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Acumatica xRP Priorities
Platform Development & Modernization

Performance & Scalability Improvements

Low Code | No Code Customization

Improving Reporting Capabilities



Acumatica xRP Priorities

Platform Development and Modernization

• UI 2.0 Web.Forms elimination
• BQL 2.0 with LINQ (demo)
• Extensions 2.0 with unit tests support (demo)



Acumatica xRP Priorities

Performance and Scalability Improvements

• Constant performance assessment and monitoring
• Runtime and static code validations of potential 

performance issues 
• Inquiry delegates and query cache optimization 
• Lazy graph initialization



Acumatica xRP Priorities

Low Code / No Code Customization

• New workflow engine
• State controller  

• Customizable actions

• Customizing entry form with attributes
• Per tenant customization
• Scripting customization layer



Acumatica xRP Priorities

Improving Reporting Capabilities

• New Pivots design (demo)
• Preview in Report Designer (demo)
• Improved ARM designer
• Relation suggestions in GI and improved GI designer
• Layout editor on top of GI



UI 2.0 What to expect and 
how will it work



UI 2.0 - Current Frontend Architecture

• Web.Forms technology is legacy 
and going to be obsolete in 2-3 
years

• Web.Forms technology is heavy, 
it consume up to 30% of CPU 
time and request execution time

• Datasource and Import/Export 
Engine provide two alternative 
options to access API

• Meta data generated out of ASPX 
form is used for other API’s

• No public API is available for 
implementing scripting 
customization engine and tests
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UI 2.0 - Future Frontend Architecture

• Web.Forms technology replaced 
with modern web api technology

• Mobile and Web API are uniform 
and can be unified as a single 
component

• Public graph API does not 
depend on UI definition and 
uniform for all external access 
introducing a public contract

• Public graph API creates a point 
for implementing customization 
script Engine

• Public graph API creates a point 
for implementing simplified 
integration tests against the 
business object
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UI 2.0 - Frontend Architecture – Migration Path

• Step 1 – Modify Mobile API to 
handle HTTP requests from 
browser and modify JS to bypass 
web forms and work though Web 
API.

• Step 1 – Work on Import/Export 
Engine to expose public graph 
API that will be uniform for all 
frontend engines.

• Step 2 – Replace Web Forms with 
new rendering engine. 

• Step 3 – Inject scripting 
customization layer in front of 
Graph Public API engine.
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Programming API 
Enhancements

Functional Extensions

Unit Testing Framework

Object Layer in BQL

LINQ Support



Reusable Business Objects

• Eliminates duplicated code 
from the business objects.

• Isolates reusable pieces of 
business logic through the 
public API

• Supports use of the same 
logic on heterogeneous data 
structures through the 
mapping

• Regression testing can be 
automated through the unit 
tests

• Can be customized or 
substituted through the 
standard extensions 
customization mechanism
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Multicurrency Extension

• Multi-Currency Extension 
encapsulates everything related to 
the multi-currency feature in 
maintenance forms – from retrieving 
of currency list to recalculating base 
amounts in response to document 
modifications

• It connects to documents, details, 
vendor/customer records via some 
kind of interfaces called ‘mappings’, 
specifying only fields required for the 
multi-currency feature

• A special server is designed to 
provide Currencies, Rate Types, Rates 
and other info, making it easier to 
replace database storage with an 
external source

• Also Sales Tax, Sales Price, Discount, 
Contract Address extensions have 
been developed already, but not 
completely reworked with the new 
approach

• CRM Opportunities & Quotes, FS 
Appointments & Service Order entry 
forms already benefit from the 
functional extensions



Advantages

• If you need a virtual field, you 
just declare a virtual field - no 
need to inject it dynamically

• If you need an event handler, 
you may just declare it like in a 
regular graph

• If you need a view or a button, 
you declare it within your 
functional extension – no need 
to create it on the fly

• It is possible to apply a 
customization on top of 
functional extensions overriding 
virtual methods, overriding of 
event handlers will be supported 
as well in the near future

• Even if your extension applies to 
a single screen, consider using 
this new approach which allows 
you to benefit from the unit 
testing framework



Unit Testing Framework

• Multi-Currency Extension 
connects to sample document, 
detail, and business account 
classes

• A graph mock combines them all 
together

• The test inserts desired objects 
into the graph, which completely 
emulates database content

• A currency service is emulated as 
well

• After execution of the business 
logic, the test verifies that the 
Multi-Currency Extension 
properly sets currency and rate 
types at the document level, and 
also properly either enables or 
disables appropriate fields from 
the test method parameters



Object Layer in BQL

• BQL classes are immutable 
and produce SQL text 
directly in Parse methods

• Particular fields get their 
SQL representation in the 
CommandPreparing event 
handlers returning text as a 
field name

• Will remove potential 
security holes when 
CommandPreparing event 
returns SQL text

• Will help to get rid of SQL 
text post-processing; like 
adding company id and 
company mask restrictions, 
top counts, etc.

• Also this new functionality 
will replace the flattening 
procedure



LINQ Support
• Select method will not go 

to SQL server immediately 
anymore

• PXSelectResult will 
implement IQueryable
interface

• It will give us the ability to 
utilize LINQ, and also to 
make performance 
optimizations, adding top 
1 expression when result 
is converted into a single 
DAC instance

• Where a query can be 
difficult to convert into 
LINQ, it will be possible to 
make adjustments in BQL 
using expressions



Mobile Site Map
• MSDL only based, 

conversion tool from XML 
is available

• New maintenance screen 
makes it much easer to 
create and update 
customizations to mobile 
site map 

• The screen validates 
MSDL on every save with 
error reporting and live 
resulting site map 
preview

• Customizations may be 
different for different 
tenants



Thank You!
https://adn.Acumatica.com


