
Optimization Practices 
Contract API

Joshua Van Hoesen

Lead Software Engineer

Accounting System Integrators

Jvanhoesen@asillc.com

mailto:Jvanhoesen@asillc.com


Three points of interest

• Utilization of ‘ReturnBehavior’

• Avoid Graph logic by creating Generic Inquiry for data retrieval

• Multi-Threading



‘ReturnBehavior’ is your friend.

• ReturnBehavior.All - Returns all data points and child records on a 
request.

• ReturnBehavior.OnlySpecified – Returns only those data points 
specified, by default no child records.

• ReturnBehavior.OnlySystem – Returns only system data points such as 
ID and no child records.

• ReturnBehavior.None – Returns no data points and no child records.



267 Sales Orders

Number of records ReturnBehavior Details Included Seconds

267 All Yes 219.5

267 All No 172.2

267 OnlySpecified [7] Yes 3.2

267 OnlySpecified [7] No .56

267 OnlySystem No .43

267 None No .38



Scale of speed

𝑣1 − 𝑣2
𝑣1 + 𝑣2

2

𝑥100 = ?

Number of 
records

ReturnBehavior Details 
Included

Minutes

5000 All Yes 60

5000 OnlySpecified
[7]

Yes 1

1,000,000 All Yes 12k (200 Hrs)

1,000,000 OnlySpecified
[7]

Yes 200 (3.3 Hrs)



Generic Inquiries

• Retrieving data through an inquiry can avoid costly Graph logic.

• No cache attached, no problem! Keep those selectors simple.



Multi-Threading, Why before the do

• Large external data store to import.

• Large number of records fitting separate criteria to retrieve.

• Large numbers of consecutive records to be processed.

• Large number of records need to be summarized and created.

• Greater utilization of server resources



Multi-Threading, Is it faster?

Records to Create Number of Threads Time to Completion

500 1 113 Seconds

500 5 37 Seconds

500 10 35

500 50 47

• When applied to the proper criteria

• Non-Linear gain, overhead is a thing

• Limit number of threads in relation to processors available to 
instance.

• Reserve threads for session management and system processing



Sample Configuration
• Triple 8 core application servers
• Load balancer
• (24 cores * 2 threads per core) – 2 ‘reserved’ threads = 46 

threads



Notes of implementation

• System.Net.ServicePointManager.DefaultConnectionLimit = 100;

• ClientBase<Acumatica.DefaultSoap>.CacheSetting = 
CacheSetting.AlwaysOff; 

• Proper Implementation of IDisposable



ServicePointManager.DefaultConnectionLimit

• “By default the number of simultaneous connections to a server is 
controlled by the ServicePoint.ConnectionLimit property. This 
property is set on this object when the ServicePointManager creates 
the ServicePoint object for your connections to a host. Connections 
to the server are queued and will be served by the connections to the 
server as they become freed from use. The default number of 
connections is set to 2.” ~ http://msdn.microsoft.com/en-
us/library/system.net.servicepoint.connectionlimit.aspx

• This value should be set relative to the number of threads you are 
utilizing for Instance requests.

http://msdn.microsoft.com/en-us/library/system.net.servicepoint.connectionlimit.aspx


CacheSetting.AlwaysOff
“WCF client applications use the ChannelFactory<TChannel> class to 
create a communication channel with a WCF service. 
Creating ChannelFactory<TChannel> instances incurs some overhead 
because it involves the following operations:

1. Constructing the ContractDescription tree
2. Reflecting all of the required CLR types
3. Constructing the channel stack
4. Disposing of resources

To help minimize this overhead, WCF can cache channel factories when 
you are using a WCF client proxy.”

• Default behavior will mean your code is actually almost always 
running in one session.

https://docs.microsoft.com/en-us/dotnet/api/system.servicemodel.channelfactory-1
https://docs.microsoft.com/en-us/dotnet/api/system.servicemodel.channelfactory-1
https://docs.microsoft.com/en-us/dotnet/api/system.servicemodel.description.contractdescription


IDisposable

protected virtual void Dispose(bool disposing)

{

if (disposing)

{

client.Logout();

client.Close();

}

}

• Important to logout before closing connection to avoid maxing out user 
sessions and forcing log-offs.



Remember!

• Utilization of ‘ReturnBehavior’

• Avoid Graph logic by creating Generic Inquiry for data retrieval

• Multi-Threading can be a boon.



Thank you for your time!
May your code be quick and your clients be happy


