Microsoft Dynamics SL SDK to
Acumatica Framework
Reference Guide

Joe Jacob
Crestwood Associates

Version 1.0

Last updated: April 23, 2019

Contents

(070 o1V T={ o | TR 4
T oo [¥To1d o] o WU TP U U PP PP PTURTOPPTO 5
Cross Reference Topics (Concepts / API FUNCLION CallS / PIrOPEITIES) .ueecueiiiieeiiiie et eiee ettt eteeeette e et e eett e e e te e e teeesabeeeteeeetteeeteeesaseeenseeessseesseeesnseens 5
Core Programming LANGUAEE @NT TOOISuuiiicuiiiiiiiieeteeiieeeestie e e set et s e ettt e e s sttt e e s sbeeeessabteeessaseeeessaseaeesanseeeessnseeeesansteeesansaeeesansseeessasseeessnssenessnsseneesns 6
(071172 o o] [To @11 VY oo | Tol AV 1 PP 6
AT O =Y o =Te I o [o I I T d W oo Y =T I S T=Y [LR S 6
Yoot |l D E= Y = I =1 o F PRSP 7
BOUND @Nd UNDOUNG CONTIOIS ..ottt ettt ettt e s e sttt e s bt e s bt e e bt e e s bt e s abeesabeesabeeesabeesabeeaasteesabee e abeesabeesabaeesabeesabbeeanseesneeesaseenas 8
SCIEEN GO CONTIOL...eiiniiie ittt ettt ettt ettt e s bt e sttt e su b e e sabee e bt e e s abee e abeesaseesaseeesabeeaasbe e a b e e s abeeesaseesabeeeasbeesabaeeabeesabeesasbeesabae e sbeesnbeesaneeesabeennses 9
NG A Lo (=T L= g Lol T I I] PRSP URP 9
S_ TH() wevrereeeereeeeeeeeeeeeeeeseeeeeeessesesseseeseeseseeesesessaeeseeseseeseeeeeeeeeeesaeeeeeeseeeeeeeseeee e eeeseee e eeeeeseeeee e eeeee s e eetae et e eeee et e ee e s e e et e e et eeeeea et e et ee e tee e e et et e eeeeeeeeneneeeee 9
Y13 o) TSRS 9
IMIFIEST(), IMINEXE(), IMILAST() c.vvveeeiereeeeeeieee e ettt e eeteee e eete e e e eetee e e eetee e e eeabaeeeeeabaeeeeeabaeeeeasbaeeeeeabaeeeeasbaeeeeasbaaeeeasbseeeeastaeesensbaeeeeasbaeesenntseesentresesnnteeeeennsees 10
NoteColumn Properly, NOTEBULLON PrOPEIIY........uii ittt e et e e e et e e e s ettt e e e e eabeee e s abeeeeeabaeeeeasbeeeeeasbeeesasaseeeeesnseaeesnnseneesnnsens 10
FOPM CONEIOL EVENTS HANGIBIS ...ttt ettt st ettt e bt e e bt e sh e e s a et eab e et e e bt e eheeeatesab e e abe e b e e be e bt e ebeesabeeateeateeabeesbeesaeesarenane 11
VA = o 1= PPN 13
YL o1 =] ol 1) U UPT PP 13
Yol YT o T[0T a o= o T =S 14
YD1 Qo o1 (T 1 o TP P P UPP PR PR PSP 14
Y 21 7ol] IR USRS 15
Ny €] e 10 o] =1 el o | TR RS TURRR 16
SINSEIT(), SUPTATE().ureeeiureeiitieeitieeiiteeeite e et e ettt e sttt e e teeestbee e beeestbeesabeeebaeessbasasseeaasaeansaeesasasansesenssaesasasessseesasasensasesasesensseesaseesnsseesabasenseseassaesnseeessrenns 17

TranBeg(), TranENd(), TranADOIE() ...cccvieee ettt ettt e et e e e sttt e e e e ettt e e e e abeeeeeaabaeeeeasseeeeeasbeaeeaansaaesasseaeeaassaeesannsaaeeeansaeeeannseaeeannseeeeannsens 19
o |) USR 20
YO LI 2 OO TSRO P VPRSP 20
BTN =T a] o U LT == PP PPPPPPPPPPIRE 20

DL I Yool =3 - 1 =T PPNt 21

Copyright

© 2019 Acumatica, Inc.
ALL RIGHTS RESERVED.

No part of this document may be reproduced, copied, or transmitted without the express prior consent of Acumatica, Inc.

11235 SE 6th Street,
Suite 140
Bellevue, WA 98004

Restricted Rights

The product is provided with restricted rights. Use, duplication, or disclosure by the United States Government is subject to restrictions as set forth in the applicable
License and Services Agreement and in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or
subparagraphs (c)(1) and (c)(2) of the Commercial Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable.

Disclaimer

Acumatica, Inc. makes no representations or warranties with respect to the contents or use of this document, and specifically disclaims any express or implied
warranties of merchantability or fitness for any particular purpose. Further, Acumatica, Inc. reserves the right to revise this document and make changes in its
content at any time, without obligation to notify any person or entity of such revisions or changes.

Trademarks
Acumatica is a registered trademark of Acumatica, Inc. HubSpot is a registered trademark of HubSpot, Inc. Microsoft Exchange and Microsoft Exchange Server are
registered trademarks of Microsoft Corporation. All other product names and services herein are trademarks or service marks of their respective companies.

Introduction

The purpose of this guide offers a quick reference for those already familiar with the Dynamics SL SDK and are new to the Acumatica platform. This guide will help
direct you to the proper concepts and API's as they relate to the expansive world of Acumatica development. It's not meant to be a replacement for training
courses such as the T100, 200, and 300 series. However, it will provide a nice jump start to the training material as you move forward.

For those of you coming from the Dynamics world, you will quickly see as you learn that the Acumatica design patterns are a natural progression to the evolution
of ERP technology. Additionally, and probably the most important difference between development environments, is that Dynamics SL is mostly a VB.NET language
base whereas Acumatica is built on C#. If you are rusty in C#, don't be discouraged in the slightest. Immersing yourself in C# will just add fuel to your motivation.

The guide in its present form is the first iteration of effort and will be updated in future installments. Topics we are considering adding in subsequent updates
include, but not limited to the following:

« A comparison of the SL menu system to Acumatica Site Map
 How reporting works in SL (Crystal Reports/FRx) vs. Acumatica
* Quick Queries —vs- Generic Inquires

* Transaction Import —vs- Import Scenario

« ERP Upgrades / standard practices for upgrading source code

We expect that there will be other topics added as well. It is our sincere hope that you find this guide of great utility and your foray into the Acumatica world of
development is productive and fruitful!

Cross Reference TOpiCS (Concepts / API Function Calls / Properties)

Dynamics SL Dynamics SL Acumatica
Concept
Core VB.NET using C#, and ASP.NET

Programming
Language and
Tools

Windows Form
Classes and the VB
Tool Kit SDK.

Both SL and Acumatica use various .NET frameworks depending on product release versions.

CallApplic,
CallApplicWait

Runs another
application from an
existing screen

A graph instance is created, the graph is filled with the found record and PXRedirectRequiredException() is used to call the
ASPX page.

public virtual void GotoPOOrder()
{
var poOrdEntryGraph = PXGraph.Createlnstance<POOrderEntry > ();
var currentPoPorder = VendorOrders.Current;
poOrdEntryGraph.Document.Current = poOrdEntryGraph.Document.Search<POOQrder.orderNbr>(currentPoPorder.OrderNbr);
if (poOrdEntryGraph.Document.Current != null)

First Created
and Last
Updated Fields

Common data fields
to represent created
and last updated
information at the
record level

Fields:
Crtd_DateTime,
Crtd_Prog,
Crtd_User,
Lupd_DateTime,
Lupd_Prog,
Lupd_User

{
throw new PXRedirectRequiredException(poOrdEntryGraph, true, "Purchase order Details");

}

}

The following fields are used in many Acumatica tables:
Field Attribute
CreatedByID [PXDBCreatedByID]
CreatedByScreenID [PXDBCreatedByScreenID]
CreatedByDateTime [PXDBCreatedDateTime]
LastModifiedByID [PXDBLastModifiedByID]
LastModifiedByScreenID | [PXDBLastModifiedByScreenlID]
LastModlifiedDateTime [PXDBLastModifiedDateTime]

Typical Data
Fields

Uses DataBinding
attributes for
standard .NET data
types of String,

Integer, Double, etc.

Typical Columns and Data Types

Value

Data Type (SQL Server)

Type Attribute on the Data Field

Database identity

Int

[PXDBldentity]

Natural key (for example, document
number)

nvarchar (15)

[PXDBString(15, IsKey = true, IsUnicode = true)]

Line number int [PXDBInt]

Short string (for example, a name or unit nvarchar (20), [PXDBString(20, IsUnicode = true)]
of measure) nvarchar (50)

Long string (such as a description) nvarchar (255) [PXDBString(255, IsUnicode = true)]

Type or status identifier (for instance, a
document type)

int or char (1)

[PXDBInt] or [PXDBString(1, IsFixed = true)] respectively

Boolean flag (for example, bit [PXDBBool]
active/inactive)

Price or cost, monetary units decimal (19, 6) [PXDBDecimal(6)]
Amount or total, monetary units decimal (19, 4) [PXDBDecimal(4)]
Quantity, pieces decimal (25, 6) [PXDBDecimal(6)]
Maximum, minimum, or threshold decimal (9, 6) [PXDBDecimal(2)]
quantity, pieces

Percent, rate (for example, discount decimal (9, 6) [PXDBDecimal(2)]
percent)

Weight or volume decimal (25, 6) [PXDBDecimal(6)]
Date smalldatetime [PXDBDate]

Time span int [PXDBTimeSpan(DisplayMask = "t", InputMask = "t")]

Coefficient (such as a conversion factor)

decimal (9, 6)

[PXDBDecimal(1)]

Bound and
Unbound
Controls

The Solomon Data
Object Class is used
to define the buffer
which is associated
with the control
object on the form.

DAC attributes for data types with a prefix of PXDB are bound, and a prefix without the DB are unbound. l.e.

Bound -> [PXDBString]
Unbound -> [PXString]

Unbound Field Data Types

The following attributes define a data access class field of a specific type that are not bound to any

database columns.

Attribute

C# data
type

Comment

PXBool

bool?

Boolean value

PXByte

byte?

1-byte integer value

PXDate

DateTime?

Date and time

PXDateAndTime

DateTime?

Date and time values represented by separate input
controls in the user interface

PXDecimal

16-byte floating point numeric value with a specific
precision

PXDouble

8-byte floating point value

PXFloat

4-byte floating point value

PXGuid

16-byte unique value

FPXShort

2-byte integer value

PXInt

4-byte integer value

PXLong

8-byte integer value

PXString

String of characters

PXTimeSpan

Date and time value represented by minutes passed from

01/01/1900

PXTimeSpanLong

Duration in time as the number of minutes

PXVariant

Arbitrary array of bytes

Reference: Unbound Field Types

https://help-2018r1.acumatica.com/Wiki/ShowWiki.aspx?pageid=fd0adc27-e163-422d-a74e-057aa10ad2d9

Screen Grid
Control

Windows form control using
Interop.SAF.SAFGrid with key
properties of DBNav, Level, etc.

ASPX tag of <px:PXGrid> is used with references to the graph 'Views'
MasterPageFile templates are used to build standard forms.

Name Description

FormDetail The master-detail editing page with Formview and Grid controls
FormTab The record-editing page with Formview and Tab controls
FormView The record-editing page with one Formview control

ListView The record-editing page with one Grid control

TabDetail The master-detail page with Tab and Grid controls

TabView The record-editing page with one Tab control

Key reference | Interop.SAF* PX.Objects
DLL files Microsoft.Dynamics.* PX.Data
Solomon.Kernel PX.Common
IS_TI() Returns a flag indicating whether | [PXGraph].Isimport is a Boolean flag that will tell your solution that it is being referenced by Import Scenario.
or not the application is being
automated by Transaction Other useful flags would include IsExport, IsMobile, IsContractBasedAPI and ExternalCall.
Import
Reference: Import Scenario, which is a close replacement to Transaction Import.
http://blog.zaletskyy.com/Tags/Isimport
MessBox() Displays and message and waits [PXGraph].Ask()

for user to choose a button.

// Asking for confirmation on an attempt to delete
if (ShipmentLines.Ask("Confirm Delete","Are you sure?",MessageButtons.YesNo) != WebDialogResult.Yes)
{

e.Cancel = true;

}

http://blog.zaletskyy.com/Tags/IsImport

MPFirst(),
MNext(),
MLast()

Memory Arrays

Move to the first, next, or last
record in a designated memory
array. Usually associated with
SAFGRID control.

A DAC can be associated with a grid and a standard foreach can be used to iterate through the ‘view’

foreach (ShipmentLine line in ShipmentLines.Select())

{..}

Reference: PXView Class, BQL

NoteColumn
Properly,
NoteButton
Properly

Tables with a NotelD field are

used to manage text notes in SL.

Note data is stored in the SNote
table.

Acumatica supports storing notes and attaching additional objects to data records. You can attach additional objects to a
data record—for instance, add a textual note or upload a file or multiple files to a data record. You enable support for data
record attachments for each particular table individually. To enable support for data record attachments, add the column
that stores the global data record identifier (typically, NotelD) to the table and declare the corresponding field in the data
access class.

SQL Datatype Attribute
BIGINT, null [PXNote]

Also worth noting is the ‘DeletedDatabaseRecord’ column with is a low-level mechanism for preserving deleted data records
in the database.

https://help-2018r2.acumatica.com/(W(1))/Help?ScreenId=ShowWiki&pageid=c866f331-98df-aa88-9355-f970fadefca2

Form Control
Events
Handlers

Various event handlers are used
in SL such as Chk, LineChk,
Default, Update, Finish, etc.

Sample Event Handler declaration

{

Use of event handlers while the basic data operations are processed

protected virtual void DACName_FieldName_FieldDefaulting(PXCache sender, PXFieldDefaultingEventArgs e)

Business logic controller

Cache

‘DAC[ECO[d _...l.l.!...l.l...'.l|

UPDATE

A 4

| FieldDefaulting

FieldUpdating

I
FieldVerifying |

For each DAC field
For cach modified DAC field

FieldU pdated

Y A\ J

For each key field of the DAC

r

RowUpdating | | Rowlnserting

RowDeleting

RowsSelected

RowDeleted

v !

|

DISPLAY

+

FieldSelecting

For each DAC field

RowPersisting

RowU pdated | ‘ Rowlnserted

RowSelected

‘ | RowPersisted ‘

Data Field Events

Data Record Events

Database-Related Events

Exception-Handling
Event

Event for Overriding
DAC Field Attributes

PXFieldDefaulting
PXFieldVerifying
PXFieldUpdating
PXFieldUpdated
PXFieldSelecting

PXRowSelected
PXRowlnserting
PXRowlnserted
PXRowUpdating
PXRowUpdated
PXRowDeleting
PXRowDeleted

PXCommandPreparing
PXRowSelecting
PXRowPersisting
PXRowPersisted

PXExceptionHandling

CacheAttached

Reference: Wiki Article

https://help-2019r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=106557db-e5f6-416c-8872-5ef3de9bf433

PV Property,
PVChkFetch()

Possible Value Look Ups

Retrieves a composite record
from the database using an SQL
statement from the PV property
of an SAFMaskedText control.

Properties

cCustID Interc

Clwadca

DAC attribute of [PXSelector]
The PV concept in Acumatica is very extensive and flexible. A DAC attribute of [PXSelector] is used and can be established
at the DAC level and overridden at the Graph level.

[PXDefault]
[PXUIField (DisplayName = "Customer ID")]
[PXSelector (Wi

typeof (Customer.customerID) ,

typeof (Customer.customercCD) ,

typeof (Customer.companyName) ,

SubstituteRey = typeof (Customer.customercCD))]
public virtual int? CustomerID
locc
1

#region TermsID

public abstract class termsID : PX.Data.IBqlField

{

}

protected String _TermsID;

[PXDBString(10, IsUnicode = true)]

[PXSelector(typeof(Search< Terms.termsID, Where< Terms.visibleTo, Equal< TermsVisibleTo.vendor>, Or<Terms.visibleTo,
Equal<TermsVisibleTo.all>>>>), DescriptionField = typeof(Terms.descr), CacheGlobal = true)]

Reference: PXSelectorAttribute

https://help-2018r2.acumatica.com/(W(1))/Help?ScreenId=ShowWiki&pageid=6ed489c0-36a3-9790-7bcd-5072e718a728

Screen
Numbering

SL uses the
(XX.999.99) format
for screen titles.

Screen numbering in Acumatica is similar:

Sub-Screen Sequential Number
Screen Sequential Number
Screen Type:

10 Setup

20 Maintenance

30 Data Entry

40 Inquiry

50 Processing

60 Reports
Two-Letter Module Code

SDK Platforms

a. New custom
screens are
developed
using the SL VB
Tool Kit SDK
which produce
compiled EXE's.

b. Maodifications to
existing screens
can be done
using a
specialize
version of VBA
with its
contents stored
within the SL
system
database

Solutions are packaged into individual customization projects controlled by the Acumatica ERP. Here are a list of
development components that can be stored:

Screens
Data Access
Code

Files

Import/Export Scenarios
Sharad Filters

Access Rights

Generic Inquiries Wikis
Reports
Dashboards

Site Map

Web Service Endpoints
Analytical Reports
Push Motifications

Database Scripts Business Events

System Locales

Maobile Application
User-Defined Fields

A typical solution with custom screens might include one or more DLL's and ASPX files under the ‘Files’ section, Site Map
entries, Wikis, and reports.

SFetch()

Used to retrieve a
composite record
from the database
based on some pre-
defined SQL
statement or stored
procedure.

A deep dive into PXSelectBase class is vital. The PXSelect class is a multi-purpose class and can be used for ad-hoc SQL
queries.

This class and other classes derived from PXSelectBase are used as a basis for building BQL statements. BQL is then
translated into the SQL statements.

Sample

public PXSelect<APPayment,
Where<APPayment.vendorlID, Equal<Required<APPayment.vendorID> >,
And<APPayment.docType, Equal<Required<APPayment.docType>>,
And<APPayment.refNbr, Equal<Required<APPayment.refNbr>>>>>>
APPayment_VendorID_DocType_RefNbr;

// Retrieving data records through the data view
// The parameter values are taken from the adj APAdjust object
foreach (APPayment payment in APPayment_VendorID_DocType_RefNbr.Select(adj.VendorID, adj.AdjdDocType,adj.AdjdRefNbr))

{

//do something with each APPayment object

}

The Search class can also be used within DAC attributes such as PXSelector, PXDbScalar and PXDefault for returning one

field from the database including cached values.

Type of Search

Description

Search<Field>

Gets field value

Search<Field, Where>

Gets field value with filtering by Where condition

Search<Field, Where, OrderBy>

Gets field value with filtering by Where condition and ordering

Search2<Field, Join>

Gets field value with filtering by using Joins with other tables

Search2<Field, Join, Where>

Gets field value with filtering by using Joins with other tables and applying where condition

Search2<Field, Join, Where, OrderBy>

Gets field value with filtering by using Joins with other tables and applying where condition and

ordering

Search3<Field, OrderBy>

Gets field with ordering application

Search3<Field, Join, OrderBy>

Gets field value with joins and order by application

Search4<Field, Aggregate>

Gets aggregated field value

Search4<Field, Where, Aggregate>

Gets aggregated field value with filtering by where condition

Search4<Field, Where, Aggregate, OrderBy>

Gets field value with filtering by where, aggregation and order by

Search5<Field, Join, Aggregate>

Gets field value with application of joins and aggregates

Search5<Field, Join, Where, Aggregate >

Gets field value with application of joins and where and aggregate

Search5<Field, Join, Where, Aggregate >

Gets field value based on join, where and aggregate condition

Search6<Field, Aggregate, OrderBy>

Gets field value based Aggregate and order by

Search6<Field, Join, Aggregate, OrderBy>

Gets field value based on join, aggregate and order by

Coalesce<Search1, Search2>

Gets field value with using Search1 or if Search1 gives null uses Search2

Example within a DAC attribute:
[PXDefault(typeof(Search<PricelList.price, Where<Pricelist.grade, Equal<Current<ParkinglLot.grade>>>>))]

Example within a method
Document.Search<POOrder.orderNbr>(currentPoOrder.OrderNbr, currentPoOrder.OrderType);

See the section on SQL-BQL

SGroupFetch()

Used to retrieve a
composite record
from the database
based on some pre-
defined SQL
statement or stored
procedure
containing one or
more group
aggregate functions
and/or clauses.

The PXSelectGroupBy can be used to select records from one table grouping and applying aggregations.

foreach (PXResult<CWBleachRecL> item in PXSelectGroupBy<CWBleachRecl,
Where<CWBIleachRecL.bleachReclID, Equal<Required<CWBleachRecL.bleachRecID>>>,
Aggregate<GroupBy<CWBleachRecl.inventorylD, GroupBy<CWBleachRecL.ordNbr,
Count<CWBleachRecL.lineNbr>>>>>

Select(this, reconID))

{
string ord = ((CWBleachRecL)item).OrdNbr;
... do something

}

See the section on SQL-BQL

Sinsert(),
SUpdate()

Inserts or updates
one record into each
specified table
within an existing
database view.

When forcing a save on a PXGraph a PXAction is declared and the Actions.PressSave() function can be called.

public PXAction<Shipment> CancelShipment;
[PXButton(CommitChanges = true)]
[PXUIField(DisplayName = "Cancel Shipment")]
protected virtual void cancelShipment()
{
Shipment row = Shipments.Current;
row.Status = ShipmentStatus.Cancelled;
// Update the data record in the cache of Shipment data records
Shipments.Update(row);
// Triggering the Save action to save changes in the database
Actions.PressSave();

Another option is the use of PXDatabase.Update

PXDatabase.Update<SOOQOrder>(
new PXDataFieldAssign<SOOQOrderExt.usrRetDelStatus>(PXDbType.VarChar, retDelFlag),
PXDataFieldRestrict<SOOrder.orderNbr>(PXDbType.NVarChar, orderNumber),
new PXDataFieldRestrict<SOQOrder.orderType>(PXDbType.Char, Messages.DefaultOrderType)

)I.

DBNAV() Used to facilitate Data views are graph members that are used to retrieve and modify data records of a particular data
navigation through access class (DAC). You use data views:
all database records
in the result set of « To provide data retrieval and manipulation functions for the Ul
an SQL statement. « To retrieve and manipulate data from code
Typically used in a public class SalesOrderEntry : PXGraph<SalesOrderEntry, SalesOrder>
GRID definition. {
// Provides an interface for manipulation of sales orders
public PXSelect<SalesOrder> Orders;
// Provides an interface for manipulation of detail lines of the specified order
P — % public PXSelect<OrderLine, Where<OrderLine.orderNbr, Equal< Current<SalesOrder.orderNbr>>>> OrderDetails;
am1” | Famg” | Pam3| Famd|
Coratani) wid Cand
}
See the section on SQL-BQL
Status() Report process The PXLongOperation is a static class that is used to execute a long-running operation, such as processing data or releasing

status information
to either the Process
Status Window or
the Event Log or
both.

a document, asynchronously in a separate thread. This class manages the threads created on the Acumatica ERP server to
process long-running operations.

This class also animates a spinning wheel icon and timer showing the user ‘status’ of a process.

PXLongOperation.StartOperation(this, delegate()
{

ReleaseDocs(list);

D

Typically placed above the PXTransactionScope.
Reference: PXLongOperation Class

https://help-2018r2.acumatica.com/(W(1))/Help?ScreenId=ShowWiki&pageid=80f43327-6672-79c8-6f6c-051330483112

TranBeg(),
TranEnd(),
TranAbort()

Begin, end, commits
for database
transaction.

The PXTransactionScope is used to initialize a new transaction. You can wrap-up one or more changes into a transaction
and the system will revert all changes together on any exception. Do not forget to call commit for the transaction scope
before dispose it.

using (PXTransactionScope ts = new PXTransactionScope())

{
string[] desc = ((ARTran)tran).TranDesc.Split(":");
((ARTran)tran).TranDesc = desc[1];
Base.Transactions.Cache.IsDirty = true;
Base.Transactions.Update((ARTran)tran);
Base.Actions.PressSave();
Base.Persist();
ts.Complete();

}

Also see: PXLongOperation

sql() Initialize a new PXDatabase.Execute() is used to execute a stored procedure
database view.
Takes the specified var pars = new List<PXSPParameter>();
SQL text, compiles it PXSPParameter p1 = new PXSPInParameter("@prPayrollRefNbr", PXDbType.NChar, details.PayrollRefNbr),
' . " | PXSPParameter p2 = new PXSPInParameter("@prPayrollDetailsID", PXDbType.NChar, details.PRPayrollDetaillD);
and then runs it. .
pars.Add(p1),
pars.Add(p2);
Used typically to run | pxpatabase.Execute("DeletePrTranByPrPayrollAndPayrollDetailsld", pars. ToArray());
a stored procedure.
See the section on SQL-BQL
SQL -BQL SL uses standard BQL stands from Business Query Language and is used throughout the Acumatica framework
SQL statements
The code in bold below is a sample of a BQL statement including where, and join clauses. See section 3.1 in the T200
Acumatica framework fundamentals document.
public PXSelect/oin<SupplierProduct, LeftJoin<Product, On<Product.productID,
Equal<SupplierProduct.productiD> > >,
Where<SupplierProduct.supplieriD,
Equal<Current<Supplier.supplierID> > > >
SupplierProducts;
TimeStamp In SL the field The SQL Field tstamp
usage tstamp (timestamp, not null)

(timestamp, not null)
is used to control
record locking.

is also used in Acumatica but with a [PXDBTimestamp] attribute in the DAC

Data Access
Layer

The Solomon Data
Object Class from
the SDK is used to
represent each SQL
table. Commonly
referred to as
buffers.

The Data Access Class know as DAC, uses an IBglTable interphase to manage each field within a Table.
It's important to gain an understanding of how class attributes are used and how powerful they are for controlling how

various fields behave.

PXDefault, PXUIField, PXSelector, and all the possible PX data fields are typical for each field within the class.

See section on Typical Data Fields

Sample DAC section:

[PXDBInt(IsKey = true)]

[PXDefault]

[PXUIField(DisplayName = "Product ID")]

[PXSelector(typeof(Search<Product.productID>),
typeof(Product.productCD),
typeof(Product.productName),
typeof(Product.unitPrice),
SubstituteKey = typeof(Product.productCD))]

public virtual int? ProductID

namespace PX.Objects.AR

[System.SerializableAttribute (1]
[=: (! 5!
public partial class

{

CustomerMaster : Customer

fregion BAccountID
public new abstract class bAccoun £ID : PX.Data.IBglFicld
{
}
[Customer (IsKey = true, DisplayName = "Customer 1D")]
public override Int32? BAccountID
{
get
{

return this. BAccountID;

¥
set

{

this._ BAccountID = value;

public new abstract class acctCD : PX.Data.IBglFicld

}

[EXDBString (20, IsUnicode
[PXDefault ()]
[PXUTField (DisplayName
public override String AcctCD
{

rue)]

get
{

return this. AcctCD;
¥

set

ner ID", Visibility = PXUIVisibility.SelectorvVisible)

T A BN

t
this. AccteD = value;
¥
1

