

 | Contents | 2

Contents

Copyright..3

Plug-In Development Guide... 4

Creating Widgets for Dashboards.. 5
Widget Creation...5
Use of the Widgets.. 6
To Create a Simple Widget... 8
To Create an Inquiry-Based Widget.. 10
To Load a Widget Synchronously or Asynchronously... 12
To Add a Script to a Widget..13
To Add Custom Controls to the Widget Properties Dialog Box...13

Implementing Plug-Ins for Processing Credit Card Payments.................... 15
Interfaces for Processing Credit Card Payments... 15
To Implement a Plug-In for Processing Credit Card Payments (Version 2 of Interfaces)............ 16
To Implement a Plug-In for Processing Credit Card Payments (Version 1 of Interfaces)............ 19

 | Copyright | 3

Copyright

© 2019 Acumatica, Inc.
ALL RIGHTS RESERVED.

No part of this document may be reproduced, copied, or transmitted without the express prior consent
of Acumatica, Inc.

11235 SE 6th Street, Suite 140
Bellevue, WA 98004

Restricted Rights

The product is provided with restricted rights. Use, duplication, or disclosure by the United States
Government is subject to restrictions as set forth in the applicable License and Services Agreement
and in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 or subparagraphs (c)(1) and (c)(2) of the Commercial Computer Software-Restricted
Rights at 48 CFR 52.227-19, as applicable.

Disclaimer

Acumatica, Inc. makes no representations or warranties with respect to the contents or use of this
document, and specifically disclaims any express or implied warranties of merchantability or fitness for
any particular purpose. Further, Acumatica, Inc. reserves the right to revise this document and make
changes in its content at any time, without obligation to notify any person or entity of such revisions or
changes.

Trademarks

Acumatica is a registered trademark of Acumatica, Inc. HubSpot is a registered trademark of HubSpot,
Inc. Microsoft Exchange and Microsoft Exchange Server are registered trademarks of Microsoft
Corporation. All other product names and services herein are trademarks or service marks of their
respective companies.

Software Version: 2019 R1

Last updated: March 14, 2019

 | Plug-In Development Guide | 4

Plug-In Development Guide

In this guide, you can find information about how to expand Acumatica ERP functionality by developing
custom plug-ins.

In This Guide

• Creating Widgets for Dashboards

• Implementing Plug-Ins for Processing Credit Card Payments

 | Creating Widgets for Dashboards | 5

Creating Widgets for Dashboards

In Acumatica ERP or an Acumatica Framework-based application, a dashboard is a collection of widgets
that are displayed on a single page to give you information at a glance. A widget is a small component
that delivers a particular type of information. Acumatica ERP and any Acumatica Framework-based
application support a number of predefined types of widgets that you can add to dashboards. For more
information on the supported widgets and their types, see Dashboards and Widgets.

If none of the predefined widget types suits your task, you can create custom widgets, as the topics
in this chapter describe, and use these widgets in the dashboards of Acumatica ERP or an Acumatica
Framework-based application.

In This Chapter

• Widget Creation

• Use of the Widgets

• To Create a Simple Widget

• To Create an Inquiry-Based Widget

• To Load a Widget Synchronously or Asynchronously

• To Add a Script to a Widget

• To Add Custom Controls to the Widget Properties Dialog Box

Widget Creation
When you create a custom widget to be used in Acumatica ERP or an Acumatica Framework-based
application, you must implement at least the three classes described in the sections below. (For details
on the implementation of the classes, see To Create a Simple Widget and To Create an Inquiry-Based
Widget.)

Data Access Class with the Widget Parameters

The data access class (DAC) with the widget parameters is a general DAC that implements the
IBqlTable interface.

You can use any DAC attributes with this DAC. However, only the fields with PXDB attributes, such
as PXDBString and PXDBInt, are stored in the database. The values of these fields are stored in the
database automatically; you do not need to create a database table for them.

The fields of the DAC are displayed as controls in the Widget Properties dialog box when a user adds
a new widget instance to a dashboard or modifies the parameters of an existing widget instance. (The
way the controls are displayed depends on PXFieldState of the corresponding fields.) For information on
adding comprehensive controls to the dialog box, see To Add Custom Controls to the Widget Properties
Dialog Box.

Graph for the Widget

The graph for the widget is used to manage the widget parameters and read data for the widget. The
graph must be inherited from the PX.Dashboards.WizardMaint class. For the widget graph, you can
manage widget parameters by defining new events and redefining the events that are available in the
base classes, such as the RowSelected and FieldSelecting events. (You work with the events of the
widget graph in the same way as you work with the events of a general graph.)

https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=66fe7e0d-950d-15d8-4248-21ac737c023a

 | Creating Widgets for Dashboards | 6

Class of the Widget

The widget class is used by the system to work with the widget instances. The widget class must
implement the PX.Web.UI.IDashboardWidget interface. The system treats as widgets the classes that
implement this interface and are available in a library in the Bin folder of an instance of Acumatica
ERP or Acumatica Framework-based application. The caption and description of the widget from these
classes are displayed in the Add Widget dialog box automatically when a user adds a new widget to
a dashboard. The methods of this class are used by the system to manage the parameters of a widget
instance and display the widget on a dashboard page.

Use of the Widgets
In this topic, you will learn how a custom widget is used in Acumatica ERP or an Acumatica Framework-
based application. For more information on how to work with widgets on a dashboard page, see
Configuring Dashboards.

How the Widget Is Detected in an Application

Once the library that contains the class of the widget is placed in the Bin folder of an instance of
Acumatica ERP or an Acumatica Framework-based application, the Add Widget dialog box, which you
open to add a new widget to a dashboard page, contains the caption and description of the new widget.
The system takes the caption and description of the widget from the implementation of the Caption
and Description properties of the IDashboardWidget interface.

The following diagram illustrates the relations of the class of the widget and the Add Widget dialog
box. In the diagram, the items that you add for the custom widget are shown in rectangles with a red
border.

Figure: Widget detection

How a Widget Instance Is Configured

When you select the widget in the Add Widget dialog box and click Next, the controls for the
parameters that should be configured for a new widget instance—that is, the predefined Caption box
and the controls for the parameters, which are defined in the custom DAC—are displayed in the Widget
Properties dialog box. These controls are maintained by using the graph for the widget, to which the
reference is provided by the class of the widget. The graph uses the Widget DAC and the custom DAC
with the widget parameters to save the parameters of a widget instance in the Widget table of the
application database.

 | Creating Widgets for Dashboards | 7

To display custom controls, such as buttons and pop-up panels, in the Widget Properties dialog
box, the system uses the implementations of the RenderSettings() and RenderSettingsComplete()
methods of the IDashboardWidget interface from the class of the widget. For more information on
adding custom controls to the dialog box, see To Add Custom Controls to the Widget Properties Dialog
Box.

The following diagram illustrates the interaction of the components of the widget with the Widget
Properties dialog box. In the diagram, the items that you add for the custom widget are shown in
rectangles with a red border.

Figure: Configuration of a widget instance

How a Widget Instance Is Displayed on a Dashboard Page

After a widget instance is configured and saved in the Widget Properties dialog box, the widget
instance is displayed on the dashboard page. To display the caption of the widget instance on the
dashboad page, the widget graph retrieves the caption from the Widget table of the database by
using the Widget DAC. To display the widget contents, the system uses the implementations of the
Render()and RenderComplete() methods of the IDashboardWidget interface from the class of the
widget. These implementations use the parameters of the widget, which the widget graph retrieves
from the Widget table of the application database by using the DAC with the widget parameters.

You can specify how the widget should be loaded to a dashboard page and implement custom scripts
to manage the way the widget is displayed on a dashboard page. For more information, see To Load a
Widget Synchronously or Asynchronously and To Add a Script to a Widget.

The following diagram illustrates the interaction of the components of the widget with a dashboard
page. In the diagram, the items that you add for the custom widget are shown in rectangles with a red
border.

 | Creating Widgets for Dashboards | 8

Figure: Widget instance on a dashboard page

To Create a Simple Widget
A simple widget displays information from a single data source and does not require calculations or
comprehensive data retrieval. Multiple simple widgets, such as wiki widgets or embedded page widgets,
are available in Acumatica ERP or an Acumatica Framework-based application by default.

To create a simple widget, you need to perform the basic steps that are described in this topic.

To Create a Simple Widget

1. In the project of your Acumatica ERP extension library or your Acumatica Framework-based
application, create a data access class (DAC), which stores the parameters of the widget. The
DAC must implement the IBqlTable interface; you can use any DAC attributes with this DAC.

The following code fragment shows an example of a DAC for a simple widget, which uses one
parameter.

using PX.Data;

[PXHidden]
public class YFSettings : IBqlTable
{
 #region PagePath
 [PXDBString]
 [PXDefault]
 [PXUIField(DisplayName = "Help Article")]
 public string PagePath { get; set; }
 public abstract class pagePath : IBqlField { }
 #endregion
}

2. In the project, create a graph for working with the parameters of the widget and reading the
data for the widget. The graph must be inherited from the PX.Dashboards.WizardMaint class.

The following code fragment shows an example of a graph for a widget.

using PX.Dashboards;

public class YFSettingsMaint : WizardMaint<YFSettingsMaint, YFSettings>
{
}

 | Creating Widgets for Dashboards | 9

3. In the project, create a widget class that implements the PX.Web.UI.IDashboardWidget
interface. Use the following instructions for implementation:

• Inherit the widget class from the PX.Dashboards.Widgets.PXWidgetBase abstract class.
This class implements part of the required functionality of the IDashboardWidget interface,
such as localization of the caption and the description of the widget (which are displayed
in the Add Widget dialog box when a user adds a new widget to a dashboard). This
class also stores useful properties of the widget, such as Settings, DataGraph, Page,
DataSource, and WidgetID.

• Store the values of the caption and the description of the widget in a Messages class that
has the PXLocalizable attribute. This approach is required for localization functionality to
work properly.

• Perform initialization of a widget class instance in the Initialize() method of the
IDashboardWidget interface.

• Create the tree of controls of the widget in the Render() method of the IDashboardWidget
interface.

• If you need to check the access rights of a user to the data displayed in the widget,
implement the IsAccessible() method of the IDashboardWidget interface. If the user
has access to the data in the widget, the method must return true; if the user has
insufficient rights to access the data in the widget, the method must return false.

• If you want to specify the way the widget is loaded, override the AsyncLoading() method
of the PXWidgetBase abstract class, as described in To Load a Widget Synchronously or
Asynchronously.

The following code fragment gives an example of a widget class. This class is inherited
from the PXWidgetBase class. The caption and description of the widget are specified in
the Messages class, which has PXLocalizable attribute. The widget class implements the
Render() method to create the control of the widget and performs the configuration of the
control in the RenderComplete() method.

using PX.Web.UI;
using PX.Dashboards.Widgets;
using System.Web.UI;
using System.Web.UI.WebControls;

public class YFWidget: PXWidgetBase<YFSettingsMaint, YFSettings>
{
 public YFWidget()
 : base(Messages.YFWidgetCaption, Messages.YFWidgetDescription)
 {
 }

 protected override WebControl Render(PXDataSource ds, int height,
 bool designMode)
 {
 if (String.IsNullOrEmpty(Settings.PagePath)) return null;

 WebControl frame = _frame = new WebControl(HtmlTextWriterTag.Iframe)
 { CssClass = "iframe" };
 frame.Attributes["frameborder"] = "0";
 frame.Width = frame.Height = Unit.Percentage(100);
 frame.Attributes["src"] = "javascript:void 0";
 return frame;
 }

 public override void RenderComplete()
 {
 if (_frame != null)
 {
 var renderer = JSManager.GetRenderer(this.Page);

 | Creating Widgets for Dashboards | 10

 renderer.RegisterStartupScript(this.GetType(),
 this.GenerateControlID(this.WidgetID),
 string.Format("px.elemByID('{0}').src = '{1}';",
 _frame.ClientID, Settings.PagePath), true);
 }
 base.RenderComplete();
 }

 private WebControl _frame;
}

[PXLocalizable]
public static class Messages
{
 public const string YFWidgetCaption = "YogiFon Help Page";
 public const string YFWidgetDescription = "Displays a Help page.";
}

4. Compile your Acumatica ERP extension library or Acumatica Framework-based application.

5. Run the application and make sure that the new widget appears in the Add Widget dialog box.
The widget class, which implements the IDashboardWidget interface, is detected by the system
and automatically added to the list of widgets available for selection in the dialog box.

To Create an Inquiry-Based Widget
An inquiry widget retrieves data for the widget from an inquiry form, such as a generic inquiry form
or a custom inquiry form. Inquiry-based widgets that are available in Acumatica ERP or an Acumatica
Framework-based application by default include chart widgets, table widgets, and KPI widgets.

To create an inquiry-based widget, you need to perform the basic steps that are described in the section
below. In these steps, you use the predefined classes, which provide the following functionality to
simplify the development of an inquiry-based widget:

• Selection of the inquiry form in the widget settings

• Selection of a shared inquiry filter

• Selection of the parameters of the inquiry

• The ability to drill down in the inquiry form when a user clicks on the widget caption

• Verification of the user's access rights to the widget, which is performed based on the user's
access rights to the inquiry form

To Create an Inquiry-Based Widget

1. In the project of your Acumatica ERP extension library or your Acumatica Framework-based
application, create a data access class (DAC) that implements the IBqlTable interface and
stores the parameters of the widget. We recommend that you inherit the DAC from the
PX.Dashboards.Widgets.InquiryBasedWidgetSettings class, which provides the following
parameters for the widget:

• InquiryScreenID: Specifies the inquiry form on which the widget is based

• FilterID: Specifies one of the shared filters available for the specified inquiry form

The following code shows a fragment of the DAC for the predefined inquiry-based data table
widget. The DAC is inherited from the InquiryBasedWidgetSettings class.

using PX.Data;
using PX.Dashboards.Widgets;

[PXHidden]

 | Creating Widgets for Dashboards | 11

public class TableSettings : InquiryBasedWidgetSettings, IBqlTable
{
 #region AutoHeight
 [PXDBBool]
 [PXDefault(true)]
 [PXUIField(DisplayName = "Automatically Adjust Height")]
 public bool AutoHeight { get; set; }
 public abstract class autoHeight : IBqlField { }
 #endregion

 ...
}

2. In the project, create a graph for working with widget parameters and reading data for the
widget. Use the following instructions when you implement the graph:

• Inherit the graph from the PX.Dashboards.Widgets.InquiryBasedWidgetMaint abstract
class, which is inherited from the PXWidgetBase abstract class.

• Implement the SettingsRowSelected() event, which is the RowSelected event for the
DAC with widget parameters; it contains the current values of the parameters of the
widget instance and the list of available fields of the inquiry form. (For information on how
to work with the fields of the inquiry form, see To Use the Parameters and Fields of the
Inquiry Form in the Widget.) The signature of the method is shown below.

protected virtual void SettingsRowSelected(PXCache cache,
 TPrimary settings, InqField[] inqFields)

3. In the project, create a widget class. We recommend that you inherit this class from the
PX.Dashboards.Widgets.InquiryBasedWidget class.

4. Compile your Acumatica ERP extension library or Acumatica Framework-based application.

5. Run the application, and make sure that the new widget appears in the Add Widget dialog box.
The widget class, which implements the IDashboardWidget interface, is detected by the system
and automatically added to the list of widgets available for selection in the dialog box.

To Use the Parameters and Fields of the Inquiry Form in the Widget

You can access the parameters and fields of the inquiry from that is used in the widget by using the
DataScreenBase class, which is available through the DataScreen property in the widget graph and in
the widget class. An instance of the DataScreenBase class, which is created based on the inquiry form
selected by a user in the widget settings, contains the following properties:

• ViewName: Specifies the name of the data view from which the data for the widget is taken.

• View: Returns the data view from which the data for the widget is taken.

• ParametersViewName: Specifies the name of the data view with the parameters of the inquiry.

• ParametersView: Returns the data view with the parameters of the inquiry. It can be null if the
inquiry has no parameters.

• ScreenID: Specifies the ID of the inquiry form.

• DefaultAction: Specifies the action that is performed when a user double-clicks on the row in
the details table of the inquiry form.

To access the fields of the inquiry form in the widget, use the GetFields() method of the
DataScreenBase class. This method returns the InqField class, which provides the following
properties:

• Name: Specifies the internal name of the field

• DisplayName: Specifies the name of the field as it is displayed in the UI

 | Creating Widgets for Dashboards | 12

• FieldType: Specifies the C# type of the field

• Visible: Specifies whether the field is visible in the UI

• Enabled: Specifies whether the field is enabled in the UI

• LinkCommand: Specifies the linked command of the field

To access the parameters of the inquiry form in the widget, use the GetParameters() method of the
DataScreenBase class, which returns the InqField class.

To Load a Widget Synchronously or Asynchronously
By default, if a widget class is inherited from the PX.Dashboards.Widgets.PXWidgetBase abstract
class, the widget is loaded asynchronously after the page has been loaded. You can change this
behavior by using the AsyncLoading() method of the widget class, as described in the following
sections.

To Load a Widget Synchronously

To load a widget synchronously along with the page, override the AsyncLoading() method, as the
following code shows.

using PX.Web.UI;
using PX.Dashboards.Widgets;

public override AsyncLoadMode AsyncLoading
{
 get { return AsyncLoadMode.False; }
}

To Load a Widget Asynchronously

To load a widget asynchronously after the page has been loaded, you do not need to perform any
actions, because the following implementation of the AsyncLoading() method is used by default.

using PX.Web.UI;
using PX.Dashboards.Widgets;

public override AsyncLoadMode AsyncLoading
{
 get { return AsyncLoadMode.True; }
}

To Load a Widget that Performs a Long-Running Operation

If a widget performs a long-running operation during loading, such as reading data that takes a long
time, use the following approach to load this widget:

1. Override the AsyncLoading() method, as the following code shows. In this case, for processing
the data of the widget, the system starts the long-running operation in a separate thread.

using PX.Web.UI;
using PX.Dashboards.Widgets;

public override AsyncLoadMode AsyncLoading
{
 get { return AsyncLoadMode.LongRun; }
}

2. Override the ProcessData() method of the widget class so that it implements all the logic for
the widget that consumes significant time while loading.

 | Creating Widgets for Dashboards | 13

3. Override the SetProcessResult() method of the widget class so that it retrieves the result of
the processing of the widget data.

If these methods are implemented, the system calls them automatically when it loads the widget on a
dashboard page.

To Add a Script to a Widget
You can specify how a widget should be displayed on a dashboard page by using a custom script. For
example, you can implement a script that handles the way the widget is resized.

To add a custom script to a widget, you override the RegisterScriptModules() method of the
PX.Dashboards.Widgets.PXWidgetBase abstract class. The following code shows an example of the
method implementation for a predefined data table widget.

using PS.Web.UI;
using PX.Dashboards.Widgets;

internal const string JSResource =
 "PX.Dashboards.Widgets.Table.px_dashboardGrid.js";

public override void RegisterScriptModules(Page page)
{
 var renderer = JSManager.GetRenderer(page);
 renderer.RegisterClientScriptResource(this.GetType(), JSResource);
 base.RegisterScriptModules(page);
}

To Add Custom Controls to the Widget Properties Dialog Box
The Widget Properties dialog box is displayed when a user creates or edits a widget. If you need to
add custom controls, such as buttons or grids, to this dialog box, you need to create these controls in
the RenderSettings() or RenderSettingsComplete() method of the widget class, as is described in
the sections below.

To Add Buttons to the Widget Properties Dialog Box Dynamically

If you need to add buttons to the Widget Properties dialog box that appear based on a particular
user action in the dialog box, override the RenderSettings() method of the widget class so that it
dynamically adds the needed controls to the dialog box. The method must return true if all controls
are created in the method implementation (that is, no automatic generation of controls is required).
The default implementation of the RenderSettings() method of the PXWidgetBase class returns
false.

The following example provides the implementation of this method in the predefined Power BI tile
widget. When a user clicks the Sign In button in the Widget Properties dialog box and successfully
logs in to Microsoft Azure Active Directory, the Dashboard and Tile boxes appear in the dialog box.

public override bool RenderSettings(PXDataSource ds, WebControl owner)
{
 var cc = owner.Controls;
 var btn = new PXButton() { ID = "btnAzureLogin", Text =
 PXLocalizer.Localize(Messages.PowerBISignIn, typeof(Messages).FullName),
 Width = Unit.Pixel(100) };
 btn.ClientEvents.Click = "PowerBIWidget.authorizeButtonClick";

 cc.Add(new PXLayoutRule() { StartColumn = true, ControlSize = "XM",
 LabelsWidth = "SM" });
 cc.Add(new PXTextEdit() { DataField = "ClientID", CommitChanges = true });
 cc.Add(new PXLayoutRule() { Merge = true });
 cc.Add(new PXTextEdit() { DataField = "ClientSecret",

 | Creating Widgets for Dashboards | 14

 CommitChanges = true });
 cc.Add(btn);
 cc.Add(new PXLayoutRule() { });
 cc.Add(new PXDropDown() { DataField = "DashboardID",
 CommitChanges = true });
 cc.Add(new PXDropDown() { DataField = "TileID", CommitChanges = true });
 cc.Add(new PXTextEdit() { DataField = "AccessCode",
 CommitChanges = true });
 cc.Add(new PXTextEdit() { DataField = "RedirectUri" });
 cc.Add(new PXTextEdit() { DataField = "AccessToken" });
 cc.Add(new PXTextEdit() { DataField = "RefreshToken" });

 foreach (Control wc in cc)
 {
 IFieldEditor fe = wc as IFieldEditor;
 if (fe != null) wc.ID = fe.DataField;
 wc.ApplyStyleSheetSkin(ds.Page);

 PXTextEdit te = wc as PXTextEdit;
 if (te != null) switch (te.ID)
 {
 case "ClientID":
 te.ClientEvents.Initialize =
 "PowerBIWidget.initializeClientID";
 break;
 case "ClientSecret":
 te.ClientEvents.Initialize =
 "PowerBIWidget.initializeClientSecret";
 break;
 case "AccessCode":
 te.ClientEvents.Initialize =
 "PowerBIWidget.initializeAccessCode";
 break;
 case "RedirectUri":
 te.ClientEvents.Initialize =
 "PowerBIWidget.initializeRedirectUri";
 break;
 }
 }
 return true;
}

To Open a Pop-Up Panel in the Widget Properties Dialog Box

If you need to open a pop-up panel in the Widget Properties dialog box, override the
RenderSettingsComplete() method of the widget class and create the panel within it.

The following code shows a sample implementation of the method in the predefined chart widget. The
method adds the buttons to the dialog box and creates the pop-up panel after the standard controls of
the dialog box have been created.

public override void RenderSettingsComplete(PXDataSource ds, WebControl owner)
{
 var btn = _btnConfig = new PXButton() {
 ID = "btnConfig", Width = Unit.Pixel(150),
 Text = PXLocalizer.Localize(Messages.ChartConfigure,
 typeof(Messages).FullName),
 PopupPanel = "pnlConfig", Enabled = false, CallbackUpdatable = true };
 owner.Controls.Add(btn);
 btn.ApplyStyleSheetSkin(owner.Page);

 owner.Controls.Add(CreateSettingsPanel(ds, ds.PrimaryView));
 (ds.DataGraph as ChartSettingsMaint).InquiryIDChanged += (s, e) =>
 _btnConfig.Enabled = !string.IsNullOrEmpty(e);
 base.RenderSettingsComplete(ds, owner);
}

 | Implementing Plug-Ins for Processing Credit Card Payments | 15

Implementing Plug-Ins for Processing Credit
Card Payments

Acumatica ERP processes credit card and debit card payments through the Authorize.Net payment
gateway. To work with the Authorize.Net payment gateway, Acumatica ERP supports three payment
plug-ins: Authorize.Net API, Authorize.Net AIM, and Authorize.Net CIM. For more information on these
plug-ins, see Means of Integration with Authorize.Net.

In a customized Acumatica ERP application, you can implement payment plug-ins that work with credit
card payment processing centers other than Authorize.Net. In this chapter, you can find information on
how to develop custom plug-ins and use them in Acumatica ERP.

In This Chapter

• Interfaces for Processing Credit Card Payments

• To Implement a Plug-In for Processing Credit Card Payments (Version 2 of Interfaces).

• To Implement a Plug-In for Processing Credit Card Payments (Version 1 of Interfaces).

Interfaces for Processing Credit Card Payments
Acumatica ERP provides two versions of interfaces for the implementation of plug-ins for credit card
payment processing. In this topic, you can find information about the differences between these
versions.

For both versions, you can implement tokenized processing plug-ins. When a tokenized processing
plug-in is used, credit card information is not saved to the application database and is stored only at
the processing center. The application database stores only the identification tokens that associate
customers and payment methods in the application with the credit card data on at the processing
center.

Version 2

Version 2, which has been supported since Acumatica ERP 2017R2, is more convenient, streamlined,
and feature-rich than Version 1 is. We recommend that you use this version for implementation of new
custom plug-ins.

The root interface for implementation of custom plug-ins of this version is
PX.CCProcessingBase.Interfaces.V2.ICCProcessingPlugin. The system automatically discovers the
class that implements the ICCProcessingPlugin interface and includes it in the list in the Payment
Plug-In (Type) box on the Processing Centers (CA205000) form. You also need to implement the
ICCTransactionProcessor interface to process credit card transactions.

You can also implement the following additional functionality:

• Tokenized credit card processing by implementing the ICCProfileProcessor and
ICCHostedFormProcessor interfaces.

• Processing of payments from new credit cards by implementing the ICCProfileCreator,
ICCHostedPaymentFormProcessor, and ICCTransactionGetter interfaces. If this functionality
is implemented, users can select the Accept Payment from New Card check box on the
Processing Centers form for the processing centers that use this custom plug-in.

• Synchronization of credit cards with the processing center by implementing the
ICCTransactionGetter interface. If this functionality is implemented, users can work with the
processing centers that use this custom plug-in on the Synchronize Cards (CA206000) form.

 | Implementing Plug-Ins for Processing Credit Card Payments | 16

• Retrieval of the information about transaction with the Held for Review status (without the use of
the hosted form that accepts payments) by implementing the ICCTranStatusGetter interface.

• Webhooks as a way to obtain response from the processing center by implementing the
ICCWebhookProcessor and ICCWebhookResolver interfaces.

For details on how to implement custom plug-ins of Version 2, see To Implement a Plug-In for
Processing Credit Card Payments (Version 2 of Interfaces).

: In Acumatica ERP, the Authorize.Net API (PX.CCProcessing.V2.AuthnetProcessingPlugin) plug-in
implements the interfaces of Version 2 to work with Authorize.Net. For more information about the built-in
plug-in, see Integration with Authorize.Net Through the API Plug-in.

Version 1

Version 1 is supported in Acumatica ERP 2017R2 and earlier versions.

The root class for implementation of custom plug-ins of this version is
PX.CCProcessingBase.ICCPaymentProcessing. You can implement tokenized credit card processing by
also implementing the ICCTokenizedPaymentProcessing and ICCProcessingHostedForm interfaces.

For information on how to implement custom plug-ins of Version 1, see To Implement a Plug-In for
Processing Credit Card Payments (Version 1 of Interfaces).

: In Acumatica ERP, the Authorize.Net AIM (PX.CCProcessing.AuthorizeNetProcessing) and Authorize.Net
CIM (PX.CCProcessing.AuthorizeNetTokenizedProcessing) plug-ins implement the interfaces of Version 1 to
work with Authorize.Net. For details on the built-in plug-ins, see Integration with Authorize.Net Through the
AIM Plug-in and Integration with Authorize.Net Through the CIM Plug-in.

To Implement a Plug-In for Processing Credit Card Payments
(Version 2 of Interfaces)

: We recommend that you implement new plug-ins for processing credit card payments by using Version
2 of the credit card payment processing interfaces. For details on the available versions, see Interfaces for
Processing Credit Card Payments.

In Acumatica ERP, the Authorize.Net API plug-in, which processes transactions in Authorize.Net,
implements Version 2 interfaces. For more information on this plug-in, see Integration with
Authorize.Net Through the API Plug-in. You can implement your own plug-in for working with processing
centers other than Authorize.Net, as described in this topic.

To Implement a Credit Card Processing Plug-In

1. In a class library project, define a class that implements the
PX.CCProcessingBase.Interfaces.V2.ICCTransactionProcessor interface, which provides
credit card processing functionality. In the class, implement the DoTransaction method, which
processes the transaction in the payment gateway. For details on the implementation of the
method, see ICCTransactionProcessor Interface in the API Reference.

The following code shows the declaration of a class that implements the
ICCTransactionProcessor interface.

using PX.CCProcessingBase.Interfaces.V2;

public class MyTransactionProcessor : ICCTransactionProcessor
{
 public ProcessingResult DoTransaction(ProcessingInput inputData)
 {
 ...
 }
}

https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=506b4ef7-538a-762d-0a5e-1fc75a2ca1a0

 | Implementing Plug-Ins for Processing Credit Card Payments | 17

2. If you need to implement tokenized processing, define the following classes:

• A class that implements the PX.CCProcessingBase.Interfaces.V2.ICCProfileProcessor
interface (which provides methods to manage customer and payment profiles)

• A class that implements the
PX.CCProcessingBase.Interfaces.V2.ICCHostedFormProcessor interface (which
provides methods to work with hosted forms for the creation and management of payment
profiles)

In the classes, implement the methods of the interfaces. For details on the implementation of
the interfaces, see ICCProfileProcessor Interface and ICCHostedFormProcessor Interface in the
API Reference.

3. If you need to implement payment processing without preliminary creation of payment profiles,
define the following classes:

• A class that implements the PX.CCProcessingBase.Interfaces.V2.ICCProfileCreator
interface (which provides the method to create the payment profile for a new credit card)

• A class that implements the
PX.CCProcessingBase.Interfaces.V2.ICCHostedPaymentFormProcessor interface
(which provides methods to work with hosted forms for processing payments without
preliminary creation of payment profiles)

• A class that implements the
PX.CCProcessingBase.Interfaces.V2.ICCTransactionGetter interface (which provides
the methods to obtain information about transactions by transaction ID)

In the classes, implement the methods of the interfaces. For details on the implementation of
the interfaces, see ICCProfileCreator Interface, ICCHostedPaymentFormProcessor Interface, and
ICCTransactionGetter Interface in the API Reference.

4. If you need to implement the retrieval of detailed information about transactions, which can
be used for synchronization of transactions with the processing center, define a class that
implements the PX.CCProcessingBase.Interfaces.V2.ICCTransactionGetter interface (which
provides the methods to obtain information about transactions by transaction ID).

In the class, implement the methods of the interface. For details on the implementation of the
interface, see ICCTransactionGetter Interface in the API Reference.

5. If you need to retrieve the information about transaction with the Held for Review status
(without the use of the hosted form that accepts payments), define a class that implements
the supplementary PX.CCProcessingBase.Interfaces.V2.ICCTranStatusGetter
interface (which provides the method to obtain the transaction status after execution of the
ICCTransactionProcessor.DoTransaction method).

In the class, implement the methods of the interface. For details on the implementation of the
interface, see ICCTranStatusGetter Interface in the API Reference.

6. If you need to support webhooks as a way to obtain response from the processing center, define
the following classes:

• A class that implements the PX.CCProcessingBase.Interfaces.V2.ICCWebhookProcessor
interface (which provides the methods to add, update, and delete webhooks and retrieve
the list of webhooks)

• A class that implements the PX.CCProcessingBase.Interfaces.V2.ICCWebhookResolver
interface (which parses the information that comes from the processing center through
webhooks)

In the classes, implement the methods of the interfaces. For details on the implementation of
the interfaces, see ICCWebhookProcessor Interface and ICCWebhookResolver Interface in the
API Reference.

https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=16d14e3a-df82-3c26-4412-e32e3ae32c9b
https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=70705745-3e02-17a9-4094-2ef067598839
https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=4c6814ff-3928-3533-ccab-1b1a53d20395
https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=4c6814ff-3928-3533-ccab-1b1a53d20395
https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=4c6814ff-3928-3533-ccab-1b1a53d20395
https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=4c6814ff-3928-3533-ccab-1b1a53d20395
https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=4c6814ff-3928-3533-ccab-1b1a53d20395
https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=4c6814ff-3928-3533-ccab-1b1a53d20395
https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=4c6814ff-3928-3533-ccab-1b1a53d20395

 | Implementing Plug-Ins for Processing Credit Card Payments | 18

7. Define a class that implements the
PX.CCProcessingBase.Interfaces.V2.ICCProcessingPlugin interface, which is the root
interface for credit card payment processing and is used by Acumatica ERP to find the plug-
in in the application libraries. The class should have a public parameterless constructor (either
explicit or default). In the class, implement the methods of the ICCProcessingPlugin interface
(described in detail in ICCProcessingPlugin Interface in the API Reference) as follows:

• In the ExportSettings method, which exports the required settings from the plug-in to
the Processing Centers (CA205000) form, return a collection that contains the settings
that can be configured by the user on the form. The syntax of the method is shown in the
following code.

IEnumerable<SettingsDetail> ExportSettings();

• In the ValidateSettings method, validate the settings modified on the Processing
Centers form, which are passed as the parameter of the method, and return null if
validation was successful or an error message if validation failed. The syntax of the method
is shown in the following code.

string ValidateSettings(SettingsValue setting);

• In the TestCredentials method, check the connection to the payment gateway by using
the credentials that are specified by the user on the Processing Centers form. The syntax
of the method is shown in the following code.

void TestCredentials(IEnumerable<SettingsValue> settingValues);

• In the CreateProcessor<T> method, return a new object of the T type and initialize the
object with the settings passed to the method. The T type can be any of the following:

• ICCTransactionProcessor

• ICCProfileProcessor

• ICCHostedFormProcessor

• ICCProfileCreator

• ICCHostedPaymentFormProcessor

• ICCTransactionGetter

• ICCTranStatusGetter

• ICCWebhookResolver

• ICCWebhookProcessor

If a particular T type is not supported by your plug-in, return null for this type. The
following code shows a sample implementation of the method.

public T CreateProcessor<T>(IEnumerable<SettingsValue> settingValues)
 where T : class
{
 if (typeof(T) == typeof(ICCProfileProcessor))
 {
 return new MyProfileProcessor(settingValues) as T;
 }
 if (typeof(T) == typeof(ICCHostedFormProcessor))
 {
 return new MyHostedFormProcessor(settingValues) as T;
 }
 if (typeof(T) == typeof(ICCHostedPaymentFormProcessor))
 {

https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=bccd5e25-4596-aefe-e4c8-d40bc74dad8d

 | Implementing Plug-Ins for Processing Credit Card Payments | 19

 return new MyHostedPaymentFormProcessor(settingValues) as T;
 }
 if (typeof(T) == typeof(ICCTransactionProcessor))
 {
 return new MyTransactionProcessor(settingValues) as T;
 }
 if (typeof(T) == typeof(ICCTransactionGetter))
 {
 return new MyTransactionGetter(settingValues) as T;
 }
 if (typeof(T) == typeof(ICCProfileCreator))
 {
 return new MyProfileCreator(settingValues) as T;
 }
 if (typeof(T) == typeof(ICCWebhookResolver))
 {
 return new MyWebhookResolver() as T;
 }
 if (typeof(T) == typeof(ICCWebhookProcessor))
 {
 return new MyWebhookProcessor(settingValues) as T;
 }
 if (typeof(T) == typeof(ICCTranStatusGetter))
 {
 return new MyTranStatusGetter() as T;
 }
 return null;
}

8. Build your project.

9. To add your plug-in to Acumatica ERP, either manually copy the assembly that contains the plug-
in to the Bin folder of the Acumatica ERP website or include the assembly in the customization
project. (When the customization project is published, the assembly is copied to the Bin folder
automatically.) During startup, the system automatically discovers the class that implements the
ICCProcessingPlugin interface and includes it in the list in the Payment Plug-In (Type) box
on the Processing Centers form.

To Implement a Plug-In for Processing Credit Card Payments
(Version 1 of Interfaces)

: We recommend that you implement new plug-ins for processing credit card payments by using Version
2 of the credit card payment processing interfaces. For details on the available versions, see Interfaces for
Processing Credit Card Payments.

In Acumatica ERP, the Authorize.Net AIM and Authorize.Net CIM plug-ins, which process transactions in
Authorize.Net, implement Version 1 interfaces. For more information on these plug-ins, see Integration
with Authorize.Net Through the AIM Plug-in and Integration with Authorize.Net Through the CIM Plug-
in. You can implement your own plug-in for working with processing centers other than Authorize.Net,
as described in this topic.

To Implement a Credit Card Processing Plug-In

1. In a class library project, define a class that derives from the
PX.CCProcessingBase.ICCPaymentProcessing abstract class, which is the root class that
communicates with the authorization center. In your class, implement the abstract methods
of the ICCPaymentProcessing class. For details on the implementation of these methods, see
ICCPaymentProcessing Class in the API Reference.

2. If you need to implement tokenized processing, define the following classes:

https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=a1a03a50-9088-5cee-2e16-1307139adfd0

 | Implementing Plug-Ins for Processing Credit Card Payments | 20

• A class that implements the ICCTokenizedPaymentProcessing interface, which provides
the methods that are necessary for tokenized processing.

• A class that implements the ICCProcessingHostedForm interface, which contains
the methods for managing the hosted form. On this form, the user enters credit card
information, which is then sent to the processing center.

For more details on the methods of the interfaces, see ICCTokenizedPaymentProcessing
Interface and ICCProcessingHostedForm Interface in the API Reference.

3. Build your project.

4. To add your plug-in to Acumatica ERP, either manually copy the assembly that contains the plug-
in to the Bin folder of the Acumatica ERP website or include the assembly in the customization
project. (When the customization project is published, the assembly is copied to the Bin folder
automatically.) During startup, the system automatically discovers the class that derives from
the ICCProcessingPlugin abstract class and includes the custom class in the list in the
Payment Plug-In (Type) box on the Processing Centers (CA205000) form.

https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=c47333bd-853c-569f-1145-a6e639bcd8ec
https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=c47333bd-853c-569f-1145-a6e639bcd8ec
https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=2a76f714-8cac-e26d-f9f9-3790aedbf2f7

	Contents
	Copyright
	Plug-In Development Guide
	Creating Widgets for Dashboards
	Widget Creation
	Use of the Widgets
	To Create a Simple Widget
	To Create an Inquiry-Based Widget
	To Load a Widget Synchronously or Asynchronously
	To Add a Script to a Widget
	To Add Custom Controls to the Widget Properties Dialog Box

	Implementing Plug-Ins for Processing Credit Card Payments
	Interfaces for Processing Credit Card Payments
	To Implement a Plug-In for Processing Credit Card Payments (Version 2 of Interfaces)
	To Implement a Plug-In for Processing Credit Card Payments (Version 1 of Interfaces)

	Feature Name: PLUG-INS
	Guide Name: DEVELOPER GUIDE
	Product Name: Acumatica ERP 2019 R1

