
Roadmap

Mike Chtchelkonogov
Founder & Chief Technology Officer

Acumatica
mik@acumatica.com

Andrew Boulanov
Head of Platform Development

Acumatica
aboulanov@acumatica.com

mailto:mfranks@acumatica.com
mailto:mfranks@acumatica.com

Acumatica xRP Priorities
Platform Development & Modernization

Performance & Scalability Improvements

Low Code | No Code Customization

Improving Reporting Capabilities

Acumatica xRP Priorities

Platform Development and Modernization

• UI 2.0 Web.Forms elimination
• BQL 2.0 with LINQ (demo)
• Extensions 2.0 with unit tests support (demo)

Acumatica xRP Priorities

Performance and Scalability Improvements

• Constant performance assessment and monitoring
• Runtime and static code validations of potential

performance issues
• Inquiry delegates and query cache optimization
• Lazy graph initialization

Acumatica xRP Priorities

Low Code / No Code Customization

• New workflow engine
• State controller

• Customizable actions

• Customizing entry form with attributes
• Per tenant customization
• Scripting customization layer

Acumatica xRP Priorities

Improving Reporting Capabilities

• New Pivots design (demo)
• Preview in Report Designer (demo)
• Improved ARM designer
• Relation suggestions in GI and improved GI designer
• Layout editor on top of GI

UI 2.0 What to expect and
how will it work

UI 2.0 - Current Frontend Architecture

• Web.Forms technology is legacy
and going to be obsolete in 2-3
years

• Web.Forms technology is heavy,
it consume up to 30% of CPU
time and request execution time

• Datasource and Import/Export
Engine provide two alternative
options to access API

• Meta data generated out of ASPX
form is used for other API’s

• No public API is available for
implementing scripting
customization engine and tests

Browser

Web.Forms

Graph

Mobile Client

Mobile API

Import/Export
Engine

Screen Based API Contract based API

Screen Based API
Client

Contract Based API
Client

POST + XML

Graph API

Graph API

IMPORT/EXRPOT API

Screen Schema

Un- typed REST SOAP or RESTSOAP

Graph API

Data Source

DATA SOURCE API

Mobile Screen
Definition

ASPX
End Point
Defintion

Browser

Web API

Business Object

Mobile Client

Customization Script
Engine

Screen Based API Contract based API

Screen Based API
Client

Contract Based API
Client

JSON + XML

Graph Public API

Un- typed REST
SOAP or RESTSOAP

Mobile Screen
Definition

Form Definition

End Point
Defintion

Graph Public API

UI 2.0 - Future Frontend Architecture

• Web.Forms technology replaced
with modern web api technology

• Mobile and Web API are uniform
and can be unified as a single
component

• Public graph API does not
depend on UI definition and
uniform for all external access
introducing a public contract

• Public graph API creates a point
for implementing customization
script Engine

• Public graph API creates a point
for implementing simplified
integration tests against the
business object

Client Side
Rendering Engine

Internal API

Functional
Extensions

Browser

Web API

Graph

Mobile Client

Screen Based API Contract based API

Screen Based API
Client

Contract Based API
Client

JSON + XML

Internal API

Graph Public API

Un- typed REST
SOAP or RESTSOAP

Graph API

Mobile Screen
DefinitionASPX

End Point
Defintion

Graph Public API

UI 2.0 - Frontend Architecture – Migration Path

• Step 1 – Modify Mobile API to
handle HTTP requests from
browser and modify JS to bypass
web forms and work though Web
API.

• Step 1 – Work on Import/Export
Engine to expose public graph
API that will be uniform for all
frontend engines.

• Step 2 – Replace Web Forms with
new rendering engine.

• Step 3 – Inject scripting
customization layer in front of
Graph Public API engine.

Web.Forms

HTML

Internal API

Data Source

Programming API
Enhancements

Functional Extensions

Unit Testing Framework

Object Layer in BQL

LINQ Support

Reusable Business Objects

• Eliminates duplicated code
from the business objects.

• Isolates reusable pieces of
business logic through the
public API

• Supports use of the same
logic on heterogeneous data
structures through the
mapping

• Regression testing can be
automated through the unit
tests

• Can be customized or
substituted through the
standard extensions
customization mechanism

Sales Order
Order Header

Order Details

Order Tax Details

Mapping
Rules

Reusable Business Object

Public
Interface

Tax
Calculation
Logic

Invoice
Invoice Header

Invoice Details

Invoice Tax Details

Mapping
Rules

Opportunity

Opportunity Header
Mapping
Rules

Unit Tests

Multicurrency Extension

• Multi-Currency Extension
encapsulates everything related to
the multi-currency feature in
maintenance forms – from retrieving
of currency list to recalculating base
amounts in response to document
modifications

• It connects to documents, details,
vendor/customer records via some
kind of interfaces called ‘mappings’,
specifying only fields required for the
multi-currency feature

• A special server is designed to
provide Currencies, Rate Types, Rates
and other info, making it easier to
replace database storage with an
external source

• Also Sales Tax, Sales Price, Discount,
Contract Address extensions have
been developed already, but not
completely reworked with the new
approach

• CRM Opportunities & Quotes, FS
Appointments & Service Order entry
forms already benefit from the
functional extensions

Advantages

• If you need a virtual field, you
just declare a virtual field - no
need to inject it dynamically

• If you need an event handler,
you may just declare it like in a
regular graph

• If you need a view or a button,
you declare it within your
functional extension – no need
to create it on the fly

• It is possible to apply a
customization on top of
functional extensions overriding
virtual methods, overriding of
event handlers will be supported
as well in the near future

• Even if your extension applies to
a single screen, consider using
this new approach which allows
you to benefit from the unit
testing framework

Unit Testing Framework

• Multi-Currency Extension
connects to sample document,
detail, and business account
classes

• A graph mock combines them all
together

• The test inserts desired objects
into the graph, which completely
emulates database content

• A currency service is emulated as
well

• After execution of the business
logic, the test verifies that the
Multi-Currency Extension
properly sets currency and rate
types at the document level, and
also properly either enables or
disables appropriate fields from
the test method parameters

Object Layer in BQL

• BQL classes are immutable
and produce SQL text
directly in Parse methods

• Particular fields get their
SQL representation in the
CommandPreparing event
handlers returning text as a
field name

• Will remove potential
security holes when
CommandPreparing event
returns SQL text

• Will help to get rid of SQL
text post-processing; like
adding company id and
company mask restrictions,
top counts, etc.

• Also this new functionality
will replace the flattening
procedure

LINQ Support
• Select method will not go

to SQL server immediately
anymore

• PXSelectResult will
implement IQueryable
interface

• It will give us the ability to
utilize LINQ, and also to
make performance
optimizations, adding top
1 expression when result
is converted into a single
DAC instance

• Where a query can be
difficult to convert into
LINQ, it will be possible to
make adjustments in BQL
using expressions

Mobile Site Map
• MSDL only based,

conversion tool from XML
is available

• New maintenance screen
makes it much easer to
create and update
customizations to mobile
site map

• The screen validates
MSDL on every save with
error reporting and live
resulting site map
preview

• Customizations may be
different for different
tenants

Thank You!
https://adn.Acumatica.com

