Optimization Practices
Contract API

_ / Joshua Van Hoesen

Lead Software Engineer
Accounting System Integrators

Jvanhoesen@asillc.com

mailto:Jvanhoesen@asillc.com

Three points of interest

 Utilization of ‘ReturnBehavior’
e Avoid Graph logic by creating Generic Inquiry for data retrieval
* Multi-Threading

‘ReturnBehavior’ is your friend. x

e ReturnBehavior.All - Returns all data points and child records on a
request.

e ReturnBehavior.OnlySpecified — Returns only those data points
. specified, by default no child records.

\f| e ReturnBehavior.OnlySystem — Returns only system data points such as
ID and no child records.

e ReturnBehavior.None — Returns no data points and no child records. ‘

267 Sales Orders

Number of records | ReturnBehavior Details Included m
267 All Yes

219.5

267 All No 172.2
267 OnlySpecified [7] Yes 3.2
267 OnlySpecified [7] No .56
267 OnlySystem No 43
267 None No .38

VRN |"

Scale of speed

vy — v,
(vl _I_ vz) X1 OO — ? between V4 =60 and V, = 1
) Vi~ Yal | 100
i (Vi 1Va)
\ 2
' Number of ReturnBehavior | Details 160 — 1
records Included B T Bl
2
5000 All Yes 60 50|
= =~ x 100
P 5000 OnlySpecified Yes 1 =
[7] = 59 x 100
1,000,000 Al Yes 12k (200 Hrs) A0
— 1.93443 x 100
1,000,000 OnlySpecified Yes 200 (3.3 Hrs)

— 193.443% di f ference VR

[7]

Generic Inquiries

e Retrieving data through an inquiry can avoid costly Graph logic.
* No cache attached, no problem! Keep those selectors simple.

Multi-Threading, Why before the do e

* Large external data store to import.

e Large number of records fitting separate criteria to retrieve.

* Large numbers of consecutive records to be processed.

.—-"'__"“-1.\,_\..)
[) » Large number of records need to be summarized and created.

\
\. /

~—_ L

 Greater utilization of server resources
@

Multi-Threading, |s it faster?

Records to Create Number of Threads Time to Completion

113 Seconds
500 5 37 Seconds
500 10 35

Q 500 50 47

* When applied to the proper criteria
® - Non-Linear gain, overhead is a thing

e Limit number of threads in relation to processors available to
instance.

* Reserve threads for session management and system processing

Sample Configuration

. Triple 8 core application servers
[]

Load balancer
* (24 cores * 2 threads per core) — 2 ‘reserved’ threads = 46
threads

/ APPLICAT ION
WEE SERVERS

. Load Balancer

S

Database

Notes of implementation —~

e System.Net.ServicePointManager.DefaultConnectionLimit = 100;

* ClientBase<Acumatica.DefaultSoap>.CacheSetting =
CacheSetting.AlwaysOff;

l,/’""“\] * Proper Implementation of IDisposable
>

4

ServicePointManager.DefaultConnectionLimit

I\.
. \‘l--_ _--//

* “By default the number of simultaneous connections to a server is
controlled by the ServicePoint.ConnectionLimit property. This
property is set on this object when the ServicePointManager create
the ServicePoint object for your connections to a host. Connection

, tothe server are queued and will be served by the connections to the
./ server as they become freed from use. The default number of
~—— connections is set to 2.” ~ http://msdn.microsoft.com/en-

® us/library/system.net.servicepoint.connectionlimit.aspx

 This value should be set relative to the number of threads you are
utilizing for Instance requests.

http://msdn.microsoft.com/en-us/library/system.net.servicepoint.connectionlimit.aspx

CacheSetting.AlwaysOff —~

.”WCF client applications use the ChannelFactory<TChannel> class to
create a communication channel with a WCF service.

because it involves the following operations:
1. Constructing the ContractDescription tree
2. Reflecting all of the required CLR types
3. Constructing the channel stack
4. Disposing of resources

® 10 help minimize this overhead, WCF can cache channel factories when
you are using a WCF client proxy.” .

* Default behavior will mean your code is actually almost always
running in one session.

https://docs.microsoft.com/en-us/dotnet/api/system.servicemodel.channelfactory-1
https://docs.microsoft.com/en-us/dotnet/api/system.servicemodel.channelfactory-1
https://docs.microsoft.com/en-us/dotnet/api/system.servicemodel.description.contractdescription

IDisposable

protected virtual void Dispose(bool disposing)
{
if (disposing)
{
client.Logout();
client.Close();

J
}

* Important to logout before closing connection to avoid maxing out user
sessions and forcing log-offs.

Remember!

 Utilization of ‘ReturnBehavior’
e Avoid Graph logic by creating Generic Inquiry for data retrieval
* Multi-Threading can be a boon.

Thank you for your time!

May your code be quick and your clients be happy

