have modified the corresponding field for
the search.

//custSchema is an AR303000Content object
//Save the initial field name of the CustomerID field
string initialCustomerIDFieldName =
custSchema.CustomerSummary.CustomerID.FieldName;

//Configure the command that searches for a customer record
//by using the FilterEmail service command
Field customerIDSelector = custSchema.CustomerSummary.CustomerID;
customerIDSelector.FieldName += "!" +
custSchema.CustomerSummary.ServiceCommands.FilterEmail.FieldName;

//Configure the list of commands
var commands = new Command[]
{
 //Search for the needed customer record
 new Value
 {
 Value = customerMainContactEmail,
 LinkedCommand = customerIDSelector
 },

 //Do the needed modifications and save changes on the form
 ...
};

//context is a Screen object
//Submit commands to the form
context.AR303000Submit(commands);

//Assign an initial field name to the CustomerID field
custSchema.CustomerSummary.CustomerID.FieldName = initialCustomerIDFieldName;

//Get the customer ID
commands = new Command[]
{
 custSchema.CustomerSummary.CustomerID
};

//Submit commands to the form
AR303000Content customer = context.AR303000Submit(commands)[0];

 | Working with Commands of the Screen-Based SOAP API | 104

Commands for Record Searching: Key Command
To search for a record, you have to imitate the use of a column of a Select dialog box, declare a
custom key, or declare a custom field in the sequence of commands that you pass to a processing
method. In this topic, you will find a detailed description of the use of the Key command, which you use
to declare a custom key. You can find descriptions of two other approaches in Commands for Record
Searching: Filter Service Command and Commands for Record Searching: Custom Field.

Key Command

If you specify the value of key elements on an Acumatica ERP form, the system does not change the
current record in the system; instead, it searches for the record, which is identified by the values of
the key elements, and selects this record. By using custom keys, you can make some elements on an
Acumatica ERP form work as key elements.

You can specify custom keys to search for a record or a detail line. You can use the fields of the
summary object and the detail objects, but not the fields that belong to other objects, as custom key
fields. For example, you can find the needed customer record in the system by using the CustomerName
field of the AR303000CustomerSummary object of the Customers (AR303000) form as the custom key,
but you cannot find the record by using the Email field of the AR303000GeneralInfoMainContact
object as the custom key.

To specify a custom key, you have to define the key by using the Key command as follows:

1. Create a Key command by using the operator new.

2. To specify the element that should be used as a custom key, set the ObjectName and FieldName
properties of the created Key command to the values of the ObjectName and FieldName
properties of the field corresponding to the element.

3. To specify the value of the custom key, set the Value property of the created Key command to
the needed value in the format ='<Key value>', where you should replace <Key value> with
the needed value of the key.

Below is an example of the Key command that declares the Warehouse column as the custom key on
the Document Details tab of the Sales Orders (SO301000) form.

new Key
{
 ObjectName = orderSchema.DocumentDetails.Warehouse.ObjectName,
 FieldName = orderSchema.DocumentDetails.Warehouse.FieldName,
 Value = "='MAIN'"
},

Commands for Record Searching: Custom Field
To search for a record, you have to imitate the use of a column of a Select dialog box, declare a
custom key, or declare a custom field in the sequence of commands that you pass to a processing
method. In this topic, you will find a detailed description of the declaration of a custom field. You can
find descriptions of two other approaches in Commands for Record Searching: Filter Service Command
and Commands for Record Searching: Key Command.

Custom Field

Acumatica ERP does not include Filter service commands for all selector columns that are available
on Acumatica ERP forms. To use the needed selector column for record searching, you can create a
custom field as follows:

1. Initialize the properties of a Field object with the values of the properties of the key field.

 | Working with Commands of the Screen-Based SOAP API | 105

2. Concatenate the FieldName property of this object (which is now equal to the value of the
FieldName property of the key field) with ! and the internal name of the selector column that
you are going to use for the search. The internal name of the selector column is equal to the
value of the FieldName property of the corresponding element on the form.

3. In the Value command in the array of Command objects, set the Value property to the value that
should be used for the search and the LinkedCommand property to the created Field object.

For example, the following code searches for a sales order by order number.

//orderSchema is an SO301000Content object
var searchCustomerOrder = orderSchema.OrderSummary.OrderNbr;
searchCustomerOrder.FieldName +=
 "!" + orderSchema.OrderSummary.CustomerOrder.FieldName;

var commands = new Command[]
{
 new Value
 {
 Value = "SO",
 LinkedCommand = orderSchema.OrderSummary.OrderType
 },
 new Value
 {
 Value = "SO248-563-06",
 LinkedCommand = searchCustomerOrder
 },
 ...
}

Commands That Require a Commit
There are two types of elements on an Acumatica ERP form: elements with a commit, and elements
without a commit. A commit is an action initiated by the form that, when triggered, sends the data to
the server. On the server, the commit causes all data on the form to be updated, including the insertion
of default values and the recalculation of the values of elements on the form.

A commit is a costly operation that causes the browser to make requests to the server and takes server
time. As such, a commit is invoked for only a limited number of elements: mainly the key elements and
the elements the other elements depend on.

In a Visual Studio project, if you specify the value of an element for which the system performs a
commit by using a Value command, the Commit property of the LinkedCommand property (which
specifies this element) is automatically set to true. You can check the value of the Commit property
when you are debugging an application if you insert a breakpoint in the code after an array of
commands has been configured. In the following screenshot, you can see that for the command that
sets the value of the Customer ID element on the Customers (AR303000) form, the Commit property
of the LinkedCommand is set to true. (The Customer ID element has the internal field name AcctCD.)

 | Working with Commands of the Screen-Based SOAP API | 106

Figure: Commit property

If the Commit property is false, the element is filled in with data but no update of the form is invoked.
If the Commit property is true, after the element is filled in, the commit is invoked on the server and
the form is updated.

For example, when you select a customer class on the Customers form, the system assigns values to
the elements related to customer class settings, such as Statement Cycle ID and Country. When
you configure a sequence of commands for setting the values of elements on the Customers form, for
elements such as Customer, the system automatically sets the Commit property of LinkedCommand to
true.

In most cases, when you compose the sequence of commands, you can use the values of the Commit
property that are set by default. However, you may need to force the system to invoke a commit to
the server—for example, when you need to commit the value of the field before entering another field
value. In such cases, you should set the Commit property to true for the command or action.

Commands for Working with Attachments
In Acumatica ERP, you can attach files to records on Acumatica ERP forms and to detail lines on
master-detail forms.

To obtain a file attached to the selected record or detail line through the web services API, you specify
the Value command in the array of Command objects as follows:

• In the FieldName property, you specify the name of the file that should be obtained.

• In the LinkedCommand property, you specify the needed Attachment service command.

To work with a file attached to a form, you use the Attachment service command of the object
that corresponds to the Summary object. For example, to obtain a file attached to a stock item
record on the Stock Items (IN202500) form, you use the Attachment service command of the
IN202500StockItemSummary object.

To work with the file attached to a detail line of a master-detail form, you use the Attachment
service command of the object that corresponds to the Details object. For example, to obtain
the file attached to a warehouse detail line of a stock item on the Stock Items form, you use the
Attachment service command of the IN202500WarehouseDetails object.

 | Working with Commands of the Screen-Based SOAP API | 107

The following code shows how to retrieve the file attached to a stock item record on the Stock Items
form.

//stockItemsSchema is an IN202500Content object
var commands = new Command[]
{
 new Value
 {
 Value = "AAMACHINE1",
 LinkedCommand = stockItemSchema.StockItemSummary.InventoryID
 },
 new Value
 {
 FieldName = "T2MCRO.jpg",
 LinkedCommand =
 stockItemSchema.StockItemSummary.ServiceCommands.Attachment
 }
};
//context is a Screen object
var stockItemAttachment =
 context.IN202500Export(commands, null, 1, false, true);

Commands for Working with Multi-Language Fields
For some text boxes on Acumatica ERP forms, users can type values in multiple languages if multiple
locales are configured in Acumatica ERP. For example, if your Acumatica ERP instance has English
and French locales activated and multilingual user input configured, you can specify the value of the
Description box on the Stock Items (IN202500) form in English and French. For the list of elements
that support multiple languages, see Boxes that Have Multi-Language Support. For details on how to
turn on multilingual user input, see Enabling Multilingual User Input.

Specifying Localized Values of a Multi-Language Field

When you need to specify localized values of a text box by using the screen-based SOAP API, you
specify the value of the field that corresponds to the box as a string in JSON format with the localized
values. In this string, you use the two-letter ISO code of the language with which the value should be
associated.

In the example that is mentioned at the beginning of the topic, if you need to specify values in English
and French in the Description box on the Stock Items form, you specify the value of the Description
field of the StockItem entity in the following format: [{en:English description},{fr:French
description}], as shown in the following code fragment.

//stockItemSchema is an IN202500Content object
new Value
{
 Value = "[{en:Item},{fr:Pièce}]",
 LinkedCommand = stockItemSchema.StockItemSummary.Description
}

: In the JSON-formatted string, you should specify the actual values of the field in all languages that are
configured for multilingual user input. If you specify the values of the field in particular languages, the
values of the field in other languages configured for multilingual user input become empty. For example,
suppose that in your instance of Acumatica ERP, multi-language fields can have values in English and
French. If you pass the value of a field in the following format [{en:English description}], the
French value of the field becomes empty.

If you specify the value of a multi-language field as plain text, this text is saved as the value of the
corresponding box in the current language of Acumatica ERP (that is, either the default language of the
instance or the language that you have specified by using the SetLocaleName() method). For details on
how to specify the locale through the screen-based SOAP API, see SetLocaleName() Method.

 | Working with Commands of the Screen-Based SOAP API | 108

Retrieving Localized Values of a Multi-Language Field

If you need to retrieve localized values of a text box that supports multiple input languages, you
retrieve the value of an internal field that contains all localized values of the text box and has the
Translations suffix in its field name.

To specify the field name and the object name of the needed internal field with localized values, you
specify the field name and the object name of the multi-language text box and append Translations to
the field name. For example, the following code shows the command that you should use to retrieve the
localized values of the Description element of the Stock Items form.

//stockItemSchema is an IN202500Content object
new Field
{
 ObjectName = stockItemsSchema.StockItemSummary.Description.ObjectName,
 FieldName = stockItemsSchema.StockItemSummary.Description.FieldName +
 "Translations"
}

The returned value of a Translations field is a string in JSON format with the available localized values
of the field. The language to which the value belongs is identified by the two-letter ISO code of the
language. For example, suppose that the Description element of the Stock Items form has the value
Item in English and Pièce in French. In this case, the value of the DescrTranslations field, which
corresponds to the Description element, is the following string: [{en:Item},{fr:Pièce}].

 | Configuring Push Notifications | 109

Configuring Push Notifications

Acumatica ERP provides push notifications that make it possible for the external applications to
track the changes in the data in Acumatica ERP. That is, you can configure Acumatica ERP to send
notifications to a destination (such as an HTTP address) when specific data changes in Acumatica
ERP. The external application can receive these notifications and process the information on the data
changes, if necessary. With push notifications, the external application doesn't need to continually
poll for the data to find out whether there are any changes in this data, which helps improve the
performance of the external application.

In this chapter, you can find information on how to configure Acumatica ERP to send push notifications.

In This Chapter

• Push Notifications

• Recommendations for the Data Queries

• Push Notification Destinations

• Push Notification Format

• To Configure Push Notifications

• To Process Failed Notifications

Push Notifications
Push notifications are notifications in JSON format that are sent by Acumatica ERP to notification
destinations when specific data changes occur in Acumatica ERP. External applications can receive the
notifications and process them to retrieve the information about the changes.

: If you have installed a new version of Acumatica ERP or updated your Acumatica ERP instance by using
the Acumatica ERP Configuration Wizard, push notifications are enabled in Acumatica ERP automatically.

If you have updated your Acumatica ERP instance through the web interface, you need to manually
enable push notifications in Acumatica ERP, as described in To Enable Push Notifications Manually in the
Installation Guide.

If you need to enable push notifications on the Acumatica ERP instances in a cluster, you should follow the
instructions in To Enable Push Notifications in a Cluster in the Installation Guide.

To work with Acumatica ERP push notifications, you need to configure the following items:

• The data query that defines the data changes for which Acumatica ERP should send notifications

• The destination to which Acumatica ERP should send notifications

• The way the external application processes the notifications

• The definition of the push notification in Acumatica ERP, which specifies the data query and the
notification destination

The following diagram illustrates the sending of a push notification. In the diagram, rectangles with a
red border indicate the items that you need to configure to receive push notifications when changes
occur.

 | Configuring Push Notifications | 110

Figure: Sending a push notification

Data Query

The data query can be defined by either a generic inquiry or a built-in definition (which is a data query
defined in code). For details on generic inquiries, see Managing Generic Inquiries. For information on
how to create a built-in definition, see To Create a Built-In Definition in the Acumatica Framework
Development Guide. You can define multiple queries for one notification destination.

The data query should adhere to the recommendations described in Recommendations for the Data
Queries.

Notification Destination

The following predefined notification destinations are provided: webhook (HTTP address), message
queue, or SignalR hub. For more information on the predefined notification destinations, see Push
Notification Destinations. You can also create your own destination type, as described in To Create a
Custom Destination Type in the Acumatica Framework Developer Guide.

Processing of the Notifications in the External Application

The external application can process the notifications and extract the information about the data
changes. Acumatica ERP sends notifications to notification destinations in JSON format. For details on
the format of the notifications, see Push Notification Format. If your application watches notifications in
the SignalR hub, you need to connect to the hub, as described in To Connect to the SignalR Hub.

Definition of the Push Notification

In the definition of the push notification on the Push Notifications (SM302000) form, you specify the
notification destination and the data queries for which the notifications should be sent. For details on
the setup of the push notifications, see To Configure Push Notifications.

Recommendations for the Data Queries
For optimal results, follow these recommendations when you create each data query for which you want
to configure push notifications:

• Do not use aggregation and grouping in the query; Acumatica ERP does not guarantee that push
notifications will work correctly with such queries.

• Do not use joins of multiple detail tables in the query because this may cause the system to hang.

• If you need to join multiple tables, use a left join or an inner join in the data query. If you use an
inner join, the query execution may be slower than for a left join.

 | Configuring Push Notifications | 111

• Use as simple a data query as possible.

• For a query defined by using a generic inquiry, do not use a formula on the Results Grid tab of
the Generic Inquiry (SM208000) form.

Push Notification Destinations
When you configure a push notification on the Push Notifications (SM302000) form of Acumatica ERP,
you select the type of the notification destinations, which can be any of the predefined types described
in this topic. You can also create your own destination type, as described in To Create a Custom
Destination Type in the Acumatica Framework Developer Guide.

Webhook

A webhook is an HTTP address to which Acumatica ERP sends HTTP POST requests with notification
information. For this destination type, you specify a valid HTTP address (such as http://
localhost:80/main.aspx?pushqueue) in the Address box on the Push Notifications (SM302000)
form. For security reasons, you can specify a header of the HTTP request in the Header Name and
Header Value boxes.

If Acumatica ERP cannot send notifications to the HTTP address, Acumatica ERP logs information on the
failed notifications and displays these notifications on the Process Push Notifications (SM502000) form.
You can resend the failed notifications for two days, after which the notifications are removed from the
Acumatica ERP database. For details on how to resend notifications, see To Process Failed Notifications.

Message Queue

The message queue is a local or remote private Microsoft message queue. You specify the address of
the message queue (such as MyComputer\private$\TestQueueForPushNotificatons) in the
Address box on the Push Notifications (SM302000) form. For information on how to configure a private
Microsoft message queue, see the Microsoft documentation.

The message queue is the most reliable destination type protected from network failures. However,
if Acumatica ERP cannot send notifications to the message queue for some reason, Acumatica ERP
logs information about the failed notifications and displays these notifications on the Process Push
Notifications (SM502000) form. You can resend the failed notifications for two days, after which
the notifications are removed from the Acumatica ERP database. For information on how to resend
notifications, see To Process Failed Notifications.

SignalR Hub

The SignalR hub is the destination type implemented in Acumatica ERP by using the ASP.NET
SignalR library. The address of this destination type is PushNotificationsHub, which is filled in
automatically in the Address box on the Push Notifications form. This destination type can be used if
you can expose neither an HTTP address (webhook) nor a message queue to receive push notifications.
If Acumatica ERP is configured to send notifications to the SignalR hub, the external application can
connect to Acumatica ERP through websoket or a long-polling mechanism and receive notifications
through this connection. If multiple external applications are connected to the SignalR hub, they receive
notifications simultaneously. For information on how to connect your application to the SignalR hub of
Acumatica ERP, see To Connect to the SignalR Hub in the Acumatica Framework Developer Guide.

The SignalR hub destination type is not reliable: If the connection fails or there are no clients connected
to the SignalR hub when a notification comes, this notification will not be sent and it cannot be resent
later.

 | Configuring Push Notifications | 112

Push Notification Format
Acumatica ERP sends push notifications in JSON format. This topic describes the structure of the
notifications.

Elements

The push notifications that Acumatica ERP sends include the following elements in JSON format.

Element Description

Inserted The rows that are new in the results of the query execution.

Deleted The rows that were in the results of the query execution but are missing after
the latest data transaction. You can compare the Inserted and Deleted rows to
identify the rows that have been updated.

Query The query for which Acumatica ERP has produced the notification. The value of
the element can be either the name of the generic inquiry or the name of the
class with the built-in definition.

CompanyId The name of the company.

Id The unique identifier of the data transaction in Acumatica ERP that has initiated
the notification. The external application can use this identifier to omit duplicated
notifications.

TimeStamp The long value that corresponds to the date and time when the transaction that
initiated the notification happened in Acumatica ERP. By using the value of this
element, the external application can define the order of notifications.

AdditionalInfo Any additional information that is added to the notification. For more information
on how to add additional information to push notifications, see To Add Additional
Information to Push Notifications in the Acumatica Framework Development
Guide.

Example

Suppose that push notifications are configured for the Stock Items: Last Modified
Date generic inquiry (which displays the InventoryID, StockItem, ItemStatus, and
InventoryItem_lastModifiedDateTime columns). Acumatica ERP sends the following notification
when the status of the AACOMPUT01 inventory item has been changed from Active to Inactive.

{
 "Inserted":
 [{
 "InventoryID":"AACOMPUT01",
 "StockItem":true,
 "ItemStatus":"Inactive",
 "InventoryItem_lastModifiedDateTime":"2017-05-05T15:16:23.1"
 }],
 "Deleted":
 [{
 "InventoryID":"AACOMPUT01",
 "StockItem":true,
 "ItemStatus":"Active",
 "InventoryItem_lastModifiedDateTime":"2017-05-05T15:16:23.103"
 }],
 "Query":"Stock Items: Last Modified Date",
 "CompanyId":"Company",
 "Id":"1af4d140-5321-41f2-a2ec-50b67f577c6c",
 "TimeStamp":636295833829493672,

 | Configuring Push Notifications | 113

 "AdditionalInfo":{}
}

To Configure Push Notifications
To configure push notifications, you use the Push Notifications (SM302000) form.

Before You Proceed

: If you have installed a new version of Acumatica ERP or updated your Acumatica ERP instance by using
the Acumatica ERP Configuration Wizard, push notifications are enabled in Acumatica ERP automatically.

If you have updated your Acumatica ERP instance through the web interface, you need to manually
enable push notifications in Acumatica ERP, as described in To Enable Push Notifications Manually in the
Installation Guide.

If you need to enable push notifications on the Acumatica ERP instances in a cluster, you should follow the
instructions in To Enable Push Notifications in a Cluster in the Installation Guide.

You need to define the data query or data queries for which Acumatica ERP should send notifications
on data changes. Each data query can be defined by either a generic inquiry or a built-in definition. For
details on generic inquiries, see Managing Generic Inquiries. For information on how to create a built-
in definition, see To Create a Built-In Definition in the Acumatica Framework Development Guide. For
details on defining the data queries, see Recommendations for the Data Queries.

You should also identify the notification destination that your external application will scan, which
can be one of the following: webhook (HTTP address), message queue, or SignalR hub. For more
information on the notification destinations, see Push Notification Destinations. You should configure
your external application so that it can process notifications sent to the destination.

To Send Notifications to an HTTP Address

1. On the System tab, click Integration. In the navigation pane, navigate to Configure > Push
Notifications (SM302000).

2. In the Destination Name box, type the name of the target notification destination, which can
be the name of your external application.

3. In the Destination Type box, select Webhook.

4. In the Address box, type the HTTP address to which Acumatica ERP should send the push
notifications, such as http://localhost:80/main.aspx?pushqueue.

5. Optional: In the Header Name and Header Value boxes, specify the header of the HTTP POST
request in which Acumatica ERP sends the notification.

6. For each generic inquiry for which you want Acumatica ERP to send notifications on changes in
the inquiry results, do the following:

a. On the table toolbar of the Generic Inquiries tab, click Add Row. The new row has the
Active check box selected.

b. In the Inquiry Title column of the added row, select the generic inquiry for which you
want Acumatica ERP to send notifications.

7. For each built-in definition for which you want Acumatica ERP to send notifications on changes in
the results, do the following:

a. On the table toolbar of the Built-In Definitions tab, click Add Row. The new row has
the Active check box selected.

 | Configuring Push Notifications | 114

b. In the Class Name column of the added row, select the class that defines the data query
for which you want Acumatica ERP to send notifications.

8. On the form toolbar, click Save.

To Send Notifications to a Message Queue

1. On the System tab, click Integration. In the navigation pane, navigate to Configure > Push
Notifications (SM302000).

2. In the Destination Name box, type the name of the target notification destination, which can
be the name of your external application.

3. In the Destination Type box, select Message Queue.

4. In the Address box, type the address of the local or remote private Microsoft message queue
that you have configured for receiving messages from Acumatica ERP, such as MyComputer
\private$\TestQueueForPushNotificatons.

5. For each generic inquiry for which you want Acumatica ERP to send notifications on changes in
the inquiry results, do the following:

a. On the table toolbar of the Generic Inquiries tab, click Add Row. The new row has the
Active check box selected.

b. In the Inquiry Title column of the added row, select the generic inquiry for which you
want Acumatica ERP to send notifications.

6. For each built-in definition for which you want Acumatica ERP to send notifications on changes in
the results, do the following:

a. On the table toolbar of the Built-In Definitions tab, click Add Row. The new row has
the Active check box selected.

b. In the Class Name column of the added row, select the class that defines the data query
for which you want Acumatica ERP to send notifications.

7. On the form toolbar, click Save.

To Send Notifications to a SignalR Hub

1. On the System tab, click Integration. In the navigation pane, navigate to Configure > Push
Notifications (SM302000).

2. In the Destination Name box, type the name of the target notification destination, which can
be the name of your external application.

3. In the Destination Type box, select SignalR Hub. The Address box is filled in automatically
with PushNotificationsHub.

4. For each generic inquiry for which you want Acumatica ERP to send notifications on changes in
the inquiry results, do the following:

a. On the table toolbar of the Generic Inquiries tab, click Add Row. The new row has the
Active check box selected.

b. In the Inquiry Title column of the added row, select the generic inquiry for which you
want Acumatica ERP to send notifications.

5. For each built-in definition for which you want Acumatica ERP to send notifications on changes in
the results, do the following:

a. On the table toolbar of the Built-In Definitions tab, click Add Row. The new row has
the Active check box selected.

 | Configuring Push Notifications | 115

b. In the Class Name column of the added row, select the class that defines the data query
for which you want Acumatica ERP to send notifications.

6. On the form toolbar, click Save.

To Process Failed Notifications
To process the push notifications that Acumatica ERP could not send, you use the Process Push
Notifications (SM502000) form. On this form, you can view the notifications that Acumatica ERP has
failed to send, try to resend them, or delete the notifications.

: If a notification has failed in Acumatica ERP before it was sent (for example, if Acumatica ERP
could not retrieve the data for the notification), this notification is not displayed in the table on the
Process Push Notifications form. Acumatica ERP saves the information about these notifications in the
PushNotificationsErrors database table.

To View a Notification

1. On the System tab, click Integration. In the navigation pane, navigate to Process > Process
Push Notifications (SM502000).

2. In the table on the form, select the row that contains the notification you want to view.

3. On the form toolbar, click Show Notification.

4. In the Notification Event dialog box, which opens, view the notification in JSON format. For
details on the format of the notification, see Push Notification Format.

To Resend Notifications

1. On the System tab, click Integration. In the navigation pane, navigate to Process > Process
Push Notifications (SM502000).

2. Do one of the following:

• If you want to resend particular notifications, in the table on the form, select the check
boxes in the rows that correspond to the notification you want to send, and click Send on
the form toolbar.

• If you want to resend all notifications, on the form toolbar, click Send All on the form
toolbar.

To Delete Notifications

1. On the System tab, click Integration. In the navigation pane, navigate to Process > Process
Push Notifications (SM502000).

2. Do one of the following:

• If you want to delete particular notifications, in the table on the form, select the unlabeled
check boxes in the rows that correspond to the notifications you want to delete, and click
Delete on the form toolbar.

• If you want to delete all notifications, on the form toolbar, click Delete All.

3. On the form toolbar, click Save.

 | Defining Push Notifications | 116

Defining Push Notifications

In Acumatica ERP or an Acumatica Framework-based application, you can configure the system to
send push notifications to a destination (such as an HTTP address) when specific data changes in the
system. The external application can receive these notifications and process the information on the data
changes if necessary. For more information on push notifications, see Configuring Push Notifications.

If this chapter, you can find information on how to configure push notifications in code.

In This Chapter

• To Create a Built-In Definition

• To Connect to the SignalR Hub

• To Add Additional Information to Push Notifications

• To Create a Custom Destination Type

To Create a Built-In Definition
In Acumatica ERP or an Acumatica Framework-based application, you can configure push notifications
for a query that is defined as a class in the source code of the application—that is, for a built-in
definition of the query. The built-in definition can be implemented in a project of your Acumatica ERP
extension library, in a Code item of an Acumatica ERP customization project, or in a project of your
Acumatica Framework-based application. (For the differences between the use of extension libraries
and Code items in a customization project, see Extension Library (DLL) Versus Code in a Customization
Project in the Customization Guide.)

To create a built-in definition, follow the instructions in this topic. For more information on the push
notifications, see Configuring Push Notifications in the Integration Development Guide.

To Create a Built-In Definition

1. Define a class that implements the
PX.PushNotifications.Sources.IInCodeNotificationDefinition interface in a project of
your Acumatica ERP extension library, in a Code item of an Acumatica ERP customization project,
or in a project of your Acumatica Framework-based application. The following code demonstrates
the definition of such a class.

using PX.PushNotifications.Sources;

public class TestInCodeDefinition : IInCodeNotificationDefinition
{
}

2. In the class that implements the IInCodeNotificationDefinition interface, implement
the GetSourceSelect() method of the interface so that the method satisfies the following
requirements:

• The method must return a tuple of a BqlCommand object, which defines the data query, and
a PXDataValue array, which defines the parameters that should be passed to the query.

• The data query that the method defines should adhere to Recommendations for the Data
Queries in the Integration Development Guide.

 | Defining Push Notifications | 117

The following example shows the GetSourceSelect() method implementation.

using PX.Data;
using PX.PushNotifications.Sources;
using PX.PushNotifications.UI.DAC;

public class TestInCodeDefinition : IInCodeNotificationDefinition
{
 public Tuple<BqlCommand, PXDataValue[]> GetSourceSelect()
 {
 return
 Tuple.Create(
 PXSelectJoin<PushNotificationsHook,
 LeftJoin<PushNotificationsSource,
 On<PushNotificationsHook.hookId,
 Equal<PushNotificationsSource.hookId>>>>
 .GetCommand(), new PXDataValue[0]);
 }
}

3. In the class that implements the IInCodeNotificationDefinition interface, implement the
GetRestrictedFields() method of the interface so that the method satisfies the following
requirements:

• The method must return an array of IBqlField-derived types, which contains the fields
that should be returned from the query.

• If you need to return all fields, the method must return null.

The following code shows an example of the implementation of the GetRestrictedFields()
method.

using PX.Data;
using PX.PushNotifications.Sources;
using PX.PushNotifications.UI.DAC;

public class TestInCodeDefinition : IInCodeNotificationDefinition
{
 ...

 public Type[] GetRestrictedFields()
 {
 return new []
 {
 typeof(PushNotificationsHook.address),
 typeof(PushNotificationsHook.type),
 typeof(PushNotificationsSource.designID),
 typeof(PushNotificationsSource.inCodeClass),
 typeof(PushNotificationsSource.lineNbr)
 };
 }
}

4. Compile your Acumatica ERP extension library or Acumatica Framework-based application, or
publish the customization project with the Code item that contains the class implementation.

5. Run Acumatica ERP or your Acumatica Framework-based application, and make sure that you
can select the new built-in definition by its class name on the Built-In Definitions tab of the
Push Notifications (SM302000) form. The class of the built-in definition, which implements the
IInCodeNotificationDefinition interface, is detected by the system and automatically added
to the list of classes available for selection on the tab.

: You can obtain the results of the data query defined with a built-in definition by
using the following endpoint: http(s)://<Acumatica ERP instance URL>/
PushNotifications/<full class name of the built-in definition>. For

 | Defining Push Notifications | 118

example, suppose that you want to retrieve the results of the data query defined with
the PX.PushNotifications.Sources.TestInCodeDefinition class from a local
Acumatica ERP instance with the name AcumaticaDB. You should use the following URL
to obtain the data: http(s)://localhost/AcumaticaDB/PushNotifications/
PX.PushNotifications.Sources.TestInCodeDefinition. The endpoint returns the data
in JSON format.

To Connect to the SignalR Hub
If you want your external application to receive push notifications from Acumatica ERP or an Acumatica
Framework-based application but you cannot publish a web hook (for example, for security reasons),
the system can send notifications to the SignalR hub, from which any connected application can receive
the notifications.

To connect the external application to the SignalR hub, follow the instructions in this topic. For more
information on push notifications, see Configuring Push Notifications.

To Connect to the SignalR Hub

1. In your external application, set up a Basic authentication token to authenticate the application
in Acumatica ERP or an Acumatica Framework-based application, as shown in the following code.

using System;
using System.Text;

class Program
{
 static void Main(string[] args)
 {
 var login = "admin";
 var tenant = "Tenant";
 var password = "123";
 // Set up a Basic authentication token
 var basicAuthToken = Convert.ToBase64String(
 Encoding.UTF8.GetBytes(login+"@"+tenant+":"+password));
 }
}

2. In your external application, connect to an instance of Acumatica ERP or an Acumatica
Framework-based application, as shown in the following code.

using System;
using System.Text;
using Microsoft.AspNet.SignalR.Client.Hubs;

class Program
{
 static void Main(string[] args)
 {
 ...
 //Connect to an Acumatica ERP instance
 var connection = new HubConnection("http://localhost:8081/AcumaticaDB/");
 connection.Headers.Add("Authorization", "Basic "+basicAuthToken);
 }
}

3. In your external application, create a proxy to the SignalR hub, based on the name of the hub
that was specified in the Destination Name box when the push notification was defined on the
Push Notifications (SM302000) form.

using System;
using System.Text;

 | Defining Push Notifications | 119

using Microsoft.AspNet.SignalR.Client.Hubs;

class Program
{
 static void Main(string[] args)
 {
 ...
 //Create a proxy to hub
 //Use "PushNotificationsHub" as the address of the hub
 var myHub = connection.CreateHubProxy("PushNotificationsHub");
 connection.Start().ContinueWith(task =>
 {
 if(task.IsFaulted)
 {
 Console.WriteLine(
 "There was an error during open of the connection:{0}",
 task.Exception.GetBaseException());
 }
 else
 {
 //Instead of "TestSignalR", specify the name
 //that you specified on the Push Notifications form
 myHub.Invoke<string>("Subscribe", "TestSignalR").Wait();
 }
 }).Wait();
 }
}

4. In your external application, define the class for a notification, as shown in the following code.
For details on the format of the push notifications, see Push Notification Format.

public class NotificationResult
{
 public object[] Inserted { get; set; }
 public object[] Deleted { get; set; }
 public string Query { get; set; }
 public string CompanyId { get; set; }
 public Guid Id { get; set; }
 public long TimeStamp { get; set; }
 public Dictionary<string, object> AdditionalInfo { get; set; }
}

5. In your external application, process notifications. The following code displays the number of
inserted and updated records specified in the notification in the console application window.

using System;
using System.Text;
using Microsoft.AspNet.SignalR.Client.Hubs;

class Program
{
 static void Main(string[] args)
 {
 ...
 //Process the notifications
 myHub.On<NotificationResult>("ReceiveNotification", nr =>
 {
 Console.WriteLine("Inserted {0}", nr.Inserted.Length);
 Console.WriteLine("Deleted {0}", nr.Deleted.Length);
 });
 Console.Read();
 connection.Stop();
 }
}

6. Compile and test your application.

 | Defining Push Notifications | 120

To Add Additional Information to Push Notifications
In Acumatica ERP or an Acumatica Framework-based application, you can add additional information
to push notifications, such as the username of the user that performed the data change or the
business date when the data transaction is performed. The additional information can be added to
the AdditionalInfo element of notifications in JSON format. For more information on the format of
notifications, see Push Notification Format in the Integration Development Guide.

: The additional information that you add to push notifications is included in all notifications that are
sent from the Acumatica ERP or Acumatica Framework instance on which the additional information is
configured.

The dictionary of additional information can be implemented in a project of your Acumatica ERP
extension library, in a Code item of an Acumatica ERP customization project, or in a project of your
Acumatica Framework-based application. (For the differences between the use of extension libraries
and Code items in a customization project, see Extension Library (DLL) Versus Code in a Customization
Project in the Customization Guide.)

To add additional information to push notifications, follow the instructions in this topic. For more
information on the push notifications, see Configuring Push Notifications in the User Guide.

To Add Additional Information to Push Notifications

1. Define a class that implements the PX.Data.PushNotifications.ICommitEventEnricher
interface in a project of your Acumatica ERP extension library, in a Code item of an Acumatica
ERP customization project, or in a project of your Acumatica Framework-based application.

2. In the class that implements the ICommitEventEnricher interface, implement the Enrich()
method of the interface. In the method, add the properties that you want to be returned in push
notifications.

: The Enrich() method is called in the PX.Data.PXTransactionScope.Dispose() method.
Therefore, the Enrich() method must not return data that is not accessible in this scope.

The following code shows a sample implementation of the ICommitEventEnricher interface,
which adds the business date and the name of the user to the AdditionalInfo element of
notifications in JSON format.

using PX.Data;
using PX.Data.PushNotifications;

public class CommitEventEnricher : ICommitEventEnricher
{
 public void Enrich(IQueueEvent commitEvent)
 {
 var businessDate = PXContext.PXIdentity?.BusinessDate;
 var userName = PXContext.PXIdentity?.IdentityName;
 commitEvent.AdditionalInfo.Add(nameof(businessDate), businessDate);
 commitEvent.AdditionalInfo.Add(nameof(userName), userName);
 }
}

3. Compile your Acumatica ERP extension library or Acumatica Framework-based application, or
publish the customization project with the Code item that contains the class implementation.

4. Run Acumatica ERP or your Acumatica Framework-based application and make sure that
when the results of the query change, the application includes the additional information in
the AdditionalInfo element of the notifications in JSON format, as shown in the following
notification example.

{
 ...

 | Defining Push Notifications | 121

 "TimeStamp":636295833829493672,
 "AdditionalInfo":
 {
 "businessDate":"2017-05-05T15:16:23.1",
 "userName":"admin"
 }
}

To Create a Custom Destination Type
In Acumatica ERP or an Acumatica Framework-based application, you can send push notifications to
the notification destinations, which can be of a predefined type (which is webhook, message queue, or
SignalR hub) or of a custom type, which you can implement in the code of the application.

The notification destination of a custom type can be implemented in a project of your Acumatica ERP
extension library, in a Code item of an Acumatica ERP customization project, or in a project of your
Acumatica Framework-based application. (For the differences in the use of extension libraries and Code
items in a customization project, see Extension Library (DLL) Versus Code in a Customization Project in
the Customization Guide.)

To create a custom destination, follow the instructions in this topic. For more information on the push
notifications, see Configuring Push Notifications in the Integration Development Guide.

To Create a Custom Destination Type

1. Define a class that implements the
PX.PushNotifications.NotificationSenders.IPushNotificationSender interface, which is a
sender of push notifications, in a project of your Acumatica ERP extension library, in a Code item
of an Acumatica ERP customization project, or in a project of your Acumatica Framework-based
application.

2. In the class that implements the IPushNotificationSender interface, implement the following
methods and properties of the interface:

• The Address property, which is the address to which the system should send notifications.
A user specifies the value of this property in the Address box on the Push Notifications
(SM302000) form. The property uses the following syntax.

string Address { get; }

• The Name property, which is the name of the notification destination. A user specifies the
value of this property in the Destination Name box on the Push Notifications (SM302000)
form. Use the following syntax for the property.

string Name { get; }

• The Send method, which sends a notification synchronously and uses as the parameters
the notification to be sent and a cancellation token. The method uses the following syntax.

void Send(
 NotificationResultWrapper results,
 CancellationToken cancellationToken
);

• The SendAndForget method, which sends a notification without blocking the current
thread. We recommend that you use HostingEnvironment.QueueBackgroundWorkItem in
the method implementation to delegate the execution to a parallel thread. The following
code shows a sample implementation of the method.

using System;

 | Defining Push Notifications | 122

using System.Threading;
using PX.PushNotifications;
using PX.PushNotifications.NotificationSenders;

public void SendAndForget(
 NotificationResultWrapper result,
 CancellationToken cancellationToken,
 Action onSendingFailed,
 Action finalizer)
{
 try
 {
 Send(result, cancellationToken);
 }
 catch (Exception e)
 {
 onSendingFailed($"Send to target {Name} failed: ({e.Message})");
 }
 finally
 {
 finalizer();
 }
}

3. Define a class that implements the
PX.PushNotifications.NotificationSenders.IPushNotificationSenderFactory interface,
which creates a sender of push notifications, in a project of your Acumatica ERP extension
library, in a Code item of an Acumatica ERP customization project, or in a project of your
Acumatica Framework-based application.

4. In the class that implements the IPushNotificationSenderFactory interface, implement the
following methods and properties of the interface:

• The Create method, which creates a sender and uses as the parameters the destination
address, the name of the notification destination, and the additional parameters (such as a
header for an HTTP address). Use the following syntax for the method.

IPushNotificationSender Create(
 string address,
 string name,
 IDictionary<string, object> additionalParameters
);

• The Type property, which is a string identifier of the destination type that is four
characters long. The value of this property is stored in the database. The property uses the
following syntax.

string Type { get; }

• The TypeDescription property, which is a string label of the destination type. A user
selects the value of this property in the Destination Type box on the Push Notifications
(SM302000) form. Use the following syntax for the property.

string TypeDescription { get; }

5. Compile your Acumatica ERP extension library or Acumatica Framework-based application, or
publish the customization project that contains the Code item or items with the implementation
of the classes.

6. Run Acumatica ERP or your Acumatica Framework-based application, and test the new
destination type.

 | Contract-Based REST API Reference | 123

Contract-Based REST API Reference

Acumatica ERP provides the reference information for the methods of the contract-based REST API
endpoint in the swagger.json file, which is an OpenAPI 2.0 (formerly known as Swagger 2.0) file. (For
more information about the OpenAPI specification, see https://www.openapis.org.) You can use this file
to review the API of the endpoint and build the client applications of Acumatica ERP based on this file.

Acumatica ERP 2018 R2 does not provide a user interface to view the swagger.json file. You can use
external tools to view the file.

You can retrieve the swagger.json file by clicking View Endpoint Service > OpenAPI 2.0 on the
Web Service Endpoints (SM207060) form, or by using the following URL.

http://<Base endpoint URL>/swagger.json

In this URL, <Base endpoint URL> is the URL of the contract-based endpoint through which you
are going to work with Acumatica ERP. This URL has the following format: http://<Acumatica ERP
instance URL>/entity/<Endpoint name>/<Endpoint version>/.

You can specify the company URL parameter to obtain information on the API of the endpoint available
in a particular company. For example, suppose that you wanted to retrieve the API reference of
the custom endpoint with the name MyEndpoint and Version 6.00.001 available in the MyCompany
company from a local Acumatica ERP instance with the name AcumaticaDB. You would use the following
URL to obtain the swagger.json file.

http://localhost/AcumaticaDB/entity/MyEndpoint/6.00.001/swagger.json?
company=MyCompany

If no company is specified, the API of the endpoint available in the company to which the user is
currently logged in is returned.

https://www.openapis.org

 | Contract-Based SOAP API Reference | 124

Contract-Based SOAP API Reference

In this chapter, you will find the reference information for the main objects and methods of the
contract-based SOAP API; these objects and methods are used to transfer data to and from Acumatica
ERP. This chapter covers the following methods, which are exposed by the DefaultSoapClient class:

: Semantics and syntax of some methods and properties are different depending on the version of the
system contract.

• Login() Method

• Logout() Method

• SetBusinessDate() Method

• Get() Method

• GetList() Method (Contract Version 3)

• GetList() Method (Contract Version 2)

• Put() Method

• Delete() Method

• Invoke() Method

• GetProcessStatus() Method

• GetFiles() Method

• PutFiles() Method

• GetCustomFieldSchema() Method

You will also find descriptions of the following properties:

• Attributes Property

• CustomFields Property

• ReturnBehavior Property (Contract Version 3)

• ReturnBehavior Property (Contract Version 2)

Login() Method
You use the Login() method of a DefaultSoapClient object to make the client application log in to
Acumatica ERP.

Syntax

public void Login(string name, string password, string company, string branch,
 string locale)

Parameters

• name: The username that should be used to log in to Acumatica ERP, such as "admin".

• password: The password that should be used to log in to Acumatica ERP, such as "123".

• company: The company name to which the client application should log in, such as
"MyCompany".

 | Contract-Based SOAP API Reference | 125

• branch: The branch of the company to which the client application should log in, such as
"MYSTORE".

• locale: The locale that should be used in Acumatica ERP. You should specify the locale in the
System.Globalization.CultureInfo format converted to string, as with "EN-US".

: This parameter has been developed for future use. You do not need to set its value.

Example

The following code causes the client to log in to Acumatica ERP by using the parameters that are
specified in the application settings.

using (var soapClient = new DefaultSoapClient())
{
 //Log in to Acumatica ERP
 soapClient.Login
 (
 Properties.Settings.Default.UserName,
 Properties.Settings.Default.Password,
 Properties.Settings.Default.CompanyName,
 Properties.Settings.Default.Branch,
 null
);
}

Usage Notes

For each call of the Login() method, you must call the Logout() method after you finish your work
with Acumatica ERP to close the session.

Logout() Method
You use the Logout() method of a DefaultSoapClient object to make the client application log out
from Acumatica ERP.

Syntax

public void Logout()

Example

The following code shows how to make the client application log out from Acumatica ERP.

using (var soapClient = new DefaultSoapClient())
{
 //Log in to Acumatica ERP
 ...
 try
 {
 //Work with Acumatica ERP through the web services API
 }
 finally
 {
 //Log out from Acumatica ERP
 soapClient.Logout();
 }
}

 | Contract-Based SOAP API Reference | 126

Usage Notes

For each call of the Login() method, you must call the Logout() method after you finish your work
with Acumatica ERP to close the session. Therefore, we recommend that you call the Logout() method
within the finally block.

SetBusinessDate() Method
You use the SetBusinessDate() method to specify the business date in Acumatica ERP. You can set
the business date to any date to make the system insert this date into the date fields by default. The
business date is inserted into any new document that you create and is used in the default selection
parameters that appear on processing and inquiry screens.

Syntax

public void SetBusinessDate(System.DateTime businessDate)

Parameter

• businessDate: The business date that should be used in Acumatica ERP.

Usage Notes

The business date resets to the current date of your computer after each login. Therefore, if you need
to specify a business date in your application, you should call the SetBusinessDate() method after
each client application login.

Get() Method
You use the Get() method to get one record that satisfies the specified conditions from Acumatica ERP.
The conditions must specify only one record in Acumatica ERP; otherwise, an error is returned. If you
need to get multiple records that satisfy the specified conditions, use the GetList() method instead.

Syntax

public Entity Get(Entity entity)

Parameter

• entity: The entity that specifies the record that should be obtained from Acumatica ERP.

Return Value

The method returns the Entity object that corresponds to the specified record.

Example

The following code gets a customer record with the specified customer ID.

Customer customer = new Customer
{
 CustomerID = new StringSearch { Value = "C000000003" },
};
Customer customerData = (Customer)soapClient.Get(customer);

 | Contract-Based SOAP API Reference | 127

GetList() Method (Contract Version 3)
: This topic describes the GetList() method that is available in Version 3 of the system contract.

You use the GetList() method to retrieve from an Acumatica ERP data entry form a list of records that
satisfy the specified conditions.

: Do not use the GetList() method to retrieve the records from an inquiry form; instead, use the Put()
method.

Syntax

public Entity[] GetList(Entity entity)

Parameter

• entity: The entity that specifies the conditions that must be met for the records to be returned
from Acumatica ERP.

Return Value

The method returns the array of Entity objects that correspond to the specified records.

Example

The following example gets the list of stock items that have the Active status and that were modified
within the past month. The code returns only the top-level fields of each stock item record (no fields of
the detail or linked entities are returned).

//Filter the items by the last modified date and status
StockItem stockItemsToBeFound = new StockItem
{
 LastModified = new DateTimeSearch
 {
 Value = DateTime.Now.AddMonths(-1),
 Condition = DateTimeCondition.IsGreaterThan
 },
 ItemStatus = new StringSearch { Value = "Active" }
};

//Get the list of stock items
Entity[] stockItems = soapClient.GetList(stockItemsToBeFound);

Usage Notes

• To specify the fields whose values you need to obtain for each entity, you use the ReturnBehavior
property of the entity.

• When the GetList() method is called, the system tries to optimize the retrieval of the records
and obtain all needed records in one request to the database (instead of requesting the records
one by one). If the optimization fails, the system returns an error, which specifies the entities or
fields that caused the failure of the optimized request. To prevent the error from being generated,
you can do any of the following:

• If you do not need to retrieve the entities or fields that caused the failure, you can exclude
these entities or fields from the list of requested fields by setting the ReturnBehavior
property to None for the entities, or by using the Skip classes of the needed value type
(such as StringSkip) for the fields.

 | Contract-Based SOAP API Reference | 128

• If you need to retrieve the entities of fields that have caused the failure, you can retrieve
the needed records one by one by using the Get() method.

GetList() Method (Contract Version 2)
: This topic describes the GetList() method that is available in Version 2 of the system contract.

You use the GetList() method to retrieve from an Acumatica ERP data entry form a list of records that
satisfy the specified conditions.

: Do not use the GetList() method to retrieve the records from an inquiry form; instead, use the Put()
method.

Syntax

public Entity[] GetList(Entity entity)

Parameter

• entity: The entity that specifies the conditions that must be met for the records to be returned
from Acumatica ERP.

Return Value

The method returns the array of Entity objects that correspond to the specified records.

Example

The following example gets the list of stock items that have the Active status and that were modified
within the past month. The code returns all fields of each stock item record.

//Filter the items by the last modified date and status
StockItem stockItemsToBeFound = new StockItem
{
 LastModified = new DateTimeSearch
 {
 Value = DateTime.Now.AddMonths(-1),
 Condition = DateTimeCondition.IsGreaterThan
 },
 ItemStatus = new StringSearch { Value = "Active" }
};

//Get the list of stock items
Entity[] stockItems = soapClient.GetList(stockItemsToBeFound);

Usage Notes

• To specify the fields whose values you need to obtain for each entity, you use the ReturnBehavior
property of the entity.

• When the GetList() method is called, the system tries to optimize the retrieval of the records
and obtain all needed records in one request to the database. If the optimization fails, the system
obtains the records one by one, which may significantly increase the time of data retrieval.

 | Contract-Based SOAP API Reference | 129

Put() Method
You use the Put() method to create or modify a record on a data entry form of Acumatica ERP. For
example, by using the Put() method, you can create a customer record on the Customers (AR303000)
form.

You also use this method to retrieve data from an inquiry form. For example, by using the Put()
method, you can retrieve data from the Inventory Summary (IN401000) form.

Syntax

public Entity Put(Entity entity)

Parameter

• entity: The entity that specifies the values of the fields of the created record, or the entity that
specifies the record that should be modified and the values of the fields that should be modified in
this record.

: If you use this method to create or modify a record on a data entry form, the entity must specify
only one record in Acumatica ERP. If the entity specifies more than one record or no records, an
error is returned during the execution of the method.

Return Value

The method returns the Entity object that corresponds to the created or modified record.

Example 1: Creating a Record

The following example creates a customer record with the specified field values in Acumatica ERP.

//Specify the values of a new customer record
Customer customerToBeCreated = new Customer
{
 CustomerID = new StringValue { Value = "JOHNGOOD" },
 CustomerName = new StringValue { Value = John Good" },
 MainContact = new Contact
 {
 Email = new StringValue { Value = "demo@gmail.com" },
 Address = new Address
 {
 AddressLine1 = new StringValue { Value = "43 Lake Washington Blvd NE" },
 AddressLine2 = new StringValue { Value = "Suite 100" },
 City = new StringValue { Value = "Kirkland" },
 State = new StringValue { Value = "WA" },
 PostalCode = new StringValue { Value = "98033" }
 }
 }
};

//Create a customer record with the specified values
Customer newCustomer = (Customer) soapClient.Put(customerToBeCreated);

Example 2: Updating a Record

The following example searches for the needed customer record in Acumatica ERP by the email address
and updates the record with the specified customer class value.

//Select the needed customer record and
//specify the values that should be updated
var customerToBeUpdated = new Customer

 | Contract-Based SOAP API Reference | 130

{
 MainContact = new Contact
 {
 //Search for the customer record by email address
 Email = new StringSearch { Value = "info@jevy-comp.con" }
 },
 CustomerClass = new StringValue { Value = "INTL" };
};

//Update the customer record with the specified values
var updCustomer = (Customer)soapClient.Put(customerToBeUpdated);

Example 3: Retrieving Data from an Inquiry Form

The following example retrieves the values of all elements available for a stock item from the Inventory
Summary (IN401000) inquiry form.

//Filter details by warehouse
InventorySummaryInquiry stockItemsToBeFound =
new InventorySummaryInquiry
{
 InventoryID = new StringValue { Value = "AALEGO500" },
 WarehouseID = new StringValue { Value = "MAIN" }
};

//Retrieve the list of stock items from the inquiry
InventorySummaryInquiry stockItems =
 (InventorySummaryInquiry)soapClient.Put(stockItemsToBeFound);

foreach (InventorySummaryRow stockItem in stockItems.Results)
{
 //Do something with the results
 ...
}

Usage Notes

When the Acumatica ERP web services receive a Put request that contains an entity with at least one
Search object, Acumatica ERP tries to search for a record by using the specified search value or values,
and does one of the following:

• If the record that satisfies the specified conditions has been found, Acumatica ERP updates the
fields of the record that are specified by using the Value objects.

• If no record has been found that satisfies the specified conditions, a new record is inserted. Note
that the values that were specified with the Search objects are inserted into the created record in
the same way as the values specified with the Value objects are inserted.

• If multiple records have been found, Acumatica ERP returns an error.

For the key fields of a record that are passed in the Put request as Value objects, the service converts
the corresponding Value objects to Search objects.

When the Acumatica ERP web services receive a Put request that contains only Value, Return, and
Skip objects without key fields specified, Acumatica ERP adds a new record with the specified values.

The workflow of a Put request is illustrated in the following diagram.

 | Contract-Based SOAP API Reference | 131

Figure: Put() workflow

 | Contract-Based SOAP API Reference | 132

Delete() Method
You use the Delete() method to delete a record from Acumatica ERP.

Syntax

public void Delete(Entity entity)

Parameter

• entity: The entity that specifies the record that should be deleted.

: The entity must specify only one record in Acumatica ERP. If the entity specifies more than one
record or no records, an error is returned during the execution of the method.

Usage Notes

The Delete() method is used to delete only the records that correspond to top-level entities. If
you need to delete a detail line of a record, you should set the Delete property of the entity that
corresponds to the detail line to true and pass the top-level entity that contains this entity to
Acumatica ERP by using the Put() method.

Invoke() Method
You use the Invoke() method to invoke an action on a record in Acumatica ERP (for example, to
perform the release action on a document).

Syntax

public InvokeResult Invoke(Entity entity, Action action)

Parameters

• entity: The entity that specifies the record on which the action should be invoked.

: The entity must specify only one record in Acumatica ERP. If the entity specifies more than one
record or no records, an error is returned during method execution.

• action: The action that should be invoked on the record.

Return Value

The method returns an InvokeResult object, which you should use to monitor the status of the long-
running operation by using the GetProcessStatus() method.

Example

The following code releases a payment.

//Find the payment that should be released
Payment soPaymentToBeReleased = new Payment
{
 Type = new StringSearch { Value = "Payment" },
 ReferenceNbr = new StringSearch { Value = "000001" }
};
Payment payment = (Payment)soapClient.Get(soPaymentToBeReleased);

 | Contract-Based SOAP API Reference | 133

//Release the payment
InvokeResult invokeResult = soapClient.Invoke(payment, new ReleasePayment());

//Monitor the status of the release operation
...

GetProcessStatus() Method
You use the GetProcessStatus() method to monitor the status of a long-running operation (such as
the release or confirmation operation) that you invoked by using the Invoke() method.

Syntax

public ProcessResult GetProcessStatus(InvokeResult invokeResult)

Parameter

• invokeResult: An InvokeResult object that was returned by the Invoke() method.

Return Value

The method returns a ProcessResult object. You should use the Status property of this object to get
the status of the processing operation. When the status of the operation is Completed, you can get the
result of processing, which is identified by the EntityID property of a ProcessResult object.

Example

The following code monitors the status of the payment release processing.

...
//Release payment
InvokeResult invokeResult = soapClient.Invoke(payment, new ReleasePayment());

//Monitor the status of the process
ProcessResult processResult = soapClient.GetProcessStatus(invokeResult);
while (processResult.Status == ProcessStatus.InProcess)
{
 Thread.Sleep(1000); //pause for 1 second
 processResult = soapClient.GetProcessStatus(invokeResult);
}
if (processResult.Status == ProcessStatus.Completed)
{
 //Get the released payment
 payment = (Payment)soapClient.Get(
 new Payment { ID = processResult.EntityId });
}

GetFiles() Method
You use the GetFiles() method to get the files that are attached to a record.

Syntax

public File[] GetFiles(Entity entity)

Parameter

• entity: The entity that specifies the record in Acumatica ERP to which the files are attached.

 | Contract-Based SOAP API Reference | 134

Return Value

The method returns an array of web service File objects that contain the properties for accessing the
contents and names of the files.

Example

The following example retrieves the files attached to a stock item record.

//Filter the items by inventory ID
StockItem stockItemToBeFound = new StockItem
{
 InventoryID = new StringSearch { Value = "AAMACHINE1" }
};

//Get the stock item record
StockItem stockItem = (StockItem) soapClient.Get(stockItemToBeFound);

//Get the files that are attached to the stock item
if (stockItem != null && stockItem.ImageUrl != null)
{
 //Get the attached files
 File[] files = soapClient.GetFiles(stockItem);
 ...
};

PutFiles() Method
You use the PutFiles() method to attach files to a record in Acumatica ERP.

Syntax

public void PutFiles(Entity entity, File[] files)

Parameters

• entity: The entity that specifies the record to which the files should be attached.

• files: An array of web service File objects that specify the files to be attached.

Example

The following code attaches a file to a stock item record.

//Find the needed stock item
StockItem stockItemToBeFound = new StockItem
{
 InventoryID = new StringSearch { Value = "AALEGO500" },
};
StockItem stockItem = (StockItem)soapClient.Get(stockItemToBeFound);

//Read the file data
byte[] filedata;
using (FileStream file =
System.IO.File.Open("D:\\T2MCRO.jpg", FileMode.Open))
{
 filedata = new byte[file.Length];
 file.Read(filedata, 0, filedata.Length);
}

//Add the file to the stock item record
Default.File[] stockItemFiles = new[]
{

 | Contract-Based SOAP API Reference | 135

 //Default is the name of the service reference
 new Default.File
 {
 Name = fileName,
 Content = filedata
 }
};
soapClient.PutFiles(stockItem,stockItemFiles);

GetCustomFieldSchema() Method
You use the GetCustomFieldSchema() method to obtain the list of custom fields of an entity. You can
find out the field name and view name of the needed element by using this method.

Depending on the version of the system contract, this method returns different set of fields: In Contract
Version 2, custom fields correspond to both the predefined elements on an Acumatica ERP form that are
not included in the entity definition and the elements that were added to the Acumatica ERP form in a
customization project; in Contract Version 1, custom fields correspond to only the elements that were
added to an Acumatica ERP form in a customization project.

Syntax

public Entity GetCustomFieldSchema(Entity entity)

Parameter

• entity: The entity for which the list of custom fields should be obtained.

Return Value

The method returns the Entity object, which contains the array of custom fields in its CustomFields
property.

Example

The following example retrieves the list of custom fields of the StockItem entity.

StockItem stockItem =
 (StockItem) soapClient.GetCustomFieldSchema(new StockItem());
CustomField[] customFields = stockItem.CustomFields;

Attributes Property
By using the Attributes property, you can view and edit the attributes of a record in Acumatica ERP.
Through this property, you work with an array of AttributeValue objects.

To specify the value of an attribute, you specify the name of the attribute in the AttributeID
property of an AttributeValue object, and the value of the attribute in the Value property of this
AttributeValue object.

Syntax

public AttributeValue[] Attributes { set; get; }

 | Contract-Based SOAP API Reference | 136

Example

The following code shows how to edit the attributes of a stock item record.

//Specify the values of a stock item record
StockItem stockItemToBeCreated = new StockItem
{
 InventoryID = new StringValue { Value = "BASESERV" },
 ItemClass = new StringValue { Value = "STOCKITEM" },
 Attributes = new []
 {
 //Specify the values of attributes of the item class (STOCKITEM)
 new AttributeValue
 {
 AttributeID = new StringValue { Value = "Operation System" },
 Value = new StringValue { Value = "Windows" }
 },
 new AttributeValue
 {
 AttributeID = new StringValue { Value = "Version Of Software" },
 Value = new StringValue { Value = "Server 2012 R2" }
 }
 }
};

//Create a stock item with the specified values
StockItem newStockItem = (StockItem)soapClient.Put(stockItemToBeCreated);

CustomFields Property
By using the CustomFields property, you can view and edit the values of the elements that are not
included in the entity definition. That is, custom fields can correspond to both the predefined elements
on an Acumatica ERP form that are not included in the entity definition and the elements that were
added to the Acumatica ERP form in a customization project.

Through the CustomFields property, you work with an array of CustomField objects. This property is
exposed by the Entity class—that is, all entities of the web services API expose this property.

To get or set the value of an element that is not included in the entity definition, you should use the
CustomFields property of the entity that contains this element. To work with the needed element
in the CustomFields array, you specify the values of the fieldName and viewName properties of the
CustomField object of the needed type. In the viewName property, you specify the name of the data
view that contains the element, and in the fieldName property, you specify the internal name of the
element. For details on how to find out the field name and the name of the data view, see Custom
Fields.

For example, suppose that you added the Personal ID element to the Main Contact area of the
Customers (AR303000) form in a customization project. To work with this customization element
through the web services API, you should use the CustomFields property of the Contact entity,
which is available through the MainContact property of the Customer entity. The Personal ID
customization element has the String type and has the UsrPersonalID field name and belongs
to the DefContact data view. Therefore, to access this element, you should set the fieldName
property of the CustomStringField object to UsrPersonalID, and the viewName property of the
CustomStringField object to DefContact.

Syntax

public CustomField[] CustomFields { set; get; }

 | Contract-Based SOAP API Reference | 137

Example

Suppose that you added the Personal ID Type, Personal ID, and Credit Record Verified elements
to the Customers form in a customization project, as shown in the following screenshot.

Figure: Custom elements

The following code shows how to specify the values of these custom elements through the web services
API.

//Specify the values of a new customer record
Customer customerToBeCreated = new Customer
{
 CustomerID = new StringValue { Value = "TEDSMITH" },
 CustomerName = new StringValue { Value = "Ted Smith" },
 //Specify the values of the custom fields

 MainContact = new Contact
 {
 CustomFields = new[]
 {
 new CustomStringField
 {
 fieldName = "UsrPersonalIDType",
 viewName = "DefContact",
 Value = new StringValue { Value = "Passport" }
 },
 new CustomStringField
 {
 fieldName = "UsrPersonalID",
 viewName = "DefContact",
 Value = new StringValue { Value = customerPersonalID }
 },
 new CustomBooleanField
 {

 | Contract-Based SOAP API Reference | 138

 fieldName = "UsrCreditRecordVerified",
 viewName = "DefContact",
 Value = new BooleanValue { Value = true }
 }
 }
 }
};

//Create a customer record with the specified values
Customer newCustomer = (Customer)soapClient.Put(customerToBeCreated);

Usage Notes
To work with elements of an object that was added in a customization project or with a custom
Acumatica ERP form, you have to create a custom endpoint for the needed form. You can create a
custom endpoint on the Web Service Endpoints (SM207060) form. For details on creation of a custom
endpoint, see To Create a Custom Endpoint and To Extend an Existing Endpoint.

ReturnBehavior Property (Contract Version 3)
: This topic describes the ReturnBehavior property that is available in Version 3 of the system contract.

By using the ReturnBehavior property, you can specify the fields of the entity whose values should be
returned from the request to the service that is performed by the Get(), GetList(), or Put() method.
This property is exposed by the Entity class—that is, all entities of the web services API expose this
property.

For each entity, you can specify one of the following options, which determine the fields for which
values should be returned:

• None: Values should not be returned for any fields of the entity. You can use this option for detail
entities and linked entities, but not for top-level entities.

• OnlySystem: Values should be returned for only the system fields (that is, the fields of the Entity
class, such as ID, RowNumber, and Note). You may need to obtain only the values of the system
fields, for example, if you want to delete the entity.

• OnlySpecified: Values should be returned for only the specified fields of the entity and
the system fields. You can specify the values to be returned by using the Return classes of
the needed value type, such as StringReturn. The values of the fields that are specified by
using the Value or Search classes of the corresponding value type, such as StringValue and
StringSearch, are returned automatically.

• Default: Values should be returned for only the fields of the entity that are defined in the entity
itself (without the fields of the linked and detail entities defined within the entity). This option is
used by default.

• All: Values should be returned for all fields of the entity that are defined in the contract
(including the fields of the linked and detail entities defined within the entity). No values of the
custom fields (the Acumatica ERP fields that are not defined in the contract or the fields that are
defined in a customization project) are returned. You can specify the values to be skipped by
using the Skip classes of the needed value type, such as StringSkip.

In the sections below, you can find examples of how to specify the fields whose values should be
returned.

Syntax

public ReturnBehavior ReturnBehavior { set; get; }

 | Contract-Based SOAP API Reference | 139

Example: Obtaining All Fields

The following example shows how to obtain the values of all fields of all stock item records in the
system.

StockItem stockItemsToBeFound = new StockItem
{
 ReturnBehavior = ReturnBehavior.All
};

//Get the list of stock items with the values of all fields
//that are defined in the contract
Entity[] stockItems = soapClient.GetList(stockItemsToBeFound);

Example: Obtaining Only the Fields of the Entity Itself Without Linked and Detail Fields

In the following example, only the fields of the top-level StockItem entity are retrieved from the
system.

//You can omit the setting of the ReturnBehavior property to ReturnBehavior.Default
//because this option is used by default
StockItem stockItemsToBeFound = new StockItem();

//Get the list of stock items with the values of the fields
//of the StockItem entity itself (without the fields of the detail or linked
 entities)
Entity[] stockItems = soapClient.GetList(stockItemsToBeFound);

Example: Obtaining Only Specified Fields

The following example shows how to obtain the values of the InventoryID field, the ItemStatus field,
and all WarehouseDetail fields of all stock item records in the system.

StockItem stockItemsToBeFound = new StockItem
{
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringReturn(),
 ItemStatus = new StringSearch { Value = "Active" },
 WarehouseDetails = new StockItemWarehouseDetail[]
 {
 new StockItemWarehouseDetail {ReturnBehavior = ReturnBehavior.All}
 },
};

//Get the list of stock items with the values of the specified fields
Entity[] stockItems = soapClient.GetList(stockItemsToBeFound);

Example: Obtaining All Fields Except the Specified Ones

The following example shows how to obtain the values of all fields of all stock item records in the
system except the LastModified field and all WarehouseDetail fields.

StockItem stockItemsToBeFound = new StockItem
{
 ReturnBehavior = ReturnBehavior.All,
 LastModified = new DateTimeSkip(),
 WarehouseDetails = new StockItemWarehouseDetail[]
 {
 new StockItemWarehouseDetail {ReturnBehavior = ReturnBehavior.None}
 },
};

//Get the list of stock items with the values of the specified fields
Entity[] stockItems = soapClient.GetList(stockItemsToBeFound);

 | Contract-Based SOAP API Reference | 140

Example: Obtaining Only System Fields

The following example shows how to obtain the values of only system fields of all stock item records in
the system.

StockItem stockItemToBeFound = new StockItem
{
 ReturnBehavior = ReturnBehavior.OnlySystem,
};

//Get the list of stock items with the values of system fields
Entity[] stockItems = soapClient.GetList(stockItemToBeFound);

ReturnBehavior Property (Contract Version 2)
: This topic describes the ReturnBehavior property that is available in Version 2 of the system contract.

By using the ReturnBehavior property, you can specify the fields of the entity whose values should be
returned from the request to the service that is performed by the Get(), GetList(), or Put() method.
This property is exposed by the Entity class—that is, all entities of the web services API expose this
property.

For each entity, you can specify one of the following options, which determine the fields for which
values should be returned:

• None: Values should not be returned for any fields of the entity. You can use this option for detail
entities and linked entities, but not for top-level entities.

• OnlySystem: Values should be returned for only the system fields (that is, the fields of the Entity
class, such as ID, RowNumber, and Note). You may need to obtain only the values of the system
fields, for example, if you want to delete the entity.

• OnlySpecified: Values should be returned for only the specified fields of the entity and
the system fields. You can specify the values to be returned by using the Return classes of
the needed value type, such as StringReturn. The values of the fields that are specified by
using the Value or Search classes of the corresponding value type, such as StringValue and
StringSearch, are returned automatically.

• All: Values should be returned for all fields of the entity that are defined in the contract. No
values of the custom fields (the Acumatica ERP fields that are not defined in the contract or the
fields that are added in a customization project and are not included in the contract) are returned.
You can specify the values to be skipped by using the Skip classes of the needed value type, such
as StringSkip. This option is used by default.

In the sections below, you can find examples of how to specify the fields whose values should be
returned.

Syntax

public ReturnBehavior ReturnBehavior { set; get; }

Example: Obtaining All Fields

The following example shows how to obtain the values of all fields of all stock item records in the
system.

//You can omit the setting of the ReturnBehavior property to ReturnBehavior.All
//because this option is used by default
StockItem stockItemsToBeFound = new StockItem();

 | Contract-Based SOAP API Reference | 141

//Get the list of stock items with the values of all fields
//that are defined in the contract
Entity[] stockItems = soapClient.GetList(stockItemsToBeFound);

Example: Obtaining Only Specified Fields

The following example shows how to obtain the values of the InventoryID field, the ItemStatus field,
and all WarehouseDetail fields of all stock item records in the system.

StockItem stockItemsToBeFound = new StockItem
{
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringReturn(),
 ItemStatus = new StringSearch { Value = "Active" },
 WarehouseDetails = new StockItemWarehouseDetail[]
 {
 new StockItemWarehouseDetail {ReturnBehavior = ReturnBehavior.All}
 },
};

//Get the list of stock items with the values of the specified fields
Entity[] stockItems = soapClient.GetList(stockItemsToBeFound);

Example: Obtaining All Fields Except the Specified Ones

The following example shows how to obtain the values of all fields of all stock item records in the
system except the LastModified field and all WarehouseDetail fields.

StockItem stockItemsToBeFound = new StockItem
{
 ReturnBehavior = ReturnBehavior.All,
 LastModified = new DateTimeSkip(),
 WarehouseDetails = new StockItemWarehouseDetail[]
 {
 new StockItemWarehouseDetail {ReturnBehavior = ReturnBehavior.None}
 },
};

//Get the list of stock items with the values of the specified fields
Entity[] stockItems = soapClient.GetList(stockItemsToBeFound);

Example: Obtaining Only System Fields

The following example shows how to obtain the values of only system fields of all stock item records in
the system.

StockItem stockItemToBeFound = new StockItem
{
 ReturnBehavior = ReturnBehavior.OnlySystem,
};

//Get the list of stock items with the values of system fields
Entity[] stockItems = soapClient.GetList(stockItemToBeFound);

 | Screen-Based SOAP API Reference | 142

Screen-Based SOAP API Reference

In this chapter, you will find the reference information for the main methods of the screen-based web
services API; these methods are used to transfer data to and from Acumatica ERP. This chapter covers
the following objects, and the following methods, which are exposed by the Screen class:

• Login() Method

• Logout() Method

• SetLocaleName() Method

• SetBusinessDate() Method

• GetScenario() Method

• GetSchema() Method

• SetSchema() Method

• Export() Method

• Submit() Method

• Import() Method

• Clear() Method

• GetProcessStatus() Method

Login() Method
You use the Login() method to make the client application log in to Acumatica ERP.

Syntax

public LoginResult Login(string name, string password)

Parameters

• name: The username that should be used to log in to Acumatica ERP, such as "admin".

To log in to a specific Acumatica ERP company, specify the login as follows:
UserName@CompanyName, where you should specify the user name instead of UserName and
the company name instead of CompanyName. For example, if you log in to the company with the
name Dollar as the user with the name admin, you should specify the login as admin@Dollar.

To log in to a company under a certain branch, specify the login as follows:
UserName@CompanyName:BranchName, where you should specify the user name instead
of UserName, the company name instead of CompanyName, and the branch name instead of
BranchName. For example, if you log in to the East branch of the Dollar company as the user
with the name admin, you should specify the login as admin@Dollar:East.

• password: The password that should be used to log in to Acumatica ERP, such as "123".

Return Value

The method returns the LoginResult object, which contains the description of errors that occurred
during login, if any.

 | Screen-Based SOAP API Reference | 143

Example

The following code logs in to Acumatica ERP by using the parameters that are specified in the
application settings.

Screen context = new Screen();
context.CookieContainer = new System.Net.CookieContainer();
context.Url = "https://localhost/WebServiceAPITest/Soap/MYSTORE.asmx";
context.Login("admin@MyCompany:MYSTORE", "123");

Usage Notes

Before you log in to Acumatica ERP by using the Login() method, do the following:

1. Initialize the CookieContainer property of the object with a new
System.Net.CookieContainer(). The CookieContainer property is a standard property
of an object of the HttpWebClientProtocol system type. (The Screen class is derived from
the HttpWebClientProtocol class.) This property is used to maintain the session state for a
client.

2. Specify the URL of the web service in the URL property of the object. This is the same URL that
you specify when you add a web reference to the Acumatica ERP web service. You can change
the URL of the service dynamically in your application if you need to switch between multiple
Acumatica ERP web services.

For each call of the Login() method, you must call the Logout() method after you finish your work
with Acumatica ERP to close the session. Therefore, when you are working with the web services API,
we recommend that you use the pattern that is shown in the following code.

using
(
 //Connect to the web services and log in to Acumatica ERP
 Screen context = new Screen();
 ...
)
{
 try
 {
 //Import, export, or submit data
 ...
 }
 finally
 {
 //Log out from Acumatica ERP
 context.Logout();
 }
}

Logout() Method
You use the Logout() method to make the client application log out from Acumatica ERP.

Syntax

public void Logout()

 | Screen-Based SOAP API Reference | 144

Usage Notes

For each call of the Login() method, you must call the Logout() method after you finish your work
with Acumatica ERP to close the session. Therefore, when you are working with the web services API,
we recommend that you use the pattern that is shown in the following code.

using
(
 //Connect to the web services and log in to Acumatica ERP
 Screen context = new Screen();
 ...
)
{
 try
 {
 //Import, export, or submit data
 ...
 }
 finally
 {
 //Log out from Acumatica ERP
 context.Logout();
 }
}

SetLocaleName() Method
You use the SetLocaleName() method to specify the locale for Acumatica ERP to correctly recognize
the format of dates, numbers, and other country-specific data that is passed by using the web services
API. By default, Acumatica ERP uses the invariant locale, which is similar to the English (United States)
locale.

Syntax

public void SetLocaleName(string localeName)

Parameter

• localeName: The locale that should be used in Acumatica ERP. You should specify the locale in the
System.Globalization.CultureInfo format converted to string, such as "EN-US".

Example

The following code shows how to specify the appropriate locale with the SetLocaleName() method of
the Screen object.

...
using System.Threading;
...
Screen context = new Screen();
context.SetLocaleName(Thread.CurrentThread.CurrentCulture.ToString());

SetBusinessDate() Method
You use the SetBusinessDate() method to specify the business date in Acumatica ERP. You can set
the business date to any date to make the system insert this date into the date fields by default. The
business date is inserted into any new document that you create and is used in the default selection
parameters that appear on processing and inquiry screens.

 | Screen-Based SOAP API Reference | 145

Syntax

public void SetBusinessDate(System.DateTime businessDate)

Parameter

• businessDate: The business date that should be used in Acumatica ERP.

Usage Notes

The business date resets to the current date of your computer after each login. Therefore, if you need
to specify a business date in your application, you should call the SetBusinessDate() method after
each client application login.

GetScenario() Method
You use the GetScenario() method to retrieve the list of commands of an integration scenario that is
configured in the system.

Syntax

public Command[] GetScenario(string scenario)

Parameter

• scenario: The name of the import or export scenario for which the list of commands should be
retrieved.

Return Value

The method returns the list of commands of the specified integration scenario.

GetSchema() Method
You use the GetSchema() method of the Screen object to get the description of the structure (schema)
of a form. This method is specific for each Acumatica ERP form, and you should use the method with
the ID of the needed form in the prefix of the method name.

: To prevent application failures due to UI changes in Acumatica ERP, you can use the GetSchema()
method of the screen-based API wrapper instead of the GetSchema() method of the Screen object. For
more information on the screen-based API wrapper, see Screen-Based API Wrapper.

Syntax

public Content GetSchema()

Return Value

The method returns the schema of the form as the corresponding Content object, which is specific for
each form.

 | Screen-Based SOAP API Reference | 146

Example

To get the schema of the Stock Items (IN202500) form, you should call the IN202500GetSchema()
method of the Screen object. You will receive the result as a IN202500Content object, as the following
code shows.

Screen context = new Screen();
...
IN202500Content stockItemsSchema = context.IN202500GetSchema();

SetSchema() Method
You use the SetSchema() method of the Screen object to change the description of the structure
(schema) of a form to the one specified in the method. This method is useful when you need to work
with the description of the form that was used in previous versions of Acumatica ERP. This method is
specific for each Acumatica ERP form, and you should use the method with the ID of the needed form in
the prefix of the method name.

Syntax

public void SetSchema(Content schema)

Parameter

• schema: The schema of an Acumatica ERP form.

Export() Method
You use the proper Export() method of a Screen object to export data from Acumatica ERP. You select
the needed Export() method by using in the name of the method the prefix that contains the ID of the
Acumatica ERP form from which the method exports data.

Syntax

public string[][] Export(
 Command[] commands,
 Filter[] filters,
 int topCount,
 bool includeHeaders,
 bool breakOnError
)

Parameters

• commands: In this parameter, you specify the UI elements of the Acumatica ERP form whose
values you need to export. In the array of commands that you pass to the commands parameter,
you can also use the EveryValue service command, which makes the system export all records of
the specific type.

• filters: In this parameter, you specify any restrictions on the data to be exported. For example,
you can configure the system to export only the records that have a particular status.

• topCount: In this parameter, you can restrict the number of records to be exported. If this
parameter is set to 0, the system exports all records that are specified by the commands and
filters parameters of the Export() method.

 | Screen-Based SOAP API Reference | 147

• includeHeaders: In this parameter, you specify whether the result of the export should include
column headers. If this parameter is set to true, the result of the export includes the names of
exported elements in the first row of the exported data.

• breakOnError: In this parameter, you specify whether the system should stop the export if an
error occurs during this process. If this parameter is set to true, the system stops exporting data
when the first error occurs during the export.

Return Value

The result of the data export is a two-dimensional string array, which represents the exported data
in a table format. Thus, if an exported record contains detail lines, the values of the detail lines are
translated to multiple rows of this table. The number of rows is equal to the number of detail lines of
the source record. The table rows that belong to one record have the same values of the elements of
the summary area specified.

For example, suppose that on the Invoices (SO303000) form, an invoice has three detail lines. If you
export this invoice with detail lines, the data prepared for export will include three records for this
invoice—one record for each detail line. These records will include identical values of the elements in
the summary area of the invoice, such as the type and reference number, and different values of the
detail line elements.

Submit() Method
You use the proper Submit() method of a Screen object to submit data to Acumatica ERP. You select
the needed Submit() method by using in the name of the method the prefix that contains the ID of the
Acumatica ERP form with which the method works.

Syntax

public Content[] Submit(Command[] commands)

Parameter

• commands: You use this parameter to specify the data that you are going to submit. In this
parameter, you pass to the web service an array of Command objects in which you can specify
commands that do the following:

• Set the values of elements on the form by using Value commands.

• Click buttons on the form (for example, the Save button) by using Action commands.

• Get the result of data processing by using Field commands.

Return value

The result of processing of the data submitted by using the Submit() method is returned as a Content
object specific to the form to which the data has been submitted. This object contains the values of the
elements that you specified by using Field commands in the array of Command objects, which you pass
to the Submit() method. The values of the elements that were not specified by using Field commands
are null.

If you want only to submit data to an Acumatica ERP form and do not need to obtain any values of
elements after submitting, do not specify any Field commands in the array of the Command object that
you pass to a Submit() method. In this case, the Submit() method does not return any value.

 | Screen-Based SOAP API Reference | 148

Example 1: Submitting Data and Obtaining the Result of Processing

Suppose that you want to submit a customer record to the Customers (AR303000) form and obtain as
a result of processing the values of the Customer Name and Customer Class elements. You pass the
list of commands, which includes Field commands for the CustomerName and CustomerClass fields, to
the AR303000Submit() method, as the following code shows. In this example, the AR303000Submit()
method returns a AR303000Content object that has non-null values of the CustomerName and
CustomerClass fields. The values of the other elements of the returned AR303000Content object are
null.

AR303000Content custSchema = context.AR303000GetSchema();
var commands = new Command[]
{
 ...
 custSchema.Actions.Save,
 custSchema.CustomerSummary.CustomerName,
 custSchema.GeneralInfoFinancialSettings.CustomerClass
};
AR303000Content customer = context.AR303000Submit(commands)[0];

Example 2: Submitting Data without Obtaining the Result of Processing

Suppose that you want to create a customer record on the Customers form and do not need to get the
values of any element on the form after the customer record is created. You pass the list of commands,
which sets the needed values and saves the changes on the form (the list of commands does not
include any Field commands), to the AR303000Submit() method, as the following code shows. In this
example, the AR303000Submit() method does not return any value.

AR303000Content custSchema = context.AR303000GetSchema();
var commands = new Command[]
{
 new Value
 {
 ...
 },
 custSchema.Actions.Save
};
context.AR303000Submit(commands);

Import() Method
To import data to Acumatica ERP by using the web services API, you should use the proper Import()
method of a Screen object. You select the needed Import() method by using in the name of the
method a prefix that contains the ID of the Acumatica ERP form to which the method imports data.

Syntax

public ImportResults[] Import(
 Command[] commands,
 Filter[] filters,
 string[][] data,
 bool includedHeaders,
 bool breakOnError,
 bool breakOnIncorrectTarget
)

 | Screen-Based SOAP API Reference | 149

Parameters

• commands: In this parameter, you specify the UI elements of the Acumatica ERP form to which you
need to import data by using Field commands. You can click buttons on the form (for example,
the Save button) by using Action commands.

• filters: In this parameter, you specify any restrictions on the data to be imported. For example,
you can configure the system to import only the records that have the CUST prefix in the
customer ID field.

• data: In this parameter, you specify the data that should be imported in a two-dimensional string
array. Each row of the array should contain the values of the fields in the order that you specified
in the commands parameter.

• includeHeaders: In this parameter, you specify whether the imported data include column
headers. If this parameter is set to true, this signals to the system that the data, which is
imported, includes the names of the imported elements in the first row.

• breakOnError: In this parameter, you specify whether the system should stop the data import if
an error occurs during this process. If this parameter is set to true, the system stops importing
data when the first error occurs during the import.

• breakOnIncorrectTarget: In this parameter, you specify whether the system should stop the
data import if the record does not meet the condition specified for the imported record. If this
parameter is set to true, the system stops processing records and displays an error.

Return Value

The result of the processing of the data imported by using the Import() method is returned as a
ImportResults object specific to the form to which the data has been imported. This object contains
the result of the processing.

Clear() Method
You use the Clear() method to clear all changes on the form. The method works in the same way
as the Cancel button on the toolbar of an Acumatica ERP form does. This method is specific to the
particular Acumatica ERP form, and you should use the method with the ID of the needed form in the
prefix of the method name.

Syntax

public void Clear()

GetProcessStatus() Method
You use the GetProcessStatus() method to monitor the status of a long-running operation (such as
the release or confirmation operation).

Syntax

public ProcessResult GetProcessStatus()

 | Screen-Based SOAP API Reference | 150

Return Value

The method returns a ProcessResult object. You should use the Status property of this object to get
the status of the processing operation. When the status of the operation is Completed, you can get the
result of processing.

 | Contract-Based API Examples | 151

Contract-Based API Examples

In this chapter, you can find code examples that show how to implement the integration of Acumatica
ERP with external systems through the contract-based REST and SOAP API. Each example includes a
short description, a user scenario that you can implement by using this example, and code snippet that
use REST or SOAP API to implement the scenario. You can reuse these examples in your application.

In This Chapter

• Integration of Acumatica ERP Projects with External Systems (REST and SOAP API Examples)

• Integration of Acumatica ERP with POS systems (SOAP API Examples)

Integration of Acumatica ERP Projects with External Systems
(REST and SOAP API Examples)

You can use contract-based REST and SOAP API for integration of Acumatica ERP projects with external
systems. For details on the project accounting, see Projects.

Examples of the integration of Acumatica ERP projects with external systems include the following:

• Creation of a Pro Forma Invoice

• Managing of Account Groups

• Running of Project Billing

• Creation of a GL Transaction with a Project Code That Does Not Produce a Project Transaction

• Time Entry

Creation of a Pro Forma Invoice
Through the contract-based REST and SOAP API, external systems can create pro formas and send
them by email.

To create a pro forma from the project, the project must have Customer, BillingRule, BillingPeriod,
and NextBillingDate specified and must have the Active status. Because of data validation in the
project, NextBillingDate cannot be specified for a project with On Hold status, and you cannot change
customer in a project with the Active status. Therefore, these settings can be specified only in multiple
API calls, as shown in the code examples below.

User Scenario

A project manager of the company needs to create a pro forma invoice and send it to the client by
email.

Before You Proceed

ProFormaInvoice cannot be created by using the PUT HTTP method or the Put() SOAP API method,
but only by invocation of the RunProjectBilling action of the Project entity. Because there is no
mapping for email settings in the Project entity, you have to prepare a project template with the
specified email settings on the Project Templates (PM208000) form and then use this template for
creation of the project through the API. The project template can also contain preconfigured project
tasks, as the template used in this example. For details about project templates, see Templates for
Projects and Tasks.

 | Contract-Based API Examples | 152

Testing of the Examples

To test the code below, configure your client application and an Acumatica ERP instance as follows:

• Deploy a new Acumatica ERP instance with the SalesDemo dataset inserted. For details on
deploying an instance, see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, enable the Projects features.

• In the client application, add a service reference to the Default/18.200.001 system endpoint. For
details on how to add a service reference, see To Configure the Client Application in this guide.

• To sign in to the instance in the client application, use the company name (which you specified
when you created the instance) and the PRODWHOLE branch.

REST API Requests
You can use the following sequence of examples of HTTP requests to create a pro forma and send it by
email through the contract-based REST API:

: In the request examples below, <Acumatica ERP instance name> is the name of the Acumatica
ERP instance (such as MyInstance), <host name> is the name of the host where the instance is located
(such as my.acumatica.com). [/<Acumatica ERP instance name>] is omitted if the instance is
installed in the root of the website.

1. Create a project from template and specify Customer, BillingRule, and BillingPeriod of the
project.

PUT [/<Acumatica ERP instance name>]/entity/Default/18.200.001/Project
 HTTP/1.1
Host: <host name>
Accept: application/json
Content-Type: application/json

{
 "ProjectID" : {"value" : "TESTPR3"},
 "ProjectTemplateID" : {"value" : "TM-PROFORM"},
 "Customer" : {"value" : "ABARTENDE"},
 "BillingAndAllocationSettings" :
 {
 "BillingRule" : {"value" : "FIXEDPRICE"},
 "BillingPeriod" : {"value" : "Month"},
 }
}

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

2. Make the project active.

PUT [/<Acumatica ERP instance name>]/entity/Default/18.200.001/Project
 HTTP/1.1
Host: <host name>
Accept: application/json
Content-Type: application/json

{
 "ProjectID" : {"value" : "TESTPR3"},
 "Hold" : {"value" : false}
}

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

 | Contract-Based API Examples | 153

3. Specify NextBillingDate of the project.

PUT [/<Acumatica ERP instance name>]/entity/Default/18.200.001/Project
 HTTP/1.1
Host: <host name>
Accept: application/json
Content-Type: application/json

{
 "ProjectID" : {"value" : "TESTPR3"},
 "BillingAndAllocationSettings" :
 {
 "NextBillingDate" : {"value" : "2018-08-16"},
 }
}

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

4. Activate a project task.

PUT [/<Acumatica ERP instance name>]/entity/Default/18.200.001/ProjectTask
 HTTP/1.1
Host: <host name>
Accept: application/json
Content-Type: application/json

{
 "ProjectTaskID" : {"value" : "01"},
 "ProjectID" : {"value" : "TESTPR3"},
 "Status" : {"value" : "Active"},
}

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

5. Create a project transaction and invoke release of the transaction.

POST [/<Acumatica ERP instance name>]/entity/Default/18.200.001/
ProjectTransaction/ReleaseTransactions HTTP/1.1
Host: <host name>
Accept: application/json
Content-Type: application/json

{
 "entity" : {
 "Details" :
 [
 {
 "Project" : {"value" : "TESTPR3"},
 "ProjectTask" : {"value" : "01"},
 "CostCode" : {"value" : "0000"},
 "AccountGroup" : {"value" : "LABOR"},
 "Qty" : {"value" : 10},
 "Amount" : {"value" : 10},
 },
]
}
}

HTTP/1.1 202 Accepted
Location: [/<Acumatica ERP instance name>]/entity/Default/18.200.001/
ProjectTransaction/ReleaseTransactions/status/ce6a7728-5f8e-416f-
bbe5-617d2725465c

 | Contract-Based API Examples | 154

6. Use the URL from the Location header to obtain the status of the long-running operation.
When the GET HTTP method with this URL returns 204 No Content, the operation is completed.
For details on the other response statuses, see Execution of an Action.

GET [/<Acumatica ERP instance name>]/entity/Default/18.200.001/
ProjectTransaction/ReleaseTransactions/status/ce6a7728-5f8e-416f-
bbe5-617d2725465c HTTP/1.1
Host: <host name>
Accept: application/json
Content-Type: application/json

HTTP/1.1 204 No Content

7. Invoke project billing to create a pro forma.

POST [/<Acumatica ERP instance name>]/entity/Default/18.200.001/Project/
RunProjectBilling HTTP/1.1
Host: <host name>
Accept: application/json
Content-Type: application/json

{
 "entity" : {
 "ProjectID": {
 "value": "TESTPR3"
 },
 }
}

HTTP/1.1 202 Accepted
Location: [/<Acumatica ERP instance name>]/entity/Default/18.200.001/Project/
RunProjectBilling/status/6952c6d1-04be-4330-a26e-c6b855ba332c

8. Monitor the status of the operation.

GET [/<Acumatica ERP instance name>]/entity/Default/18.200.001/Project/
RunProjectBilling/status/6952c6d1-04be-4330-a26e-c6b855ba332c HTTP/1.1
Host: <host name>
Accept: application/json
Content-Type: application/json

HTTP/1.1 204 No Content

9. Obtain the list of pro formas of the project (which currently contains only one pro forma)
by adding $expand=Invoices to the endpoint address. For details about parameters, see
Parameters for Retrieving Records.

: To obtain the list of pro formas of the project with the TESTPR3 project ID, you can also use
the GET request for the ProFormaInvoice entity with the $filter=ProjectID eq ’TESTPR3
parameter.

GET [/<Acumatica ERP instance name>]/entity/Default/18.200.001/Project/
TESTPR3?$expand=Invoices HTTP/1.1
Host: <host name>
Accept: application/json
Content-Type: application/json

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

10. Send the pro forma by email.

POST [/<Acumatica ERP instance name>]/entity/Default/18.200.001/
ProFormaInvoice/EmailProFormaInvoice HTTP/1.1

 | Contract-Based API Examples | 155

Host: <host name>
Accept: application/json
Content-Type: application/json

{
 "entity" : {
 "RefNbr": {
 "value": "PF00008"
 },
 }
}

HTTP/1.1 202 Accepted
Location: [/<Acumatica ERP instance name>]/entity/Default/18.200.001/
ProFormaInvoice/EmailProFormaInvoice/status/a4caa455-0eed-4c11-
a5a9-2a8333e53db1

11. Monitor the status of the operation.

GET [/<Acumatica ERP instance name>]/entity/Default/18.200.001/
ProFormaInvoice/EmailProFormaInvoice/status/a4caa455-0eed-4c11-
a5a9-2a8333e53db1 HTTP/1.1
Host: <host name>
Accept: application/json
Content-Type: application/json

HTTP/1.1 204 No Content

SOAP API Example

You can use the code below to create a pro forma and send it by email through the contract-based
SOAP API. For details about the API methods and properties, see Contract-Based SOAP API Reference.

using System;
//Add the namespace of the service reference here

public static void SendProFormaByEmail(DefaultSoapClient soapClient)
{
 //Any project ID that does not exist in the system
 string projectID = "TESTPR";
 //A project template that has mailing settings configured
 string projectTemplateID = "TM-PROFORM";
 //An existing customer
 string customer = "ABARTENDE";
 //An existing billing rule for the project
 string billingRule = "FIXEDPRICE";
 //A billing period
 string billingPeriod = "Month";
 //The task ID available in the template
 string projectTaskID = "01";
 //An existing cost code for a project transaction
 string costCode = "0000";
 //An existing account group for the project transaction
 string accountGroup = "LABOR";
 //The quantity for the project transaction
 decimal quantity = 10;
 //The amount of the project transaction
 decimal amount = 10;

 //Create a project from template and
 //specify Customer, BillingRule, and BillingPeriod of the project
 soapClient.Put(new Project
 {
 //Make the system return only the fields specified in this call
 //Always request the minimum number of fields from the server
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ProjectID = new StringValue { Value = projectID, },
 ProjectTemplateID = new StringValue { Value = projectTemplateID, },

 | Contract-Based API Examples | 156

 Customer = new StringValue { Value = customer },
 BillingAndAllocationSettings = new ProjectBillingAndAllocationSettings
 {
 BillingRule = new StringValue { Value = billingRule },
 BillingPeriod = new StringValue { Value = billingPeriod },
 },
 });

 //Make the project active
 soapClient.Put(new Project
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ProjectID = new StringSearch { Value = projectID },
 Hold = new BooleanValue { Value = false }
 });

 //Specify NextBillingDate of the project
 soapClient.Put(new Project
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ProjectID = new StringSearch { Value = projectID },
 BillingAndAllocationSettings = new ProjectBillingAndAllocationSettings
 {
 NextBillingDate = new DateTimeValue
 {
 Value = new DateTime(
 2018, 08, 16, 0, 0, 0, DateTimeKind.Unspecified)
 },
 },
 });

 //Activate a project task
 (ProjectTask)soapClient.Put(new ProjectTask
 {
 ProjectTaskID = new StringSearch { Value = projectTaskID },
 ProjectID = new StringSearch { Value = projectID },
 Status = new StringValue { Value = "Active" },
 });

 //Create a project transaction and release the transaction
 InvokeResult invokeResult = soapClient.Invoke(
 new ProjectTransaction
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 Details = new[]
 {
 new ProjectTransactionDetail
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 Project = new StringValue{ Value = projectID, },
 ProjectTask = new StringValue { Value = projectTaskID, },
 CostCode = new StringValue { Value = costCode, },
 AccountGroup = new StringValue { Value = accountGroup, },
 Qty = new DecimalValue { Value = quantity, },
 Amount = new DecimalValue { Value = amount, },
 }
 }
 },
 new ReleaseTransactions()
);

 //Monitor the status of the process
 GetProcessResult(soapClient, invokeResult);

 //Invoke project billing
 invokeResult = soapClient.Invoke(
 new Project
 {
 ProjectID = new StringSearch { Value = projectID }
 },

 | Contract-Based API Examples | 157

 new RunProjectBilling()
);

 //Monitor the status of the process
 ProcessResult processResult = GetProcessResult(soapClient, invokeResult);

 //Obtain the created pro forma
 Project newProject = (Project)soapClient.Get(new Project
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ID = processResult.EntityId,
 Invoices = new ProjectProFormaDetails[]
 {
 new ProjectProFormaDetails
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ProFormaReferenceNbr = new StringReturn()
 }

 }
 });

 //Send the pro forma by email
 invokeResult = soapClient.Invoke(
 new ProFormaInvoice
 {
 RefNbr = new StringSearch
 {
 Value = newProject.Invoices[0].ProFormaReferenceNbr.Value
 }
 },
 new EmailProFormaInvoice()
);

 //Monitor the status of the process
 GetProcessResult(soapClient, invokeResult);
}

//Long-running operation helper
public static ProcessResult GetProcessResult(
 DefaultSoapClient soapClient, InvokeResult invokeResult)
{
 while (true)
 {
 var processResult = soapClient.GetProcessStatus(invokeResult);
 switch (processResult.Status)
 {
 case ProcessStatus.Aborted:
 throw new SystemException("Process status: " +
 processResult.Status + "; Error: " + processResult.Message);
 case ProcessStatus.NotExists:
 case ProcessStatus.Completed:
 //Go to normal processing
 return processResult;
 case ProcessStatus.InProcess:
 //Insert the needed waiting time here
 if (processResult.Seconds > 30)
 throw new TimeoutException();
 continue;
 default:
 throw new InvalidOperationException();
 }
 }
}

Managing of Account Groups
Through the contract-based REST and SOAP API, external systems can create, edit, and remove
account groups.

 | Contract-Based API Examples | 158

The AccountGroup entity supports creation, retrieval, update, and removal for the entity itself, however
you cannot modify the list of accounts of the account group by using the AccountGroup entity. Instead
you have to use the AccountGroup property in the Account entity. You can use the DefaultAccountID
property of the AccountGroup entity in order to specify default account for the group.

: Removing of the default account from the group does not update the DefaultAccountID
property automatically. If you remove the default account from the group, you have to update the
DefaultAccountID property.

User Scenario

A project manager of the company needs to add and modify account groups to set up Acumatica ERP
for project accounting.

Testing of the Examples

To test the code below, configure your client application and an Acumatica ERP instance as follows:

• Deploy a new Acumatica ERP instance with the SalesDemo dataset inserted. For details on
deploying an instance, see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, enable the Projects features.

• In the client application, add a service reference to the Default/18.200.001 system endpoint. For
details on how to add a service reference, see To Configure the Client Application in this guide.

• To sign in to the instance in the client application, use the company name (which you specified
when you created the instance) and the PRODWHOLE branch.

REST API Requests

You can use the following sequence of examples of HTTP requests to create an account group and edit
accounts in it through the contract-based REST API:

: In the request examples below, <Acumatica ERP instance name> is the name of the Acumatica
ERP instance (such as MyInstance), <host name> is the name of the host where the instance is located
(such as my.acumatica.com). [/<Acumatica ERP instance name>] is omitted if the instance is
installed in the root of the website.

1. Create an account group.

PUT [/<Acumatica ERP instance name>]/entity/Default/18.200.001/AccountGroup
 HTTP/1.1
Host: <host name>
Accept: application/json
Content-Type: application/json

{
 "AccountGroupID" : {"value" : "ACCG02"},
 "Description" : {value: "Test Account Group"}
}

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

2. Add accounts to the account group.

PUT [/<Acumatica ERP instance name>]/entity/Default/18.200.001/Account
 HTTP/1.1
Host: <host name>
Accept: application/json
Content-Type: application/json

{

 | Contract-Based API Examples | 159

 "AccountCD" : {"value" : "40000"},
 "AccountGroup" : {value: "ACCG02"}
}

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

PUT [/<Acumatica ERP instance name>]/entity/Default/18.200.001/Account
 HTTP/1.1
Host: <host name>
Accept: application/json
Content-Type: application/json

{
 "AccountCD" : {"value" : "40010"},
 "AccountGroup" : {value: "ACCG02"}
}

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

3. Specify the default account of the account group.

PUT [/<Acumatica ERP instance name>]/entity/Default/18.200.001/AccountGroup
 HTTP/1.1
Host: <host name>
Accept: application/json
Content-Type: application/json

{
 "DefaultAccountID" : {"value" : "40000"},
 "AccountGroupID" : {value: "ACCG02"}
}

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

4. Obtain the list of accounts of the group.

GET [/<Acumatica ERP instance name>]/entity/Default/18.200.001/Account?
$filter=AccountGroup%20eq%20'ACCG02'&$select=AccountCD HTTP/1.1
Host: <host name>
Accept: application/json
Content-Type: application/json

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

5. Remove an account from the group.

PUT [/<Acumatica ERP instance name>]/entity/Default/18.200.001/Account
 HTTP/1.1
Host: <host name>
Accept: application/json
Content-Type: application/json

{
 "AccountCD" : {"value" : "40010"},
 "AccountGroup" : {value: null}
}

HTTP/1.1 200 OK
Content-Type: application/json

 | Contract-Based API Examples | 160

{ ... }

SOAP API Example

You can use the code below to create an account group and edit accounts in it through the contract-
based SOAP API. For details about the API methods and properties, see Contract-Based SOAP API
Reference.

using System;
//Add the namespace of the service reference here

public static void ManageAccountGroups(DefaultSoapClient soapClient)
{
 //Any account group ID that does not exist in the system
 string accountGroupID = "ACCG01";
 //A description of the account group
 string accountGroupDescription = "Test Account Group";
 //The existing accounts to be added to the group
 string account1 = "40000";
 string account2 = "40010";

 //Create an account group
 soapClient.Put(new AccountGroup
 {
 //Make the system return only the fields specified in this call
 //Always request the minimum number of fields from the server
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 AccountGroupID = new StringValue { Value = accountGroupID },
 Description = new StringValue { Value = accountGroupDescription },
 });

 //Add accounts to the account group
 soapClient.Put(new Account
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 AccountCD = new StringSearch { Value = account1 },
 AccountGroup = new StringValue { Value = accountGroupID },
 });
 soapClient.Put(new Account
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 AccountCD = new StringSearch { Value = account2 },
 AccountGroup = new StringValue { Value = accountGroupID },
 });

 //Specify the default account of the account group
 soapClient.Put(new AccountGroup
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 AccountGroupID = new StringSearch { Value = accountGroupID },
 DefaultAccountID = new StringValue { Value = account1 },
 });

 //Obtain the list of accounts of the group
 Entity[] accounts = soapClient.GetList(new Account
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 AccountGroup = new StringSearch { Value = accountGroupID },
 AccountCD = new StringReturn()
 });

 //Remove an account from the group
 soapClient.Put(new Account
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 AccountCD = new StringSearch { Value = account2 },
 AccountGroup = new StringValue(),
 });

 | Contract-Based API Examples | 161

}

Running of Project Billing
Through the contract-based REST and SOAP API, external systems can run project billing for one
project as well as for multiple projects. This example shows how to run project billing for multiple
projects. To run project billing for one project, you can use the RunProjectBilling action of the
Project entity. (You can find an example of the call of RunProjectBilling in Creation of a Pro Forma
Invoice.)

You use one of the ProjectBillingProcess and ProjectBillingProcessAll actions of the
ProjectBilling entity to bill multiple projects at once. If you use the ProjectBillingProcess
action, you select the projects entities to be billed by specifying the value of the Selected
field of ProjectBillingDetails, as shown in the code example below. If you use the
ProjectBillingProcessAll action, you can filter the projects to be billed by using the Customer,
CustomerClass, ProjectTemplate, StatementCycleThere fields of the ProjectBilling entity or bill
all projects. You can use the InvoiceDate and PostPeriod properties to specify invoice date and fiscal
period data for the billing operation.

User Scenario

Once a week, a project manager of the company needs to run project billing for selected projects.

Before You Proceed

You need to create projects to be billed either through the UI or through the contract-based API.

Testing of the Examples

To test the code below, configure your client application and an Acumatica ERP instance as follows:

• Deploy a new Acumatica ERP instance with the SalesDemo dataset inserted. For details on
deploying an instance, see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, enable the Projects features.

• In the client application, add a service reference to the Default/18.200.001 system endpoint. For
details on how to add a service reference, see To Configure the Client Application in this guide.

• To sign in to the instance in the client application, use the company name (which you specified
when you created the instance) and the PRODWHOLE branch.

REST API Requests

You can use the following request examples to bill multiple projects through the contract-based REST
API:

: In the request examples below, <Acumatica ERP instance name> is the name of the Acumatica
ERP instance (such as MyInstance), <host name> is the name of the host where the instance is located
(such as my.acumatica.com). [/<Acumatica ERP instance name>] is omitted if the instance is
installed in the root of the website.

1. Retrieve the list of projects that can be billed by using the PUT HTTP method because the
ProjectBilling entity retrieves data from an inquiry. For details about retrieving data from an
inquiry, see Retrieval of Data from an Inquiry Form

PUT [/<Acumatica ERP instance name>]/entity/Default/18.200.001/ProjectBilling?
$expand=Details HTTP/1.1
Host: <host name>
Accept: application/json
Content-Type: application/json

 | Contract-Based API Examples | 162

{
 "InvoiceDate" : {"value" : "2018-08-17T00:00:00.000"}
}

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

2. Use the returned object to select the projects for billing and invoke billing. For details on the IDs
of the entities, see Retrieval of a Record by ID.

POST [/<Acumatica ERP instance name>]/entity/Default/18.200.001/
ProjectBilling/ProjectBillingProcess HTTP/1.1
Host: <host name>
Accept: application/json
Content-Type: application/json

{
 "entity" :
 {
 "id": "c6958a73-4440-468f-80cf-83f4c63d1e09",
 "Details": [
 {
 "id": "2f0b6ef9-706b-44ef-accf-f96346102ff2",
 "Selected": {
 "value": false
 },
 },
 {
 "id": "83de0aec-f6f3-4bb1-8c83-93137bedd9ae",
 "Selected": {
 "value": false
 },
 },
 {
 "id": "5798f0a5-c8e5-4075-b844-a7782d99516e",
 "Selected": {
 "value": true
 },
 },
 {
 "id": "6eccc365-5aa8-4cc9-8eca-378f7d7bf205",
 "Selected": {
 "value": false
 },
 }
],
}
}

HTTP/1.1 202 Accepted
Location: [/<Acumatica ERP instance name>]/entity/Default/18.200.001/
ProjectBilling/ProjectBillingProcess/status/ce6a7728-5f8e-416f-
bbe5-617d2725465c

3. Use the URL from the Location header to obtain the status of the long-running operation.
When the GET HTTP method with this URL returns 204 No Content, the operation is completed.

GET [/<Acumatica ERP instance name>]/entity/Default/18.200.001/ProjectBilling/
ProjectBillingProcess/status/ce6a7728-5f8e-416f-bbe5-617d2725465c HTTP/1.1
Host: <host name>
Accept: application/json
Content-Type: application/json

HTTP/1.1 204 No Content

 | Contract-Based API Examples | 163

4. Invoke project billing for all projects available for billing.

POST [/<Acumatica ERP instance name>]/entity/Default/18.200.001/
ProjectBilling/ProjectBillingProcessAll HTTP/1.1
Host: <host name>
Accept: application/json
Content-Type: application/json

{
 "entity" :
 {
 }
}

HTTP/1.1 202 Accepted
Location: [/<Acumatica ERP instance name>]/entity/Default/18.200.001/
ProjectBilling/ProjectBillingProcessAll/status/19ec8f98-6204-4758-
b464-6e62d30b2973

5. Use the URL from the Location header to obtain the status of the long-running operation.
When the GET HTTP method with this URL returns 204 No Content, the operation is completed.

GET [/<Acumatica ERP instance name>]/entity/Default/18.200.001/ProjectBilling/
ProjectBillingProcessAll/status/19ec8f98-6204-4758-b464-6e62d30b2973 HTTP/1.1
Host: <host name>
Accept: application/json
Content-Type: application/json

HTTP/1.1 204 No Content

SOAP API Example

You can use the code below to bill multiple projects through the contract-based SOAP API. For details
about the API methods and properties, see Contract-Based SOAP API Reference.

using System;
//Add the namespace of the service reference here

public static void RunMultipleProjectBilling(DefaultSoapClient soapClient)
{
 //Projects to be billed
 string projectId1 = "PROJ1";
 string projectId2 = "PROJ2";

 DateTime billingDate = DateTime.Today;

 //Retrieve the list of projects that can be billed
 //Use Put() because the data is retrieved from an inquiry
 ProjectBilling unbilledProject = (ProjectBilling)soapClient.Put(
 new ProjectBilling
 {
 //Make the system return only the fields specified in this call
 //Always request the minimum number of fields from the server
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InvoiceDate = new DateTimeValue { Value = billingDate },
 Details = new ProjectBillingDetails[]
 {
 new ProjectBillingDetails
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ProjectID = new StringReturn(),
 Selected = new BooleanReturn()
 }
 }
 });

 //Select the projects for billing

 | Contract-Based API Examples | 164

 unbilledProject.Details.Single(p => p.ProjectID.Value == projectId1).
 Selected = new BooleanValue { Value = false };
 unbilledProject.Details.Single(p => p.ProjectID.Value == projectId2).
 Selected = new BooleanValue { Value = true };

 //Invoke project billing for selected projects
 InvokeResult invokeResult = soapClient.Invoke(
 unbilledProject,
 new ProjectBillingProcess()
);

 //Monitor the status of the process
 GetProcessResult(soapClient, invokeResult);

 //Invoke project billing for all projects
 invokeResult = soapClient.Invoke(
 new ProjectBilling(),
 new ProjectBillingProcessAll()
);

 //Monitor the status of the process
 GetProcessResult(soapClient, invokeResult);
}

//Long-running operation helper
public static ProcessResult GetProcessResult(
 DefaultSoapClient soapClient, InvokeResult invokeResult)
{
 while (true)
 {
 var processResult = soapClient.GetProcessStatus(invokeResult);
 switch (processResult.Status)
 {
 case ProcessStatus.Aborted:
 throw new SystemException("Process status: " +
 processResult.Status + "; Error: " + processResult.Message);
 case ProcessStatus.NotExists:
 case ProcessStatus.Completed:
 //Go to normal processing
 return processResult;
 case ProcessStatus.InProcess:
 //Insert the needed waiting time here
 if (processResult.Seconds > 30)
 throw new TimeoutException();
 continue;
 default:
 throw new InvalidOperationException();
 }
 }
}

Creation of a GL Transaction with a Project Code That Does Not Produce a
Project Transaction

Through the contract-based REST and SOAP API, external systems can import general ledger (GL)
transactions with project codes that do not produce project transactions.

To create a GL transaction with a project code that does not produce a project transaction, you set the
IsNonPM field of the JournalTransaction entity to true.

User Scenario

A construction company builds an integrated solution of Acumatica ERP with external payroll system.
The external payroll system calculates payoffs, including benefits, additions, deductions, and taxes.
Once a week, the construction company needs to import GL transactions with project information from
this payroll system to Acumatica ERP, where they are verified and released. The construction company

 | Contract-Based API Examples | 165

doesn't want to update the project subledger with the information from GL transactions (for example, if
the standard labor costs have already been posted to the project subledger from time entries).

Testing of the Examples

To test the code below, configure your client application and an Acumatica ERP instance as follows:

• Deploy a new Acumatica ERP instance with the SalesDemo dataset inserted. For details on
deploying an instance, see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, enable the Projects features.

• In the client application, add a service reference to the Default/18.200.001 system endpoint. For
details on how to add a service reference, see To Configure the Client Application in this guide.

• To sign in to the instance in the client application, use the company name (which you specified
when you created the instance) and the PRODWHOLE branch.

REST API Requests

You can use the following request example to create a GL transaction through the contract-based REST
API.

: In the request example below, <Acumatica ERP instance name> is the name of the Acumatica
ERP instance (such as MyInstance), <host name> is the name of the host where the instance is located
(such as my.acumatica.com). [/<Acumatica ERP instance name>] is omitted if the instance is
installed in the root of the website.

PUT [/<Acumatica ERP instance name>]/entity/Default/18.200.001/JournalTransaction
 HTTP/1.1
Host: <host name>
Accept: application/json
Content-Type: application/json

{
 "Module" : {"value" : "GL"},
 "TransactionDate" : {"value" : "2018-08-15T00:00:00"},
 "Description" : {"value" : "Transaction description"},
 "BranchID" : {"value" : "PRODWHOLE"},
 "Details" : [
 {
 "BranchID" : {"value" : "PRODWHOLE"},
 "Account" : {"value" : "10200"},
 "Subaccount" : {"value" : "000-000"},
 "CostCode" : {"value" : "0000"},
 "IsNonPM" : {"value" : true},
 }
]
}

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

SOAP API Example

You can use the code below to create a GL transaction through the contract-based SOAP API. For details
about the API methods and properties, see Contract-Based SOAP API Reference.

using System;
//Add the namespace of the service reference here

public static void CreateGLTransaction(DefaultSoapClient soapClient)
{
 string costCodeId = "0000";

 | Contract-Based API Examples | 166

 string module = "GL";
 string branchID = "PRODWHOLE";
 string transactionDescr = "Transaction description";
 string account = "10200";
 string subaccount = "000-000";

 JournalTransaction transaction =
 (JournalTransaction)soapClient.Put(new JournalTransaction
 {
 //Make the system return only the fields specified in this call
 //Always request the minimum number of fields from the server
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 BatchNbr = new StringReturn(),
 Module = new StringValue { Value = module, },
 TransactionDate = new DateTimeValue
 {
 Value = new DateTime(
 2018, 08, 15, 0, 0, 0, DateTimeKind.Unspecified) ,
 },
 Description = new StringValue { Value = transactionDescr, },
 BranchID = new StringValue { Value = branchID, },
 Details = new[]
 {
 new JournalTransactionDetail
 {
 BranchID = new StringValue { Value = branchID, },
 Account = new StringValue { Value = account, },
 Subaccount = new StringValue { Value = subaccount, },
 CostCode = new StringValue { Value = costCodeId, },
 IsNonPM = new BooleanValue {Value = true}
 },
 },
 });
}

Time Entry
Through the contract-based REST and SOAP API, external systems can enter the time spent on the
tasks of projects.

The TimeSpent, BillableTime, and BillableOvertime fields of the TimeEntry entity have the
StringValue type. These fields accept values in the following format: "hh:mm", where hh is the
amount of hours, mm is the amount of minutes.

The TimeEntryID field has the GuidValue type, however its value is a sequentially generated string,
which looks like a GUID. That is, global uniqueness of the values is not guaranteed.

User Scenario

Employees can enter the time spent for the project tasks in a payroll system. Once a week, the time
entries are imported to Acumatica ERP from the payroll system.

Testing of the Examples

To test the code below, configure your client application and an Acumatica ERP instance as follows:

• Deploy a new Acumatica ERP instance with the SalesDemo dataset inserted. For details on
deploying an instance, see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, enable the Projects features.

• In the client application, add a service reference to the Default/18.200.001 system endpoint. For
details on how to add a service reference, see To Configure the Client Application in this guide.

• To sign in to the instance in the client application, use the company name (which you specified
when you created the instance) and the PRODWHOLE branch.

 | Contract-Based API Examples | 167

REST API Requests

You can use the following request example for time entry through the contract-based REST API.

: In the request example below, <Acumatica ERP instance name> is the name of the Acumatica
ERP instance (such as MyInstance), <host name> is the name of the host where the instance is located
(such as my.acumatica.com). [/<Acumatica ERP instance name>] is omitted if the instance is
installed in the root of the website.

PUT [/<Acumatica ERP instance name>]/entity/Default/18.200.001/TimeEntry HTTP/1.1
Host: <host name>
Accept: application/json
Content-Type: application/json

{
 "Summary" : {"value" : "Time entry summary"},
 "Date" : {"value" : "2018-08-17T05:50:43.233" },
 "Time" : {"value" : "2018-08-17T05:50:43.233 },
 "Employee" : {"value" : "EP00000002" },
 "ProjectID" : {"value" : "TESTPROJ" },
 "ProjectTaskID" : {"value" : "01" },
 "CostCode" : {"value" : "0000" },
 "EarningType" : {"value" : "RG" },
 "TimeSpent" : {"value" : "01:30" },
 "BillableTime" : {"value" : "00:30" },
}

HTTP/1.1 200 OK
Content-Type: application/json
{ ... }

SOAP API Example

You can use the code below for time entry through the contract-based SOAP API. For details about the
API methods and properties, see Contract-Based SOAP API Reference.

using System;
//Add the namespace of the service reference here

public static void CreateTimeEntry(DefaultSoapClient soapClient)
{
 //IDs of an existing project and task
 string projectId = "TESTPROJ";
 string taskId = "01";
 //Time entry values
 string summary = "Time entry summary";
 string employee = "EP00000002";
 string costCode = "0000";
 string earningType = "RG";
 string timeSpent = "01:30";
 string billableTime = "00:30";

 soapClient.Put(new TimeEntry
 {
 //Make the system return only the fields specified in this call
 //Always request the minimum number of fields from the server
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 Summary = new StringValue { Value = summary },
 Date = new DateTimeValue { Value = DateTime.Now },
 Time = new DateTimeValue { Value = DateTime.Now, },
 Employee = new StringValue { Value = employee, },
 ProjectID = new StringValue { Value = projectId, },
 ProjectTaskID = new StringValue { Value = taskId, },
 CostCode = new StringValue { Value = costCode, },
 EarningType = new StringValue { Value = earningType, },
 TimeSpent = new StringValue { Value = timeSpent, },
 BillableTime = new StringValue { Value = billableTime, },

 | Contract-Based API Examples | 168

 });
}

Integration of Acumatica ERP with POS systems (SOAP API
Examples)

A point-of-sale (POS) system is a system where the customer pays for the items or services that he or
she wants to buy. The POS system can be operated by a cashier or can be a self-service terminal where
customers perform all operations by themselves.

Examples of the integration of Acumatica ERP with POS systems include the following:

• Entry of a Direct Sales Invoice

• Entry of a Direct Sales Invoice Along with a Return

• Entry of a Credit Memo with Positive and Negative Lines

• Entry of a Direct Sales Invoice in a Non-Default Currency

• Entry of a Direct Sales Invoice for a Shipped Order and Return

• Entry of a Direct Sales Invoice for an Unshipped Sales Order

• Entry of a Direct Sales Invoice for a Partially Shipped Sales Order

• Entry of a Credit Memo for an Unshipped Sales Order

Entry of a Direct Sales Invoice
A point-of-sale (POS) system can create and process direct sales invoices—that is, invoices for which
neither a sales order nor a shipment has been created. The POS system creates a direct sales invoice
and a payment, applies this payment to the invoice, and releases the invoice.

User Scenario

A customer comes to the store, picks up a number of items (including a motherboard, which is a
serialized item), and receives a consulting service from a store consultant. The customer would like to
buy the items and pay for the service. In the POS system, one invoice is created for this operation.

Code Example

You can use the code below to create a payment and a sales invoice, which includes lines for serialized
stock items, not-serialized stock items, and non-stock items.

To test this code example, configure your client application and an Acumatica ERP instance as follows:

• Deploy a new Acumatica ERP instance with the SalesDemo dataset inserted. For details on
deploying an instance, see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, enable the Advanced SO Invoices feature.

• In the client application, add a service reference to the POS/17.200.01 endpoint, which is an
extension of the Default/17.200.001 endpoint. For details on how to add a service reference, see
To Configure the Client Application in this guide.

• To sign in to the instance in the client application, use the company name (which you specified
when you created the instance) and the HQ branch.

using System;
using System.Linq;
using System.IO;
using System.Threading;

 | Contract-Based API Examples | 169

using System.Collections.Generic;
//Add the namespace of the service reference here

public static void EnterDirectSalesInvoice(DefaultSoapClient soapClient)
{
 //Input data
 //The customer
 const string CustomerABARTENDE = "ABARTENDE";
 //The customer's tax zone
 const string TaxZoneCANADABC = "CANADABC";
 //The sold stock items
 const string InventoryAACOMPUT01 = "AACOMPUT01";
 const string InventoryAALEGO500 = "AALEGO500";
 //The sold non-stock items
 const string InventoryADMCHARGE = "ADMCHARGE";
 const string InventoryCASELABOR = "CASELABOR";
 //The sold serialized stock item
 const string InventoryAAMACHINE1 = "AAMACHINE1";
 //The warehouse, which is the same for all items in this example
 const string WarehouseWHOLESALE = "WHOLESALE";
 //The location related to InventoryAACOMPUT01, InventoryAALEGO500,
 //and InventoryAAMACHINE1
 const string LocationR1S1 = "R1S1";
 //The UOM related to InventoryCASELABOR
 const string UOMMINUTE = "MINUTE";
 //The payment amount
 const decimal PaymentAmountDisc = 31539.05m;
 //The billing address
 const string AddressLine1 = "Fillmore Str";
 const string City = "San Francisco";
 const string State = "CA";
 const string SerialNumberAAMACHINE1 = "SRF000007";

 //Specify the tax zone for the customer
 soapClient.Put(new Customer
 {
 CustomerID = new StringSearch { Value = CustomerABARTENDE },
 TaxZone = new StringValue { Value = TaxZoneCANADABC },
 ReturnBehavior = ReturnBehavior.OnlySpecified
 });

 //Create a payment for the customer
 Payment payment = (Payment)soapClient.Put(new Payment
 {
 Type = new StringValue { Value = "Payment" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 PaymentAmount = new DecimalValue { Value = PaymentAmountDisc },
 ReferenceNbr = new StringReturn(),
 ReturnBehavior = ReturnBehavior.OnlySpecified
 });

 //Create a sales invoice
 SalesInvoice invoice = (SalesInvoice)soapClient.Put(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 Type = new StringValue { Value = "Invoice" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 //Specify details of the sales invoice
 Details = new SalesInvoiceDetail[]
 {
 //a sold stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryAACOMPUT01},
 WarehouseID = new StringValue {Value = WarehouseWHOLESALE},
 Location = new StringValue {Value = LocationR1S1},
 Qty = new DecimalValue {Value = 5}
 },
 //a sold stock item

 | Contract-Based API Examples | 170

 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryAALEGO500},
 WarehouseID = new StringValue {Value = WarehouseWHOLESALE},
 Location = new StringValue {Value = LocationR1S1},
 Qty = new DecimalValue {Value = 4},
 UnitPrice = new DecimalValue {Value = 100}
 },
 //a sold non-stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryADMCHARGE},
 Qty = new DecimalValue {Value = 3},
 UnitPrice = new DecimalValue {Value = 100}
 },
 //a sold non-stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryCASELABOR},
 WarehouseID = new StringValue {Value = WarehouseWHOLESALE},
 Qty = new DecimalValue {Value = 2},
 UOM = new StringValue {Value = UOMMINUTE},
 UnitPrice = new DecimalValue {Value = 20}
 },
 //a sold serialized stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryAAMACHINE1},
 WarehouseID = new StringValue {Value = WarehouseWHOLESALE},
 Location = new StringValue {Value = LocationR1S1},
 Qty = new DecimalValue {Value = 1},
 LotSerialNbr = new StringValue {Value = SerialNumberAAMACHINE1 }
 }
 },
 //Override the billing address of the invoice
 BillingSettings = new BillToSettings
 {
 BillToAddressOverride = new BooleanValue { Value = true },
 BillToAddress = new Address
 {
 AddressLine1 = new StringValue { Value = AddressLine1 },
 City = new StringValue { Value = City },
 State = new StringValue { Value = State }
 },
 ReturnBehavior = ReturnBehavior.All
 },
 //Specify additional data to be retrieved
 ApplicationsInvoice = new SalesInvoiceApplicationInvoice[]
 {
 new SalesInvoiceApplicationInvoice
 {
 ReturnBehavior = ReturnBehavior.All
 }
 },
 FinancialDetails = new SalesInvoiceFinancialDetails
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 CustomerTaxZone = new StringReturn()
 }
 });

 //Among the applications, select the payment created in this example
 //and specify the Amount Paid value
 SalesInvoiceApplicationInvoice application = invoice.ApplicationsInvoice
 .Where(applicationPayment =>
 applicationPayment.AdjustingDocReferenceNbr.Value ==

 | Contract-Based API Examples | 171

 payment.ReferenceNbr.Value).Single();
 application.AmountPaid.Value = PaymentAmountDisc;

 //Release the invoice.
 //(The Invoke method updates the invoice data (the AmountPaid value) first
 //and then releases the invoice.)
 InvokeResult invokeResult =
 soapClient.Invoke(invoice, new ReleaseSalesInvoice());
 //Monitor the status of the release operation.
 //(The GetProcessResult function is defined below.)
 ProcessResult processResult = GetProcessResult(soapClient,invokeResult);

 //Obtain the released invoice with the needed information
 invoice = (SalesInvoice)soapClient.Get(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ID = processResult.EntityId,
 Type = new StringReturn(),
 ReferenceNbr = new StringReturn(),
 Status = new StringReturn(),
 FinancialDetails = new SalesInvoiceFinancialDetails
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 BatchNbr = new StringReturn(),
 },
 TaxDetails = new SalesInvoiceTaxDetail[]
 {
 new SalesInvoiceTaxDetail {ReturnBehavior = ReturnBehavior.All }
 },
 ApplicationsInvoice = new SalesInvoiceApplicationInvoice[]
 {
 new SalesInvoiceApplicationInvoice
 {
 ReturnBehavior = ReturnBehavior.All
 }
 },
 Details = new SalesInvoiceDetail[]
 {
 new SalesInvoiceDetail
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryDocType = new StringReturn(),
 InventoryRefNbr = new StringReturn()
 }
 }
 });
}

//Long-running operation helper
public static ProcessResult GetProcessResult(
 DefaultSoapClient soapClient, InvokeResult invokeResult)
{
 while (true)
 {
 var processResult = soapClient.GetProcessStatus(invokeResult);
 switch (processResult.Status)
 {
 case ProcessStatus.Aborted:
 throw new SystemException("Process status: " +
 processResult.Status + "; Error: " + processResult.Message);
 case ProcessStatus.NotExists:
 case ProcessStatus.Completed:
 //Go to normal processing
 return processResult;
 case ProcessStatus.InProcess:
 //Insert the needed waiting time here
 if (processResult.Seconds > 30)
 throw new TimeoutException();
 continue;
 default:

 | Contract-Based API Examples | 172

 throw new InvalidOperationException();
 }
 }
}

Entry of a Direct Sales Invoice Along with a Return
A point-of-sale (POS) system can create and process direct sales invoices (that is, invoices for which
neither a sales order nor a shipment has been created) and include in these invoices lines for a return
of previously sold items. The POS system creates a direct sales invoice and releases the invoice.

: For simplicity, this example does not include the creation of the payment or the application of the
payment to the invoice. You can find an example showing how to create and apply a payment in Entry of a
Direct Sales Invoice.

User Scenario
A customer comes to the store and picks up a motherboard (which is a serialized item) and a patch
cord from store shelves. The customer would like to buy these items and to return the previously
purchased computer mouse. In a POS system, one invoice is created for the whole operation. The
customer pays the difference between the sale and the return.

Code Example

You can use the code below to create a sales invoice that includes lines for serialized stock items, not-
serialized stock items, and return lines for previously sold items.

To test this code example, configure your client application and an Acumatica ERP instance as follows:

• Deploy a new Acumatica ERP instance with the SalesDemo dataset inserted. For details on
deploying an instance, see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, enable the Advanced SO Invoices feature.

• In the client application, add a service reference to the POS/17.200.01 endpoint, which is an
extension of the Default/17.200.001 endpoint. For details on how to add a service reference, see
To Configure the Client Application in this guide.

• To sign in to the instance in the client application, use the company name (which you specified
when you created the instance) and the HQ branch.

: You can use the data of the direct sales invoice created in Entry of a Direct Sales Invoice for the return
lines for previously sold items.

using System;
using System.Linq;
using System.IO;
using System.Threading;
using System.Collections.Generic;
//Add the namespace of the service reference here

public static void EnterReturnAndDirectSalesInvoice(DefaultSoapClient soapClient)
{
 //Input data
 //The customer
 const string CustomerABARTENDE = "ABARTENDE";
 //The customer's tax zone
 const string TaxZoneCANADAAB = "CANADAAB";
 //The sold serialized stock item
 const string InventoryAAPOWERAID = "AAPOWERAID";
 //The serial number of InventoryAAPOWERAID
 const string LotSerialNbrLREX0 = "LREX0";
 //The warehouse related to InventoryAAPOWERAID
 const string WarehouseRETAIL = "RETAIL";
 //The location related to InventoryAAPOWERAID

 | Contract-Based API Examples | 173

 const string LocationSTORAGE = "STORAGE";
 //The sold non-stock item
 const string InventoryACCOMODATE = "ACCOMODATE";
 //The reference number of the invoice whose line items are returned
 const string CreatedSOInvoiceReferenceNbr = "AR005519";
 //The number of the returned line in the invoice
 //(in this example, the number of the line for InventoryAAMACHINE1)
 const int CreatedSOInvoiceLineNbr = 5;
 //The returned serialized stock item
 const string InventoryAAMACHINE1 = "AAMACHINE1";
 //The warehouse related to InventoryAAMACHINE1
 const string WarehouseWHOLESALE = "WHOLESALE";
 //The location related to InventoryAAMACHINE1
 const string LocationR1S1 = "R1S1";
 //The returned non-stock item
 const string InventoryADMCHARGE = "ADMCHARGE";

 //Create a sales invoice
 var invoice = (SalesInvoice)soapClient.Put(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 Type = new StringValue { Value = "Invoice" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 //Specify the customer's tax zone
 FinancialDetails = new SalesInvoiceFinancialDetails
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 CustomerTaxZone = new StringValue { Value = TaxZoneCANADAAB }
 },
 //Specify the details of the sales invoice
 Details = new SalesInvoiceDetail[]
 {
 //a sold serialized stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryAAPOWERAID},
 WarehouseID = new StringValue {Value = WarehouseRETAIL},
 Location = new StringValue {Value = LocationSTORAGE},
 LotSerialNbr = new StringValue {Value = LotSerialNbrLREX0},
 Qty = new DecimalValue {Value = 100}
 },
 //a sold non-stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryACCOMODATE},
 Qty = new DecimalValue {Value = 200},
 UnitPrice = new DecimalValue {Value = 200}
 },
 //a returned non-stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryADMCHARGE},
 Qty = new DecimalValue {Value = -1},
 OrigInvType = new StringValue {Value = "INV"},
 OrigInvNbr = new StringValue {Value = CreatedSOInvoiceReferenceNbr},
 UnitPrice = new DecimalValue {Value = 100}
 },
 //a returned serialized stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryAAMACHINE1},
 WarehouseID = new StringValue {Value = WarehouseWHOLESALE},
 Location = new StringValue {Value = LocationR1S1},
 Qty = new DecimalValue {Value = -1},
 OrigInvType = new StringValue {Value = "INV"},

 | Contract-Based API Examples | 174

 OrigInvNbr = new StringValue {Value =
 CreatedSOInvoiceReferenceNbr },
 OrigInvLineNbr = new IntValue {Value = CreatedSOInvoiceLineNbr }
 }
 },
 //Specify additional data to be retrieved
 TaxDetails = new SalesInvoiceTaxDetail[]
 {
 new SalesInvoiceTaxDetail
 {
 ReturnBehavior = ReturnBehavior.All
 }
 },
 });

 //Change the tax amount of the invoice to -100
 invoice.TaxDetails[0].TaxAmount.Value = -100m;

 //Release the invoice.
 //(The Invoke method updates the invoice data (the TaxAmount value) first
 //and then releases the invoice.)
 InvokeResult invokeResult = soapClient.Invoke(invoice, new
 ReleaseSalesInvoice());
 //Monitor the status of the release operation.
 //(The GetProcessResult function is defined below.)
 ProcessResult processResult = GetProcessResult(soapClient, invokeResult);

 //Obtain the released invoice with the needed information
 invoice = (SalesInvoice)soapClient.Get(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ID = processResult.EntityId,
 Type = new StringReturn(),
 ReferenceNbr = new StringReturn(),
 Status = new StringReturn(),
 FinancialDetails = new SalesInvoiceFinancialDetails
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 BatchNbr = new StringReturn(),
 },
 TaxDetails = new SalesInvoiceTaxDetail[]
 {
 new SalesInvoiceTaxDetail {ReturnBehavior = ReturnBehavior.All }
 },
 Details = new SalesInvoiceDetail[]
 {
 new SalesInvoiceDetail
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryDocType = new StringReturn(),
 InventoryRefNbr = new StringReturn()
 }
 }
 });
}

//Long-running operation helper
public static ProcessResult GetProcessResult(
 DefaultSoapClient soapClient, InvokeResult invokeResult)
{
 while (true)
 {
 var processResult = soapClient.GetProcessStatus(invokeResult);
 switch (processResult.Status)
 {
 case ProcessStatus.Aborted:
 throw new SystemException("Process status: " +
 processResult.Status + "; Error: " + processResult.Message);
 case ProcessStatus.NotExists:
 case ProcessStatus.Completed:

 | Contract-Based API Examples | 175

 //Go to normal processing
 return processResult;
 case ProcessStatus.InProcess:
 //Insert the needed waiting time here
 if (processResult.Seconds > 30)
 throw new TimeoutException();
 continue;
 default:
 throw new InvalidOperationException();
 }
 }
}

Entry of a Credit Memo with Positive and Negative Lines
A point-of-sale (POS) system can create and process credit memos with positive lines (for the returned
items) and negative lines (for the purchased items). (A credit memo is created instead of a direct sales
invoice if the payment amount of the returned items is greater than the payment amount of the newly
purchased items.) The POS system creates a credit memo, links the invoice that contains the returned
lines to the credit memo, and releases the credit memo.

User Scenario

A customer comes to the store and picks up a motherboard (which is a serialized item) and a patch
cord from the store shelves. The customer would like to buy these items and to return the previously
purchased notebook computer. The price of the returned item is greater than the price of the purchased
items. In a POS system, one invoice is created for the whole operation. The customer is given the
difference between the return and the sale.

Code Example

You can use the code below to create a credit memo with positive and negative lines.

To test this code example, configure your client application and an Acumatica ERP instance as follows:

• Deploy a new Acumatica ERP instance with the SalesDemo dataset inserted. For details on
deploying an instance, see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, enable the Advanced SO Invoices feature.

• In the client application, add a service reference to the POS/17.200.01 endpoint, which is an
extension of the Default/17.200.001 endpoint. For details on how to add a service reference, see
To Configure the Client Application in this guide.

• To sign in to the instance in the client application, use the company name (which you specified
when you created the instance) and the HQ branch.

: You can use the data of the invoice created in Entry of a Direct Sales Invoice Along with a Return for the
returned lines for previously sold items.

using System;
using System.Linq;
using System.IO;
using System.Threading;
using System.Collections.Generic;
//Add the namespace of the service reference here

public static void EnterCreditMemoWithPositiveAndNegativeLines(
 DefaultSoapClient soapClient)
{
 //Input data
 //The customer
 const string CustomerABARTENDE = "ABARTENDE";
 //The sold stock item

 | Contract-Based API Examples | 176

 const string InventoryAACOMPUT01 = "AACOMPUT01";
 //The warehouse related to InventoryAACOMPUT01
 const string WarehouseWHOLESALE = "WHOLESALE";
 //The location related to InventoryAACOMPUT01
 const string LocationR1S1 = "R1S1";
 //The tax category related to InventoryAACOMPUT01
 const string TaxCategoryTAXABLE = "TAXABLE";
 //The sold non-stock item
 const string InventoryCASELABORO = "CASELABORO";
 //The UOM related to InventoryCASELABORO
 const string UOMMINUTE = "MINUTE";
 //The reference number of the invoice whose line items are returned
 const string CreatedInvoiceNbr = "AR005520";
 //The returned serialized stock item
 const string InventoryAAPOWERAID = "AAPOWERAID";
 //The serial number of InventoryAAPOWERAID
 const string LotSerialNbrLREX000004 = "LREX000004";
 //The warehouse related to InventoryAAPOWERAID
 const string WarehouseRETAIL = "RETAIL";
 //The location related to InventoryAAPOWERAID
 const string LocationSTORAGE = "STORAGE";
 //The returned non-stock item
 const string InventoryCASELABOR = "CASELABOR";

 //Create a credit memo for the customer
 SalesInvoice creditMemo = (SalesInvoice)soapClient.Put(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 Type = new StringValue { Value = "Credit Memo" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 //Specify the details of the credit memo
 Details = new SalesInvoiceDetail[]
 {
 //a returned serialized stock item
 new SalesInvoiceDetail()
 {
 InventoryID = new StringValue {Value = InventoryAAPOWERAID},
 WarehouseID = new StringValue {Value = WarehouseRETAIL},
 Location = new StringValue {Value = LocationSTORAGE},
 Qty = new DecimalValue {Value = 10},
 LotSerialNbr = new StringValue {Value = LotSerialNbrLREX000004},
 ExpirationDate = new DateTimeValue
 {
 Value = new DateTime(2018, 10, 30)
 }
 },
 //a sold stock item
 new SalesInvoiceDetail()
 {
 InventoryID = new StringValue {Value = InventoryAACOMPUT01},
 Qty = new DecimalValue {Value = -1},
 WarehouseID = new StringValue {Value = WarehouseWHOLESALE},
 Location = new StringValue {Value = LocationR1S1},
 TaxCategory = new StringValue { Value = TaxCategoryTAXABLE }
 },
 //a returned non-stock item
 new SalesInvoiceDetail()
 {
 InventoryID = new StringValue {Value = InventoryCASELABOR},
 Qty = new DecimalValue {Value = 100}
 },
 //a sold non-stock item
 new SalesInvoiceDetail()
 {
 InventoryID = new StringValue {Value = InventoryCASELABORO},
 Qty = new DecimalValue {Value = -2},
 UOM = new StringValue {Value = UOMMINUTE}
 }
 },
 //Link the credit memo to the invoice

 | Contract-Based API Examples | 177

 ApplicationsCreditMemo = new SalesInvoiceApplicationCreditMemo[]
 {
 new SalesInvoiceApplicationCreditMemo()
 {
 DocType = new StringValue {Value = "Invoice"},
 ReferenceNbr = new StringValue {Value = CreatedInvoiceNbr},
 AmountPaid = new DecimalValue {Value = 2000}
 }
 },
 //Specify additional data to be retrieved
 TaxDetails = new SalesInvoiceTaxDetail[]
 {
 new SalesInvoiceTaxDetail
 {
 ReturnBehavior = ReturnBehavior.All
 }
 }
 });

 //Change the tax amount of the credit memo to -55
 creditMemo.TaxDetails[0].TaxAmount.Value = -55m;

 //Release the credit memo.
 //(The Invoke method updates the data (the TaxAmount value) first
 //and then releases the credit memo.)
 InvokeResult invokeResult =
 soapClient.Invoke(creditMemo, new ReleaseSalesInvoice());
 //Monitor the status of the release operation.
 //(The GetProcessResult function is defined below.)
 ProcessResult processResult = GetProcessResult(soapClient, invokeResult);

 //Obtain the released credit memo with the needed information
 creditMemo = (SalesInvoice)soapClient.Get(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ID = processResult.EntityId,
 Type = new StringReturn(),
 ReferenceNbr = new StringReturn(),
 Status = new StringReturn(),
 FinancialDetails = new SalesInvoiceFinancialDetails
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 BatchNbr = new StringReturn(),
 },
 Details = new SalesInvoiceDetail[]
 {
 new SalesInvoiceDetail
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryDocType = new StringReturn(),
 InventoryRefNbr = new StringReturn()
 }
 },
 ApplicationsInvoice = new SalesInvoiceApplicationInvoice[]
 {
 new SalesInvoiceApplicationInvoice
 {
 ReturnBehavior = ReturnBehavior.All
 }
 }
 });
}

//Long-running operation helper
public static ProcessResult GetProcessResult(
 DefaultSoapClient soapClient, InvokeResult invokeResult)
{
 while (true)
 {
 var processResult = soapClient.GetProcessStatus(invokeResult);

 | Contract-Based API Examples | 178

 switch (processResult.Status)
 {
 case ProcessStatus.Aborted:
 throw new SystemException("Process status: " +
 processResult.Status + "; Error: " + processResult.Message);
 case ProcessStatus.NotExists:
 case ProcessStatus.Completed:
 //Go to normal processing
 return processResult;
 case ProcessStatus.InProcess:
 //Insert the needed waiting time here
 if (processResult.Seconds > 30)
 throw new TimeoutException();
 continue;
 default:
 throw new InvalidOperationException();
 }
 }
}

Entry of a Direct Sales Invoice in a Non-Default Currency
A point-of-sale (POS) system can create and process direct sales invoices—that is, invoices for which
neither a sales order nor a shipment has been created—in a currency that differs from the default
currency of the customer account. The POS system creates a direct sales invoice in the needed currency
and releases the invoice.

: For simplicity, this example does not include the creation of the payment or the application of the
payment to the invoice. You can find an example showing how to create and apply a payment in Entry of a
Direct Sales Invoice.

User Scenario

A customer comes to the Canadian store and picks up a patch cord from store shelves. The customer
would like to buy the item, return the previously purchased computer mouse, and pay for the service in
United States dollars. In a POS system, one invoice is created for this operation. The customer pays the
difference between the sale and return.

Code Example

You can use the code below to create a sales invoice for a direct sale in a currency that is different from
the customer's default currency.

To test this code example, configure your client application and an Acumatica ERP instance as follows:

• Deploy a new Acumatica ERP instance with the SalesDemo dataset inserted. For details on
deploying an instance, see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, enable the Advanced SO Invoices feature.

• In the client application, add a service reference to the POS/17.200.01 endpoint, which is an
extension of the Default/17.200.001 endpoint. For details on how to add a service reference, see
To Configure the Client Application in this guide.

• To sign in to the instance in the client application, use the company name (which you specified
when you created the instance) and the HQ branch.

using System;
using System.Linq;
using System.IO;
using System.Threading;
using System.Collections.Generic;
//Add the namespace of the service reference here

public static void EnterDirectSalesInvoiceInOtherCurrency(

 | Contract-Based API Examples | 179

 DefaultSoapClient soapClient)
{
 //Input data
 //The customer
 const string CustomerABARTENDE = "ABARTENDE";
 //The sold stock item
 const string InventoryAACOMPUT01 = "AACOMPUT01";
 //The returned stock item
 const string InventoryAALEGO500 = "AALEGO500";
 //The returned non-stock item
 const string InventoryADMCHARGE = "ADMCHARGE";
 //The warehouse related to InventoryAALEGO500 and InventoryAACOMPUT01
 const string WarehouseWHOLESALE = "WHOLESALE";
 //The location related to InventoryAALEGO500 and InventoryAACOMPUT01
 const string LocationR1S1 = "R1S1";

 //Create an invoice for the customer
 SalesInvoice invoice = (SalesInvoice)soapClient.Put(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 Type = new StringValue { Value = "Invoice" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 //Specify the currency of the invoice
 Currency = new StringValue {Value = "EUR" },
 //Specify the invoice details
 Details = new SalesInvoiceDetail[]
 {
 //a sold stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryAACOMPUT01},
 WarehouseID = new StringValue {Value = WarehouseWHOLESALE},
 Location = new StringValue {Value = LocationR1S1},
 Qty = new DecimalValue {Value = 20}
 },
 //a returned stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryAALEGO500},
 WarehouseID = new StringValue {Value = WarehouseWHOLESALE},
 Location = new StringValue {Value = LocationR1S1},
 Qty = new DecimalValue {Value = -5}
 },
 //a returned non-stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryADMCHARGE},
 Qty = new DecimalValue {Value = -2},
 UnitPrice = new DecimalValue {Value = 100}
 }
 },
 //Specify additional values to be retrieved
 ReferenceNbr = new StringReturn()
 });

 //Release the invoice
 InvokeResult invokeResult = soapClient.Invoke(
 new SalesInvoice
 {
 Type = new StringSearch { Value = "Invoice" },
 ReferenceNbr = new StringSearch
 {
 Value = invoice.ReferenceNbr.Value
 },
 },
 new ReleaseSalesInvoice()
);

 | Contract-Based API Examples | 180

 //Monitor the status of the release operation.
 //(The GetProcessResult function is defined below.)
 ProcessResult processResult = GetProcessResult(soapClient, invokeResult);

 //Obtain the released invoice with the needed information
 invoice = (SalesInvoice)soapClient.Get(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ID = processResult.EntityId,
 Type = new StringReturn(),
 ReferenceNbr = new StringReturn(),
 Status = new StringReturn(),
 Balance = new DecimalReturn(),
 VATTaxableTotal = new DecimalReturn(),
 FinancialDetails = new SalesInvoiceFinancialDetails
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 BatchNbr = new StringReturn(),
 },
 TaxDetails = new SalesInvoiceTaxDetail[]
 {
 new SalesInvoiceTaxDetail {ReturnBehavior = ReturnBehavior.All }
 },
 Details = new SalesInvoiceDetail[]
 {
 new SalesInvoiceDetail
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryDocType = new StringReturn(),
 InventoryRefNbr = new StringReturn()
 }
 },
 Commissions = new SalesInvoiceCommissions
 {
 ReturnBehavior = ReturnBehavior.All
 }
 });
}

//Long-running operation helper
public static ProcessResult GetProcessResult(
 DefaultSoapClient soapClient, InvokeResult invokeResult)
{
 while (true)
 {
 var processResult = soapClient.GetProcessStatus(invokeResult);
 switch (processResult.Status)
 {
 case ProcessStatus.Aborted:
 throw new SystemException("Process status: " +
 processResult.Status + "; Error: " + processResult.Message);
 case ProcessStatus.NotExists:
 case ProcessStatus.Completed:
 //Go to normal processing
 return processResult;
 case ProcessStatus.InProcess:
 //Insert the needed waiting time here
 if (processResult.Seconds > 30)
 throw new TimeoutException();
 continue;
 default:
 throw new InvalidOperationException();
 }
 }
}

 | Contract-Based API Examples | 181

Entry of a Direct Sales Invoice for a Shipped Order and Return
A point-of-sale (POS) system can create and process sales invoices that contain both lines that are
not linked to any sales order or shipment and lines for which a sales order and shipment have been
created. Either type of line can include information about newly bought items or returned items.

To process these invoices, the POS system performs the following steps:

1. For the returned items that are linked to a sales order and shipment, creates a new sales order
of RM type (a generic authorized return).

2. In the created RM order, adds the previously issued invoice that contains the returned items.

3. In the RM order, adds the newly ordered items.

4. Creates and confirms shipments of the newly ordered items.

5. Creates shipments with the Receipt operation for the returned items and confirms these
shipments.

6. Creates a Sales Orders invoice and releases the invoice.

: For simplicity, this example does not include the creation of the payment or the application of the
payment to the invoice. You can find an example showing how to create and apply a payment in Entry of a
Direct Sales Invoice.

User Scenario

In the online shop, a customer buys a computer mouse, but then the customer decides to return the
mouse. In the online shop, the customer creates an order that includes both the returned item and
a motherboard, then the customer decides to get the motherboard and to return the mouse in the
store. The customer comes to the store and picks up a patch cord from the store shelves. Thus, the
customer would like to buy the patch cord, to return the mouse, and to pay for the previously ordered
motherboard. In a POS system, one invoice is created for the whole operation.

Code Example

You can use the code below to create a direct sales invoice that combines a shipped order and a return.

To test this code example, configure your client application and an Acumatica ERP instance as follows:

• Deploy a new Acumatica ERP instance with the SalesDemo dataset inserted. For details on
deploying an instance, see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, enable the Advanced SO Invoices feature.

• In the client application, add a service reference to the POS/17.200.01 endpoint, which is an
extension of the Default/17.200.001 endpoint. For details on how to add a service reference, see
To Configure the Client Application in this guide.

• To sign in to the instance in the client application, use the company name (which you specified
when you created the instance) and the HQ branch.

: You can insert in the code the data of the direct sales invoice created in Entry of a Direct Sales Invoice in
a Non-Default Currency for the return lines for previously sold items.

using System;
using System.Linq;
using System.IO;
using System.Threading;
using System.Collections.Generic;
//Add the namespace of the service reference here

public static void EnterDirectSalesInvoiceWithShippedOrderAndReturn(
 DefaultSoapClient soapClient)

 | Contract-Based API Examples | 182

{
 //Input data
 //The customer
 const string CustomerABARTENDE = "ABARTENDE";
 //The sold stock item
 const string InventoryCONAIRT1 = "CONAIRT1";
 //The reference number of the customer's direct sales invoice
 //whose line is returned
 const string OriginalDirectSalesInvoiceReferenceNbr = "AR005522";
 //The number of the returned line in the invoice
 const int OriginalDirectSalesInvoiceLineNbr = 1;
 //The returned stock item from the direct sales invoice
 const string InventoryAACOMPUT01 = "AACOMPUT01";
 //The warehouse, which is the same for all items in this example
 const string WarehouseWHOLESALE = "WHOLESALE";
 //The location related to InventoryAACOMPUT01 and InventoryCONAIRT1
 const string LocationR1S1 = "R1S1";
 //A previously created customer's invoice that is linked to a sales order
 //and whose line is returned
 const string OriginalInvoiceWithSalesOrderReferenceNbr = "AR003117";
 //The returned stock item from the sales order
 const string InventoryWIDGET01 = "WIDGET01";
 //The sold stock item from the sales order
 const string InventoryAALEGO500 = "AALEGO500";

 //Create a generic authorized return (that is, a sales order of the RM type)
 SalesOrder order = (SalesOrder)soapClient.Put(new SalesOrder
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 OrderType = new StringValue { Value = "RM" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 OrderNbr = new StringReturn()
 });

 //Add an invoice with the returned line to the sales order
 soapClient.Invoke(order, new SalesOrderAddInvoice
 {
 DocumentType = new StringValue { Value = "Invoice" },
 ReferenceNbr = new StringValue
 {
 Value = OriginalInvoiceWithSalesOrderReferenceNbr
 }
 });

 //Obtain the sales order with the added invoice
 order = (SalesOrder)soapClient.Get(new SalesOrder
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 OrderType = new StringSearch { Value = "RM" },
 OrderNbr = new StringSearch { Value = order.OrderNbr.Value },
 Details = new SalesOrderDetail[]
 {
 new SalesOrderDetail { ReturnBehavior = ReturnBehavior.All }
 }
 });

 //To the sales order, add a detail line with a newly ordered item
 var orderDetails = new SalesOrderDetail[]
 {
 order.Details[0],
 new SalesOrderDetail
 {
 InventoryID = new StringValue {Value = InventoryAALEGO500},
 OrderQty = new DecimalValue {Value = 1},
 Operation = new StringValue {Value = "Issue"}
 }
 };
 order.Details = orderDetails;

 //Create shipments for the created sales order

 | Contract-Based API Examples | 183

 //(The Invoke method updates the sales order first and then
 //creates shipments.)
 InvokeResult invokeResult = soapClient.Invoke(
 order,
 new SalesOrderCreateShipment
 {
 WarehouseID = new StringValue { Value = WarehouseWHOLESALE }
 }
);
 //Monitor the status of the long-running operation.
 //(The GetProcessResult function is defined below.)
 ProcessResult processResult = GetProcessResult(soapClient, invokeResult);

 //Obtain the sales order
 order = (SalesOrder)soapClient.Get(new SalesOrder
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ID = processResult.EntityId,
 Shipments = new SalesOrderShipment[]
 {
 new SalesOrderShipment { ReturnBehavior = ReturnBehavior.All }
 }
 });

 //Confirm each shipment
 foreach (SalesOrderShipment salesOrderShipment in order.Shipments)
 {
 if (salesOrderShipment.ShipmentType.Value == "Shipment")
 {
 Shipment shipment = (Shipment)soapClient.Get(new Shipment
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ShipmentNbr = new StringSearch
 {
 Value = salesOrderShipment.ShipmentNbr.Value
 },
 Status = new StringReturn()
 });
 if (shipment.Status.Value != "Confirmed")
 {
 invokeResult =
 soapClient.Invoke(shipment, new ConfirmShipment());
 GetProcessResult(soapClient, invokeResult);
 }
 }
 }

 //Create a shipment with the Receipt operation for the returned items
 invokeResult = soapClient.Invoke(
 new SalesOrder{ID = order.ID},
 new SalesOrderCreateReceipt()
);
 processResult = GetProcessResult(soapClient, invokeResult);

 //Obtain the sales order
 order = (SalesOrder)soapClient.Get(new SalesOrder
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ID = processResult.EntityId,
 OrderType = new StringReturn(),
 OrderNbr = new StringReturn(),
 Shipments = new SalesOrderShipment[]
 {
 new SalesOrderShipment { ReturnBehavior = ReturnBehavior.All }
 }
 });

 //Confirm each new shipment
 foreach (SalesOrderShipment salesOrderShipment in order.Shipments)
 {

 | Contract-Based API Examples | 184

 if (salesOrderShipment.ShipmentType.Value == "Shipment")
 {
 Shipment shipment = (Shipment)soapClient.Get(new Shipment
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ShipmentNbr = new StringSearch
 {
 Value = salesOrderShipment.ShipmentNbr.Value
 },
 Status = new StringReturn()
 });
 if (shipment.Status.Value != "Confirmed")
 {
 invokeResult =
 soapClient.Invoke(shipment, new ConfirmShipment());
 processResult = GetProcessResult(soapClient, invokeResult);
 }
 }
 }

 //Create a sales invoice
 SalesInvoice invoice = (SalesInvoice)soapClient.Put(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 Type = new StringValue { Value = "Invoice" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 Details = new SalesInvoiceDetail[]
 {
 //a sold stock item from sales order
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 OrderType = new StringValue {Value = "RM"},
 OrderNbr = order.OrderNbr,
 ShipmentNbr = order.Shipments[0].ShipmentNbr,
 InventoryID = new StringValue {Value = InventoryAALEGO500},
 WarehouseID = new StringValue {Value = WarehouseWHOLESALE},
 Qty = new DecimalValue {Value = 1}
 },
 //a returned stock item from sales order
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 OrderType = new StringValue {Value = "RM"},
 OrderNbr = order.OrderNbr,
 ShipmentNbr = order.Shipments[1].ShipmentNbr,
 InventoryID = new StringValue {Value = InventoryWIDGET01},
 WarehouseID = new StringValue {Value = WarehouseWHOLESALE},
 Qty = new DecimalValue {Value = -20}
 },
 //a returned stock item from the invoice
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 OrigInvType = new StringValue {Value = "INV"},
 OrigInvNbr = new StringValue
 {
 Value = OriginalDirectSalesInvoiceReferenceNbr
 },
 OrigInvLineNbr = new IntValue
 {
 Value = OriginalDirectSalesInvoiceLineNbr
 },
 InventoryID = new StringValue {Value = InventoryAACOMPUT01},
 WarehouseID = new StringValue {Value = WarehouseWHOLESALE},
 Location = new StringValue {Value = LocationR1S1},
 Qty = new DecimalValue {Value = -3}
 },
 //a sold stock item
 new SalesInvoiceDetail()

 | Contract-Based API Examples | 185

 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryCONAIRT1},
 WarehouseID = new StringValue {Value = WarehouseWHOLESALE},
 Location = new StringValue {Value = LocationR1S1},
 Qty = new DecimalValue {Value = 20}
 }
 },
 //Specify additional data to be retrieved
 ReferenceNbr = new StringReturn(),
 });

 //Release the invoice
 invokeResult = soapClient.Invoke(
 new SalesInvoice
 {
 Type = new StringSearch { Value = "Invoice" },
 ReferenceNbr = new StringSearch
 {
 Value = invoice.ReferenceNbr.Value
 },
 },
 new ReleaseSalesInvoice()
);
 processResult = GetProcessResult(soapClient, invokeResult);

 //Obtain the released invoice with the needed information
 invoice = (SalesInvoice)soapClient.Get(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ID = processResult.EntityId,
 Type = new StringReturn(),
 ReferenceNbr = new StringReturn(),
 Status = new StringReturn(),
 Balance = new DecimalReturn(),
 FinancialDetails = new SalesInvoiceFinancialDetails
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 BatchNbr = new StringReturn(),
 },
 Details = new SalesInvoiceDetail[]
 {
 new SalesInvoiceDetail
 {
 ReturnBehavior = ReturnBehavior.All
 }
 }
 });
}

//Long-running operation helper
public static ProcessResult GetProcessResult(
 DefaultSoapClient soapClient, InvokeResult invokeResult)
{
 while (true)
 {
 var processResult = soapClient.GetProcessStatus(invokeResult);
 switch (processResult.Status)
 {
 case ProcessStatus.Aborted:
 throw new SystemException("Process status: " +
 processResult.Status + "; Error: " + processResult.Message);
 case ProcessStatus.NotExists:
 case ProcessStatus.Completed:
 //Go to normal processing
 return processResult;
 case ProcessStatus.InProcess:
 //Insert the needed waiting time here
 if (processResult.Seconds > 30)
 throw new TimeoutException();

 | Contract-Based API Examples | 186

 continue;
 default:
 throw new InvalidOperationException();
 }
 }
}

Entry of a Direct Sales Invoice for an Unshipped Sales Order
A point-of-sale (POS) system can create and process sales invoices that contain both lines that have
not been linked to any sales order or shipment and lines for which a sales order has been created and a
shipment has not been created. Either type of line can include information about newly bought items or
returned items.

To process these invoices, the POS system performs the following steps:

1. Creates a new sales order of the RM type (a generic authorized return) with the new items and
returned items.

2. Creates a payment.

3. Creates a Sales Orders (SO) invoice and adds detail lines for both the items from the sales order
and the new items.

4. Applies the payment to the invoice.

5. Releases the invoice. As a result of this operation, the sales order gets the Completed status in
Acumatica ERP. The SO invoice is added to the Shipments tab of the Sales Orders (SO301000)
form and is treated by the system as a shipment (that is, the invoice updates shipped quantity in
the sales order lines and updates inventory).

: The sales order can be not completed if it was closed by the SO invoice partially (that is, if some
lines of the sales order are not shipped or invoiced).

User Scenario

A customer comes to the store and through a self-service terminal creates a sales order to buy a
computer and to return a computer mouse that the customer previously purchased in the store.
Then the customer picks up a patch cord from the store shelves. The customer would like to buy the
computer (specified in the created sales order) and the patch cord and to return the mouse (specified in
the sales order). In a POS system, one invoice is created for the whole operation.

Code Example

You can use the code below to create a direct sales invoice and include in it the items that were
previously ordered but not shipped.

To test this code example, configure your client application and an Acumatica ERP instance as follows:

• Deploy a new Acumatica ERP instance with the SalesDemo dataset inserted. For details on
deploying an instance, see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, enable the Advanced SO Invoices feature.

• In the client application, add a service reference to the POS/17.200.01 endpoint, which is an
extension of the Default/17.200.001 endpoint. For details on how to add a service reference, see
To Configure the Client Application in this guide.

• To sign in to the instance in the client application, use the company name (which you specified
when you created the instance) and the HQ branch.

using System;
using System.Linq;
using System.IO;

 | Contract-Based API Examples | 187

using System.Threading;
using System.Collections.Generic;
//Add the namespace of the service reference here

public static void EnterDirectSalesInvoiceWithNotShippedSalesOrder(
 DefaultSoapClient soapClient)
{
 //Input data
 //The customer
 const string CustomerABARTENDE = "ABARTENDE";
 //The sold stock item from a new sales order
 const string InventoryAACOMPUT01 = "AACOMPUT01";
 //The returned stock item from the sales order
 const string InventoryAALEGO500 = "AALEGO500";
 //The sold serialized stock item
 const string InventoryAAPOWERAID = "AAPOWERAID";
 //The warehouse related to InventoryAAPOWERAID
 const string WarehouseRETAIL = "RETAIL";
 //The warehouse related to InventoryAAPOWERAID
 const string LocationSTORAGE = "STORAGE";
 //The sold non-stock item
 const string InventoryACCOMODATE = "ACCOMODATE";
 //The serial number related to InventoryAAPOWERAID
 const string SerialNbrAAPOWERAID = "LREX0";
 //The payment amount
 const decimal PaymentAmount = 2863.6m;

 //Create a sales order of RM type
 SalesOrder order = (SalesOrder)soapClient.Put(new SalesOrder
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 OrderType = new StringValue { Value = "RM" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 Details = new SalesOrderDetail[]
 {
 new SalesOrderDetail
 {
 ReturnBehavior = ReturnBehavior.All,
 InventoryID = new StringValue {Value = InventoryAACOMPUT01},
 OrderQty = new DecimalValue {Value = 2m},
 Operation = new StringValue {Value = "Issue"}
 },
 new SalesOrderDetail
 {
 ReturnBehavior = ReturnBehavior.All,
 InventoryID = new StringValue {Value = InventoryAALEGO500},
 OrderQty = new DecimalValue {Value = 2m},
 Operation = new StringValue {Value = "Receipt"}
 }
 },
 //Specify additional values to be retrieved
 OrderNbr = new StringReturn()
 });

 //Create a payment
 Payment payment = (Payment)soapClient.Put(new Payment
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 Type = new StringValue { Value = "Payment" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 PaymentAmount = new DecimalValue { Value = 10000m },
 ReferenceNbr = new StringReturn()
 });

 //Create a sales invoice
 SalesInvoice invoice = (SalesInvoice)soapClient.Put(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 Type = new StringValue { Value = "Invoice" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },

 | Contract-Based API Examples | 188

 //Specify the details of the invoice
 Details = new SalesInvoiceDetail[]
 {
 //a sold stock item from the sales order
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryAACOMPUT01},
 OrderType = new StringValue {Value = "RM"},
 OrderNbr = new StringValue {Value = order.OrderNbr.Value},
 OrderLineNbr = order.Details[0].LineNbr,
 Qty = new DecimalValue {Value = 2}
 },
 //a returned stock item from the sales order
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryAALEGO500},
 OrderType = new StringValue {Value = "RM"},
 OrderNbr = new StringValue {Value = order.OrderNbr.Value},
 OrderLineNbr = order.Details[1].LineNbr,
 Qty = new DecimalValue {Value = -2},
 },
 //a sold serialized stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryAAPOWERAID},
 WarehouseID = new StringValue {Value = WarehouseRETAIL},
 Location = new StringValue {Value = LocationSTORAGE},
 LotSerialNbr = new StringValue {Value = SerialNbrAAPOWERAID },
 Qty = new DecimalValue {Value = 100}
 },
 //a sold non-stock item
 new SalesInvoiceDetail()
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 InventoryID = new StringValue {Value = InventoryACCOMODATE},
 Qty = new DecimalValue {Value = 10},
 UnitPrice = new DecimalValue {Value = 200}
 },
 },
 //Specify additional values to be retrieved
 Balance = new DecimalReturn(),
 ApplicationsInvoice = new[]
 {
 new SalesInvoiceApplicationInvoice
 {
 ReturnBehavior = ReturnBehavior.All
 }
 }
 });

 //Select the application of the payment created in this example
 //and specify the Amount Paid value
 SalesInvoiceApplicationInvoice application = invoice.ApplicationsInvoice
 .Where(applicationPayment =>
 applicationPayment.AdjustingDocReferenceNbr.Value ==
 payment.ReferenceNbr.Value).Single();
 application.AmountPaid.Value = PaymentAmount;

 //Release the invoice.
 //(The Invoke method updates the invoice data (the AmountPaid value) first
 //and then releases the invoice.)
 InvokeResult invokeResult =
 soapClient.Invoke(invoice, new ReleaseSalesInvoice());
 //Monitor the status of the release operation.
 //(The GetProcessResult function is defined below.)
 ProcessResult processResult = GetProcessResult(soapClient, invokeResult);

 | Contract-Based API Examples | 189

 //Obtain the released invoice with the needed information
 invoice = (SalesInvoice)soapClient.Get(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ID = processResult.EntityId,
 Type = new StringReturn(),
 ReferenceNbr = new StringReturn(),
 Status = new StringReturn(),
 FinancialDetails = new SalesInvoiceFinancialDetails
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 BatchNbr = new StringReturn(),
 },
 TaxDetails = new SalesInvoiceTaxDetail[]
 {
 new SalesInvoiceTaxDetail {ReturnBehavior = ReturnBehavior.All }
 },
 ApplicationsInvoice = new SalesInvoiceApplicationInvoice[]
 {
 new SalesInvoiceApplicationInvoice
 {
 ReturnBehavior = ReturnBehavior.All
 }
 },
 Details = new SalesInvoiceDetail[]
 {
 new SalesInvoiceDetail
 {
 ReturnBehavior = ReturnBehavior.All
 }
 }
 });
}

//Long-running operation helper
public static ProcessResult GetProcessResult(
 DefaultSoapClient soapClient, InvokeResult invokeResult)
{
 while (true)
 {
 var processResult = soapClient.GetProcessStatus(invokeResult);
 switch (processResult.Status)
 {
 case ProcessStatus.Aborted:
 throw new SystemException("Process status: " +
 processResult.Status + "; Error: " + processResult.Message);
 case ProcessStatus.NotExists:
 case ProcessStatus.Completed:
 //Go to normal processing
 return processResult;
 case ProcessStatus.InProcess:
 //Insert the needed waiting time here
 if (processResult.Seconds > 30)
 throw new TimeoutException();
 continue;
 default:
 throw new InvalidOperationException();
 }
 }
}

Entry of a Direct Sales Invoice for a Partially Shipped Sales Order
A point-of-sale (POS) system can create and process a sales invoice that contains both of the following:
lines that have not been linked to any sales order or shipment, and lines for which a sales order has
been created and a shipment has been created (but the shipment does not include all items of the sales
order).

 | Contract-Based API Examples | 190

To process an invoice of this type, the POS system performs the following steps:

1. Creates a new sales order of the SO type with multiple items.

2. Creates a payment.

3. Creates a Sales Orders invoice and adds detail lines for some (but not all) items from the sales
order and the new items.

4. Applies the payment to the invoice.

5. Releases the invoice. At this moment, not all lines of the sales order are shipped. The sales order
has the Open status in Acumatica ERP. On the Shipments tab of the Sales Orders (SO301000)
form, for the sales order lines added to the invoice, a dummy shipment is created with the link
to the invoice.

6. Creates the second payment.

7. Applies the second payment to the sales order.

8. Creates a shipment or multiple shipments for the remaining (not shipped) lines of the sales
order and confirms each shipment.

9. Creates a Sales Orders invoice for each shipment and releases each invoice. As a result of the
release of the invoice or invoices the sales order gets the Completed status in Acumatica ERP.

: The sales order can be not completed if it was closed by the SO invoice partially (that is, if some
lines of the sales order are not shipped or invoiced).

User Scenario
A customer comes to the store and through a self-service terminal creates a sales order to buy a
computer and a computer mouse. Then the customer picks up a patch cord from the store shelves. The
customer would like to buy the mouse (from the sales order) and the grabbed patch cord, and to have
the computer shipped to the customer's home. In a POS system, one invoice is created for the purchase
in the store and another invoice is created for the computer to be shipped.

Code Example

You can use the code below to create a direct sales invoice and include in it the previously ordered
items that aren't yet shipped, and to configure the shipment and the invoice for the shipment.

To test this code example, configure your client application and an Acumatica ERP instance as follows:

• Deploy a new Acumatica ERP instance with the SalesDemo dataset inserted. For details on
deploying an instance, see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, enable the Advanced SO Invoices feature.

• In the client application, add a service reference to the POS/17.200.01 endpoint, which is an
extension of the Default/17.200.001 endpoint. For details on how to add a service reference, see
To Configure the Client Application in this guide.

• To sign in to the instance in the client application, use the company name (which you specified
when you created the instance) and the HQ branch.

using System;
using System.Linq;
using System.IO;
using System.Threading;
using System.Collections.Generic;
//Add the namespace of the service reference here

public static void EnterDirectSalesInvoiceWithPartiallyShippedOrder(
 DefaultSoapClient soapClient)
{

 | Contract-Based API Examples | 191

 //Input data
 //The customer
 const string CustomerABARTENDE = "ABARTENDE";
 //The sold stock items from a new sales order
 const string InventoryAACOMPUT01 = "AACOMPUT01";
 const string InventoryCONAIRT1 = "CONAIRT1";
 //The stock item (from the sales order) that is shipped later
 const string InventoryAALEGO500 = "AALEGO500";
 //The warehouse related to InventoryAALEGO500
 const string WarehouseWHOLESALE = "WHOLESALE";
 //The sold serialized stock item
 const string InventoryAAPOWERAID = "AAPOWERAID";
 //The warehouse related to InventoryAAPOWERAID
 const string WarehouseRETAIL = "RETAIL";
 //The location related to InventoryAAPOWERAID
 const string LocationSTORAGE = "STORAGE";
 //The serial number of InventoryAAPOWERAID
 const string LotSerialNbrLREX000004 = "LREX000004";
 //The first payment amount
 const decimal PaymentAmount = 922m;
 //The second payment amount
 const decimal PaymentAmount2 = 560m;

 //Create a sales order of the SO type
 SalesOrder order = (SalesOrder)soapClient.Put(new SalesOrder
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 OrderType = new StringValue { Value = "SO" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 Details = new SalesOrderDetail[]
 {
 new SalesOrderDetail
 {
 ReturnBehavior = ReturnBehavior.All,
 InventoryID = new StringValue {Value = InventoryAACOMPUT01},
 OrderQty = new DecimalValue {Value = 4m},
 UnitPrice = new DecimalValue { Value = 200}
 },
 new SalesOrderDetail
 {
 ReturnBehavior = ReturnBehavior.All,
 InventoryID = new StringValue {Value = InventoryAALEGO500},
 OrderQty = new DecimalValue {Value = 4m},
 UnitPrice = new DecimalValue { Value = 100}
 },
 new SalesOrderDetail
 {
 ReturnBehavior = ReturnBehavior.All,
 InventoryID = new StringValue {Value = InventoryCONAIRT1},
 OrderQty = new DecimalValue {Value = 4m},
 UnitPrice = new DecimalValue { Value = 50}
 }
 },
 OrderNbr = new StringReturn()
 });

 //Create a payment
 Payment payment = (Payment)soapClient.Put(new Payment
 {
 Type = new StringValue { Value = "Payment" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 PaymentAmount = new DecimalValue { Value = PaymentAmount }
 });

 //Create a sales invoice
 SalesInvoice invoice = (SalesInvoice)soapClient.Put(new SalesInvoice
 {
 Type = new StringValue { Value = "Invoice" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 Details = new SalesInvoiceDetail[]

 | Contract-Based API Examples | 192

 {
 //a sold serialized stock item
 new SalesInvoiceDetail()
 {
 InventoryID = new StringValue {Value = InventoryAAPOWERAID},
 WarehouseID = new StringValue {Value = WarehouseRETAIL},
 Location = new StringValue {Value = LocationSTORAGE},
 Qty = new DecimalValue {Value = 2},
 LotSerialNbr = new StringValue {Value = LotSerialNbrLREX000004},
 ExpirationDate = new DateTimeValue
 {
 Value = new DateTime(2018, 10, 30)
 },
 UnitPrice = new DecimalValue { Value = 5m}
 },
 //a sold stock item from the sales order
 new SalesInvoiceDetail()
 {
 InventoryID = new StringValue {Value = InventoryAACOMPUT01},
 OrderType = new StringValue {Value = "SO"},
 OrderNbr = new StringValue {Value = order.OrderNbr.Value},
 OrderLineNbr = order.Details[0].LineNbr,
 Qty = new DecimalValue {Value = 4}
 },
 //a sold stock item from the sales order
 new SalesInvoiceDetail()
 {
 InventoryID = new StringValue {Value = InventoryCONAIRT1},
 OrderType = new StringValue {Value = "SO"},
 OrderNbr = new StringValue {Value = order.OrderNbr.Value},
 OrderLineNbr = order.Details[2].LineNbr,
 Qty = new DecimalValue {Value = 2},
 }
 },
 //Specify additional values to be retrieved
 ApplicationsInvoice = new[]
 {
 new SalesInvoiceApplicationInvoice
 {
 ReturnBehavior = ReturnBehavior.All
 }
 }
 });

 //Select the application of the payment created in this example
 //and specify the Amount Paid value
 SalesInvoiceApplicationInvoice application = invoice.ApplicationsInvoice
 .Where(applicationPayment =>
 applicationPayment.AdjustingDocReferenceNbr.Value ==
 payment.ReferenceNbr.Value).Single();
 application.AmountPaid.Value = PaymentAmount;

 //Release the invoice.
 //(The Invoke method updates the invoice data (the AmountPaid value) first
 //and then releases the invoice.)
 InvokeResult invokeResult =
 soapClient.Invoke(invoice, new ReleaseSalesInvoice());
 //Monitor the status of the release operation.
 //(The GetProcessResult function is defined below.)
 ProcessResult processResult = GetProcessResult(soapClient, invokeResult);

 //Obtain the released invoice with the needed information
 invoice = (SalesInvoice)soapClient.Get(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ID = processResult.EntityId,
 Type = new StringReturn(),
 ReferenceNbr = new StringReturn(),
 Status = new StringReturn(),
 FinancialDetails = new SalesInvoiceFinancialDetails

 | Contract-Based API Examples | 193

 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 BatchNbr = new StringReturn(),
 },
 TaxDetails = new SalesInvoiceTaxDetail[]
 {
 new SalesInvoiceTaxDetail {ReturnBehavior = ReturnBehavior.All }
 },
 ApplicationsInvoice = new SalesInvoiceApplicationInvoice[]
 {
 new SalesInvoiceApplicationInvoice
 {
 ReturnBehavior = ReturnBehavior.All
 }
 },
 Details = new SalesInvoiceDetail[]
 {
 new SalesInvoiceDetail
 {
 ReturnBehavior = ReturnBehavior.All
 }
 }
 });

 //Obtain the sales order with the needed data
 order = (SalesOrder)soapClient.Get(new SalesOrder
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 OrderType = new StringSearch { Value = order.OrderType.Value},
 OrderNbr = new StringSearch { Value = order.OrderNbr.Value},
 Status = new StringReturn(),
 Shipments = new SalesOrderShipment[]
 {
 new SalesOrderShipment
 {
 ReturnBehavior = ReturnBehavior.All
 }
 },
 Details = new SalesOrderDetail[]
 {
 new SalesOrderDetail
 {
 ReturnBehavior = ReturnBehavior.All
 }
 }
 });

 //Create the second payment
 Payment payment2 = (Payment)soapClient.Put(new Payment
 {
 Type = new StringValue { Value = "Payment" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 PaymentAmount = new DecimalValue { Value = PaymentAmount2 }
 });

 //Apply the second payment to the sales order
 order.Payments = new Payments[]
 {
 new Payments()
 {
 ReferenceNbr = payment2.ReferenceNbr,
 AppliedToOrder = new DecimalValue {Value = PaymentAmount2}
 }
 };

 //Create a shipment for the not-yet-shipped items of the sales order
 //(The Invoke method updates the sales order first
 //and then creates shipments.)
 invokeResult = soapClient.Invoke(
 order,

 | Contract-Based API Examples | 194

 new SalesOrderCreateShipment
 {
 WarehouseID = new StringValue { Value = WarehouseWHOLESALE }
 }
);
 //Monitor the status of the operation
 processResult = GetProcessResult(soapClient, invokeResult);

 //Obtain the sales order with the created shipment or shipments
 order = (SalesOrder)soapClient.Get(new SalesOrder
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ID = processResult.EntityId,
 OrderType = new StringReturn(),
 OrderNbr = new StringReturn(),
 Status = new StringReturn(),
 Shipments = new SalesOrderShipment[]
 {
 new SalesOrderShipment { ReturnBehavior = ReturnBehavior.All }
 }
 });

 //Confirm each shipment and create an invoice from it
 List<Shipment> invoicedShipments = new List<Shipment>();
 foreach (SalesOrderShipment salesOrderShipment in order.Shipments)
 {
 //Confirm each shipment
 if (salesOrderShipment.ShipmentType.Value == "Shipment")
 {
 Shipment shipment = (Shipment)soapClient.Get(new Shipment
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ShipmentNbr = new StringSearch
 {
 Value = salesOrderShipment.ShipmentNbr.Value
 },
 Status = new StringReturn()
 });
 if (shipment.Status.Value != "Confirmed")
 {
 invokeResult =
 soapClient.Invoke(shipment, new ConfirmShipment());
 processResult = GetProcessResult(soapClient, invokeResult);
 }
 }
 //Create an invoice for each shipment
 if (salesOrderShipment.ShipmentType.Value == "Shipment" &&
 salesOrderShipment.InvoiceNbr.Value == null)
 {
 Shipment shipment = (Shipment)soapClient.Get(new Shipment
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ShipmentNbr = new StringSearch
 {
 Value = salesOrderShipment.ShipmentNbr.Value
 },
 Status = new StringReturn()
 });

 invokeResult = soapClient.Invoke(shipment, new PrepareInvoice());
 processResult = GetProcessResult(soapClient, invokeResult);

 invoicedShipments.Add((Shipment)soapClient.Get(new Shipment
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ID = processResult.EntityId,
 ShipmentNbr = new StringReturn()
 }));
 }
 }

 | Contract-Based API Examples | 195

 //Obtain the sales order with the updated shipment or shipments
 order = (SalesOrder)soapClient.Get(order);

 //Release the invoices for each shipment
 foreach (SalesOrderShipment salesOrderShipment in order.Shipments)
 {
 if (invoicedShipments.FindIndex(x =>
 x.ShipmentNbr.Value == salesOrderShipment.ShipmentNbr.Value) > -1)
 {
 SalesInvoice invoice2 = (SalesInvoice)soapClient.Get(
 new SalesInvoice()
 {
 Type = new StringSearch
 {
 Value = salesOrderShipment.InvoiceType.Value
 },
 ReferenceNbr = new StringSearch
 {
 Value = salesOrderShipment.InvoiceNbr.Value
 }
 }
);

 //Release the invoice
 invokeResult =
 soapClient.Invoke(invoice2, new ReleaseSalesInvoice());
 //Monitor the status of the release operation
 processResult = GetProcessResult(soapClient, invokeResult);
 }
 }
}

//Long-running operation helper
public static ProcessResult GetProcessResult(
 DefaultSoapClient soapClient, InvokeResult invokeResult)
{
 while (true)
 {
 var processResult = soapClient.GetProcessStatus(invokeResult);
 switch (processResult.Status)
 {
 case ProcessStatus.Aborted:
 throw new SystemException("Process status: " +
 processResult.Status + "; Error: " + processResult.Message);
 case ProcessStatus.NotExists:
 case ProcessStatus.Completed:
 //Go to normal processing
 return processResult;
 case ProcessStatus.InProcess:
 //Insert the needed waiting time here
 if (processResult.Seconds > 30)
 throw new TimeoutException();
 continue;
 default:
 throw new InvalidOperationException();
 }
 }
}

Entry of a Credit Memo for an Unshipped Sales Order
A point-of-sale (POS) system can create and process credit memos that contain both lines that have
been linked to a sales order of the RM type (a generic authorized return) and lines that have not been
linked to any sales order. The POS system creates a sales order of the RM type, creates a credit memo,
adds to the credit memo the lines from the sales order and other lines, and releases the credit memo.

 | Contract-Based API Examples | 196

User Scenario

In the online shop, a customer creates a sales order to buy a computer mouse and to return a
computer that the customer previously bought in the store; the customer then decides to perform these
operations in the store. After that, the customer decides to also return the patch cord (also bought in
the store) and goes to the store. In the POS system, one invoice is created for the whole operation. The
customer is given the difference between the return and sale.

Code Example

You can use the code below to create a credit memo with some lines linked to a sales order and other
lines not linked to any sales order.

To test this code example, configure your client application and an Acumatica ERP instance as follows:

• Deploy a new Acumatica ERP instance with the SalesDemo dataset inserted. For details on
deploying an instance, see To Deploy an Acumatica ERP Instance in the Installation Guide.

• On the Enable/Disable Features (CS100000) form, enable the Advanced SO Invoices feature.

• In the client application, add a service reference to the POS/17.200.01 endpoint, which is an
extension of the Default/17.200.001 endpoint. For details on how to add a service reference, see
To Configure the Client Application in this guide.

• To sign in to the instance in the client application, use the company name (which you specified
when you created the instance) and the HQ branch.

using System;
using System.Linq;
using System.IO;
using System.Threading;
using System.Collections.Generic;
//Add the namespace of the service reference here

public static void EnterCreditMemoWithSalesOrder(DefaultSoapClient soapClient)
{
 //Input data
 //The customer
 const string CustomerABARTENDE = "ABARTENDE";
 //The sold stock item from a new sales order
 const string InventoryAACOMPUT01 = "AACOMPUT01";
 //The returned stock item from the sales order
 const string InventoryAALEGO500 = "AALEGO500";
 //The returned stock item
 const string InventoryCONAIRT1 = "CONAIRT1";
 //The warehouse related to InventoryCONAIRT1
 const string WarehouseWHOLESALE = "WHOLESALE";
 //The location related to InventoryCONAIRT1
 const string LocationR1S1 = "R1S1";

 //Create a sales order of the RM type
 SalesOrder order = (SalesOrder)soapClient.Put(new SalesOrder
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 OrderType = new StringValue { Value = "RM" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 Details = new SalesOrderDetail[]
 {
 new SalesOrderDetail
 {
 ReturnBehavior = ReturnBehavior.All,
 InventoryID = new StringValue {Value = InventoryAACOMPUT01},
 OrderQty = new DecimalValue { Value = 3m},
 Operation = new StringValue { Value = "Issue"},
 UnitPrice = new DecimalValue { Value = 100m}
 },
 new SalesOrderDetail

 | Contract-Based API Examples | 197

 {
 ReturnBehavior = ReturnBehavior.All,
 InventoryID = new StringValue {Value = InventoryAALEGO500},
 OrderQty = new DecimalValue { Value = 3m},
 Operation = new StringValue { Value = "Receipt"},
 UnitPrice = new DecimalValue { Value = 50m}
 }
 },
 OrderNbr = new StringReturn()
 });

 //Create a credit memo
 SalesInvoice invoice = (SalesInvoice)soapClient.Put(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySystem,
 Type = new StringValue { Value = "Credit Memo" },
 CustomerID = new StringValue { Value = CustomerABARTENDE },
 Details = new SalesInvoiceDetail[]
 {
 //a sold stock item from the sales order
 new SalesInvoiceDetail()
 {
 InventoryID = new StringValue {Value = InventoryAACOMPUT01},
 OrderType = new StringValue {Value = "RM"},
 OrderNbr = new StringValue {Value = order.OrderNbr.Value},
 OrderLineNbr = order.Details[0].LineNbr,
 Qty = new DecimalValue {Value = -3}
 },
 //a returned stock item from the sales order
 new SalesInvoiceDetail()
 {
 InventoryID = new StringValue {Value = InventoryAALEGO500},
 OrderType = new StringValue {Value = "RM"},
 OrderNbr = new StringValue {Value = order.OrderNbr.Value},
 OrderLineNbr = order.Details[1].LineNbr,
 Qty = new DecimalValue {Value = 3},
 },
 //a returned stock item
 new SalesInvoiceDetail()
 {
 InventoryID = new StringValue {Value = InventoryCONAIRT1},
 WarehouseID = new StringValue {Value = WarehouseWHOLESALE},
 Location = new StringValue {Value = LocationR1S1},
 Qty = new DecimalValue {Value = 3},
 UnitPrice = new DecimalValue { Value = 200m}
 }
 },
 });

 //Release the credit memo
 InvokeResult invokeResult =
 soapClient.Invoke(
 new SalesInvoice { ID = invoice.ID},
 new ReleaseSalesInvoice()
);
 //Monitor the status of the release operation.
 //(The GetProcessResult function is defined below.)
 ProcessResult processResult = GetProcessResult(soapClient, invokeResult);

 //Obtain the released invoice with the needed information
 invoice = (SalesInvoice)soapClient.Get(new SalesInvoice
 {
 ReturnBehavior = ReturnBehavior.OnlySpecified,
 ID = processResult.EntityId,
 Type = new StringReturn(),
 ReferenceNbr = new StringReturn(),
 Status = new StringReturn(),
 Amount = new DecimalReturn(),
 Details = new SalesInvoiceDetail[]
 {

 | Contract-Based API Examples | 198

 new SalesInvoiceDetail
 {
 ReturnBehavior = ReturnBehavior.All
 }
 }
 });
}

//Long-running operation helper
public static ProcessResult GetProcessResult(
 DefaultSoapClient soapClient, InvokeResult invokeResult)
{
 while (true)
 {
 var processResult = soapClient.GetProcessStatus(invokeResult);
 switch (processResult.Status)
 {
 case ProcessStatus.Aborted:
 throw new SystemException("Process status: " +
 processResult.Status + "; Error: " + processResult.Message);
 case ProcessStatus.NotExists:
 case ProcessStatus.Completed:
 //Go to normal processing
 return processResult;
 case ProcessStatus.InProcess:
 //Insert the needed waiting time here
 if (processResult.Seconds > 30)
 throw new TimeoutException();
 continue;
 default:
 throw new InvalidOperationException();
 }
 }
}

	Contents
	Copyright
	Integration Development Guide
	Authorizing Client Applications to Work with Acumatica ERP
	Authorization Code Flow
	Implicit Flow
	Resource Owner Password Credentials Flow
	Comparison of the Flows
	To Register a Client Application
	To Revoke the Access of a Connected Application

	Configuring the Contract-Based REST and SOAP API
	Contract-Based Web Services API
	Endpoints and Contracts
	API Entities, Fields, and Actions
	Custom Fields
	Custom Endpoints and Endpoint Extensions
	Naming Rules for Endpoints
	Comparison of Contract Versions
	Comparison of System Endpoints
	To Create a Custom Endpoint
	To Extend an Existing Endpoint
	To Validate an Endpoint

	Working with the Contract-Based REST API
	Representation of a Record in JSON Format
	Login to the Service
	Logout from the Service
	Creation of a Record
	Update of a Record
	Retrieval of a Record by Key Fields
	Retrieval of a Record by ID
	Retrieval of Records by Conditions
	Retrieval of Data from an Inquiry Form
	Parameters for Retrieving Records
	Removal of a Record
	Execution of an Action
	Attachment of a File to a Record
	Retrieval of a File Attached to a Record
	Retrieval of the Schema of Custom Fields
	Multi-Language Fields

	Working with the Contract-Based SOAP API
	Multi-Language Fields
	To Configure the Client Application

	Working with the Screen-Based SOAP API
	Screen-Based Web Services API
	API Objects Related to Acumatica ERP Forms
	Screen-Based API Wrapper
	To Generate the WSDL File of the Web Services
	To Import the WSDL File Into the Development Environment
	To Use the Screen-Based API Wrapper

	Working with Commands of the Screen-Based SOAP API
	Commands for Retrieving the Values of Elements
	Selection of a Group of Records for Export
	Commands for Setting the Values of Elements
	Commands for Clicking Buttons on a Form
	Commands for Adding Detail Lines
	Commands for Pop-Up Dialog Boxes and Pop-Up Forms
	Commands for Pop-Up Panels
	Commands for Record Searching: Filter Service Command
	Commands for Record Searching: Key Command
	Commands for Record Searching: Custom Field
	Commands That Require a Commit
	Commands for Working with Attachments
	Commands for Working with Multi-Language Fields

	Configuring Push Notifications
	Push Notifications
	Recommendations for the Data Queries
	Push Notification Destinations
	Push Notification Format
	To Configure Push Notifications
	To Process Failed Notifications

	Defining Push Notifications
	To Create a Built-In Definition
	To Connect to the SignalR Hub
	To Add Additional Information to Push Notifications
	To Create a Custom Destination Type

	Contract-Based REST API Reference
	Contract-Based SOAP API Reference
	Login() Method
	Logout() Method
	SetBusinessDate() Method
	Get() Method
	GetList() Method (Contract Version 3)
	GetList() Method (Contract Version 2)
	Put() Method
	Delete() Method
	Invoke() Method
	GetProcessStatus() Method
	GetFiles() Method
	PutFiles() Method
	GetCustomFieldSchema() Method
	Attributes Property
	CustomFields Property
	ReturnBehavior Property (Contract Version 3)
	ReturnBehavior Property (Contract Version 2)

	Screen-Based SOAP API Reference
	Login() Method
	Logout() Method
	SetLocaleName() Method
	SetBusinessDate() Method
	GetScenario() Method
	GetSchema() Method
	SetSchema() Method
	Export() Method
	Submit() Method
	Import() Method
	Clear() Method
	GetProcessStatus() Method

	Contract-Based API Examples
	Integration of Acumatica ERP Projects with External Systems (REST and SOAP API Examples)
	Creation of a Pro Forma Invoice
	Managing of Account Groups
	Running of Project Billing
	Creation of a GL Transaction with a Project Code That Does Not Produce a Project Transaction
	Time Entry

	Integration of Acumatica ERP with POS systems (SOAP API Examples)
	Entry of a Direct Sales Invoice
	Entry of a Direct Sales Invoice Along with a Return
	Entry of a Credit Memo with Positive and Negative Lines
	Entry of a Direct Sales Invoice in a Non-Default Currency
	Entry of a Direct Sales Invoice for a Shipped Order and Return
	Entry of a Direct Sales Invoice for an Unshipped Sales Order
	Entry of a Direct Sales Invoice for a Partially Shipped Sales Order
	Entry of a Credit Memo for an Unshipped Sales Order

