


 | Contents | 2

Contents

Copyright......................................................................................................9

About the Guide......................................................................................... 10

Introduction............................................................................................... 11

Acumatica Customization Platform.............................................................12
Customization Project..................................................................................................... 12

Types of Items in a Customization Project............................................................... 13
Deployment of Customization................................................................................. 17
Simultaneous Use of Multiple Customizations........................................................... 17
Customization of a Multi-Company Site................................................................... 18

Customization Tools........................................................................................................19
Customization Projects Form.................................................................................. 20
Customization Menu.............................................................................................. 21
Element Inspector.................................................................................................23
Customization Project Editor...................................................................................25
Source Code Browser............................................................................................ 51

Customization Framework............................................................................................... 53
Changes in Webpages (ASPX)................................................................................ 54
Changes in the Application Code (C#).....................................................................55
Changes in the Database Schema...........................................................................80
Custom Processes During Publication of a Customization............................................81

Performing Customization..........................................................................83
To Assign the Customizer Role to a User Account...............................................................83

User Access Rights for Customization...................................................................... 84
To Detect Whether a Customization Project Is Applied to the Application............................... 85
Exploring the Source Code.............................................................................................. 86

To Explore the C# Code of a BLC........................................................................... 87
To Explore the C# Code of a DAC.......................................................................... 88
To Explore the ASPX Code of a Page.......................................................................88
To Find a Customization of the ASPX Code...............................................................89
To Find Source Code by a Fragment....................................................................... 91

To Develop a Customization Project..................................................................................92
To Perform Final Testing of a Customization...................................................................... 93
To Deploy a Customization Project................................................................................... 93

Managing Customization Projects.............................................................. 95
To Create a New Project................................................................................................. 96
To Select an Existing Project........................................................................................... 98
To Open a Project.......................................................................................................... 99



 | Contents | 3

To Update a Project........................................................................................................99
To Delete a Project.......................................................................................................100
To Export a Project.......................................................................................................101
To Import a Project...................................................................................................... 103
To Replace the Content of a Project from a Package......................................................... 104
To Merge Multiple Projects.............................................................................................106
To Manipulate Customization Projects from the Code........................................................ 107

GetPackage() Method...........................................................................................108
PublishPackages() Method.................................................................................... 109
UnpublishAllPackages() Method............................................................................. 110
UploadPackage() Method...................................................................................... 111

Publishing Customization Projects........................................................... 112
To Prepare a Project for Publication................................................................................112
To Publish a Single Project............................................................................................ 113
To Publish Multiple Projects........................................................................................... 113

Performing the Publication Process........................................................................ 114
Validating Customization Code.............................................................................. 115

To Publish the Current Project....................................................................................... 115
To Publish the Current Project with a Cleanup Operation................................................... 115
To Publish a Customization for a Multi-Company Site........................................................ 116
To View a Published Customization.................................................................................117
To Unpublish a Customization........................................................................................ 118

Unpublishing Customization Projects......................................................................119

Managing Items in a Project....................................................................120
Customized Screens......................................................................................................121

To Add a Page Item for an Existing Form...............................................................121
To Delete a Page Item from a Project....................................................................124
To Add a New Custom Form to a Project............................................................... 124
To Delete a Custom Form from a Project............................................................... 125
To Delete Items from the Project on the Edit Project Items Page............................... 125

Customized Data Classes...............................................................................................126
To Add a DAC Item for an Existing Data Access Class to a Project............................. 127
To Delete a DAC Item from a Project.................................................................... 129
To Convert a DAC Item to a Code Item................................................................. 130
To Upgrade Technology for Legacy DAC Customization............................................. 131

Code........................................................................................................................... 134
To Create a Custom Business Logic Controller.........................................................136
To Create a Custom Data Access Class.................................................................. 136
To Customize an Existing Business Logic Controller................................................. 138
To Customize an Existing Data Access Class........................................................... 141
To Add Custom Code to a Project......................................................................... 142
To Add a Customization Plug-In to a Project...........................................................143
To Delete a Code Item From a Project...................................................................144
To Move a Code Item to the Extension Library........................................................144



 | Contents | 4

Custom Files................................................................................................................ 145
To Add a Custom File to a Project.........................................................................145
To Update a File Item in a Project........................................................................ 146
To Delete a Custom File From a Project................................................................. 149

Generic Inquiries.......................................................................................................... 149
To Add a Generic Inquiry to a Project....................................................................149
To Delete a Generic Inquiry from a Project.............................................................151
To Update Generic Inquiry Items in a Project......................................................... 151
To Redirect to the Generic Inquiry Form................................................................ 152

Custom Reports............................................................................................................153
To Add a Custom Report to a Project.................................................................... 154
To Delete a Custom Report from a Project............................................................. 155
To Update a Custom Report in a Project................................................................ 155

Site Map......................................................................................................................156
To Add a Site Map Node to a Project.....................................................................156
To Delete a Site Map Item from a Project.............................................................. 158
To Update a Site Map Node in a Project.................................................................158
To Redirect to the Site Map Form..........................................................................158

Database Scripts.......................................................................................................... 158
To Add a Custom Table to a Project...................................................................... 159
To Update Custom Tables in the Project.................................................................160
To Add a Custom SQL Script to a Project...............................................................161
To Edit a Custom SQL Script................................................................................ 166
To Delete an Sql Item From a Project....................................................................166

System Locales............................................................................................................ 167
To Add a System Locale to a Project..................................................................... 167
To Delete a System Locale from a Project.............................................................. 169
To Update a Custom System Locale in a Project......................................................169
To Redirect to the System Locales Form................................................................ 170

Import and Export Scenarios......................................................................................... 170
To Add an Integration Scenario to a Project........................................................... 171
To Delete an Integration Scenario from a Project.................................................... 172
To Update an Integration Scenario in a Project....................................................... 172
To Redirect to the Import Scenarios Form.............................................................. 173

Shared Filters.............................................................................................................. 173
To Add a Shared Filter to a Project....................................................................... 174
To Delete a Shared Filter from a Project................................................................ 175
To Update a Shared Filter in a Project................................................................... 175
To Redirect to the Filters Form............................................................................. 176

Access Rights...............................................................................................................176
To Add Access Rights to a Project......................................................................... 177
To Delete Access Rights from a Project..................................................................178
To Update Access Rights in a Project.....................................................................178
To Redirect to the Access Rights by Screen Form.................................................... 179

Wikis...........................................................................................................................179



 | Contents | 5

To Add a Custom Wiki to a Project........................................................................180
To Delete a Custom Wiki from a Project................................................................ 181
To Update a Custom Wiki in a Project................................................................... 181
To Redirect to the Wiki Form................................................................................182

Web Service Endpoints..................................................................................................182
To Add a Custom Web Service Endpoint to a Project................................................183
To Delete a Custom Web Service Endpoint from a Project.........................................184
To Update a Custom Web Service Endpoint in a Project........................................... 184
To Redirect to the Web Service Endpoints Form...................................................... 184

Analytical Reports.........................................................................................................185
To Add a Custom Analytical Report to a Project...................................................... 186
To Delete a Custom Analytical Report from a Project............................................... 187
To Update a Custom Analytical Report in a Project.................................................. 187
To Redirect to the Report Definitions Form............................................................. 188

Customizing Elements of the User Interface............................................ 189
Custom Form............................................................................................................... 192

To Develop a Custom Form.................................................................................. 193
To Create a Custom Form Template.......................................................................194
To Delete a Custom Form from a Project............................................................... 197

Existing Form...............................................................................................................197
To Start a Customization of a Form.......................................................................198
To Delete a Customization of a Form.....................................................................199
To Add a Form Container..................................................................................... 199
To Add a Grid Container...................................................................................... 200
To Add a Tab Container....................................................................................... 200
To Add a Dialog Box............................................................................................203
To Delete a Container..........................................................................................204

Form Container (PXFormView)....................................................................................... 205
To Open a Container in the Layout Editor...............................................................207
To Set a Container Property................................................................................. 207
To Add a Nested Container...................................................................................211
To Add a Box for a Data Field.............................................................................. 212
To Add a Layout Rule.......................................................................................... 214
To Add Another Supported Control........................................................................ 216
To Reorder Child UI Elements............................................................................... 217
To Delete a Child UI Element............................................................................... 218

Grid Container (PXGrid)................................................................................................ 219
To Add a Column for a Data Field......................................................................... 221
To Add a Control to the Form View of a Grid.......................................................... 224

Tab Container (PXTab).................................................................................................. 226
Tab Item Container (PXTabItem).................................................................................... 227

To Conditionally Hide a Tab Item.......................................................................... 228
Dialog Box (PXSmartPanel)............................................................................................228

To Open a Smart Panel in the Layout Editor........................................................... 229
Box (Control for a Data Field)....................................................................................... 230



 | Contents | 6

To Select a Box in the Layout Editor..................................................................... 231
To Set a Box Property......................................................................................... 232
To Change the Type of a Box............................................................................... 233

Layout Rule (PXLayoutRule)...........................................................................................235
To Select a Layout Rule in the Layout Editor.......................................................... 238
To Set a Layout Rule Property.............................................................................. 239

Panel (PXPanel)............................................................................................................247
Group Box (PXGroupBox).............................................................................................. 248

To Open a Group Box in the Layout Editor............................................................. 248
To Create a Group Box for a Drop-Down Field........................................................ 249
To Set a Group Box Property................................................................................250

Label (PXLabel)............................................................................................................ 252
Radio Button (PXRadioButton)........................................................................................252

To Bind a Radio Button to a Value in the List of a Data Field.....................................253
Button (PXButton)........................................................................................................ 253

To Use a Button in a Dialog Box........................................................................... 254
To Use a Button to Invoke a Method..................................................................... 255

Java Script (PXJavaScript)............................................................................................. 257
Toolbars, Action Buttons, and Menus.............................................................................. 258
Other Control Types......................................................................................................258

Customizing Business Logic..................................................................... 259
Data Access Class........................................................................................................ 259

To Start the Customization of a Data Access Class.................................................. 259
To Add a Custom Data Field.................................................................................261
To Create a New DAC..........................................................................................263
To Create a DAC Extension.................................................................................. 265

Data Field....................................................................................................................266
To Customize a Field on the DAC Level..................................................................267
To Customize a Field on the Graph Level............................................................... 269
To Set a Default Value.........................................................................................269
To Change the Label of a Field............................................................................. 271
To Make a Field Mandatory...................................................................................272
To Customize the Table of a Selector Field............................................................. 274
To Add an Event Handler for a Field......................................................................275
To Provide Multi-Language Support for a Field........................................................ 276

Graph..........................................................................................................................278
To Start the Customization of a Graph...................................................................279
To Create a Custom Graph...................................................................................282
To Add a New Member........................................................................................ 282
To Add an Action................................................................................................ 283
To Add an Event Handler..................................................................................... 284
To Override an Event Handler...............................................................................286
To Override a Virtual Method................................................................................288

Data View....................................................................................................................291
To Override a Data View...................................................................................... 292



 | Contents | 7

To Add a Data View Delegate............................................................................... 292
To Override a Data View Delegate.........................................................................293

Action......................................................................................................................... 294
To Start the Customization of an Action.................................................................294
To Override an Action Delegate Method................................................................. 296
To Rename an Action Button................................................................................ 296
To Disable or Enable an Action............................................................................. 298
To Hide or Show an Action...................................................................................298

Customizing the Database Schema.......................................................... 301
To Create a Custom Table............................................................................................. 301
To Create a Custom Column in an Existing Table..............................................................303
To Create an Extension Table.........................................................................................303

Requirements for an Extension Table Schema......................................................... 303
DAC Extension Mapped to an Extension Table.........................................................304

To Add a Custom SQL Script to a Customization Project....................................................310

Integrating the Project Editor with Microsoft Visual Studio......................312
To Work with a Code Item............................................................................................ 312
To Work with Data Access Classes..................................................................................313
To Debug the Customization Code..................................................................................313
To Synchronize Code Changes with the Customization Project............................................ 314

Integrating the Project Editor with a Version Control System.................. 315
To Save a Project to a Local Folder................................................................................ 316
To Update the Content of a Project from a Local Folder.....................................................318
To Configure a Connection String................................................................................... 319
To Integrate the Customization Project Editor with TFS..................................................... 320
To Integrate the Customization Project Editor with Git...................................................... 321

Troubleshooting Customization................................................................ 322
To Discover the Method That Has Thrown an Exception.....................................................322
To Write to the Trace Log from the Code........................................................................ 324
To Log All Exceptions to a File.......................................................................................326
To Debug the Customization Code..................................................................................326
To Validate a BQL Statement......................................................................................... 327
To Measure the Execution Time of a BQL Statement......................................................... 330
To Discover the Cause of Performance Degradation.......................................................... 334
To Force the Platform to Execute Database Scripts........................................................... 338
To Resolve Issues While Upgrading a Customized Website................................................. 338

To Validate the Compatibility of the Published Customization with a New Version Before an Upgrade339
To Resolve an Issue Discovered During the Validation.............................................. 341
To Use the Technical Release Notes to Find the Breaking Changes............................. 343
To Use an Ignore List for the Validation Errors........................................................345

Examples.................................................................................................. 346
Examples of User Interface Customization.......................................................................346



 | Contents | 8

Dragging, Moving, and Deleting UI Controls and Grid Columns..................................346
Adding Input Controls..........................................................................................354
Adding Advanced Controls....................................................................................358
Adding Columns to a Grid.................................................................................... 365
Modifying Columns in a Selector........................................................................... 368
Adding PXLayoutRule Components.........................................................................373

Examples of Functional Customization.............................................................................389
Adding Data Fields.............................................................................................. 390
Customizing DAC Attributes..................................................................................400
Modifying a BLC Action........................................................................................ 404
Modifying a BLC Data View.................................................................................. 408
Declaring or Altering a BLC Data View Delegate......................................................411
Extending BLC Initialization.................................................................................. 415
Altering the BLC of a Processing Form...................................................................419
Adding or Altering BLC Event Handlers.................................................................. 423
Altering BLC Virtual Methods................................................................................ 433

Appendix.................................................................................................. 440
Reports....................................................................................................................... 440

Report Form....................................................................................................... 440
Report................................................................................................................444

Form Toolbar................................................................................................................445
Table Toolbar............................................................................................................... 447
Glossary...................................................................................................................... 450



 | Copyright | 9

Copyright

© 2017 Acumatica, Inc.
ALL RIGHTS RESERVED.

No part of this document may be reproduced, copied, or transmitted without the express prior consent
of Acumatica, Inc.

11235 SE 6th, Suite 140
Bellevue, WA 98004

Restricted Rights

The product is provided with restricted rights. Use, duplication, or disclosure by the United States
Government is subject to restrictions as set forth in the applicable License and Services Agreement
and in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 or subparagraphs (c)(1) and (c)(2) of the Commercial Computer Software-Restricted
Rights at 48 CFR 52.227-19, as applicable.

Disclaimer

Acumatica, Inc. makes no representations or warranties with respect to the contents or use of this
document, and specifically disclaims any express or implied warranties of merchantability or fitness for
any particular purpose. Further, Acumatica, Inc. reserves the right to revise this document and make
changes in its content at any time, without obligation to notify any person or entity of such revisions or
changes.

Trademarks

Acumatica is a registered trademark of Acumatica, Inc. HubSpot is a registered trademark of HubSpot,
Inc. Microsoft Exchange and Microsoft Exchange Server are registered trademarks of Microsoft
Corporation. All other product names and services herein are trademarks or service marks of their
respective companies.

Software Version: 6.1

Last updated: July 20, 2017



 | About the Guide | 10

About the Guide

This guide describes the scope of the Acumatica Customization Platform and provides guidelines on how
to use the platform capabilities for the customization of Acumatica ERP.

The guide is intended to answer the following questions:

• How does the Acumatica Customization Platform work? (Acumatica Customization Platform)

• How to start, develop, test, and deploy a customization project? (Performing Customization)

• How to create, open, update, delete, publish, unpublish, export, and import a customization
project? (Managing Customization Projects)

• How to create, add, update, and delete each type of item (such as screens, data access classes,
code, files, and reports) in a customization project? (Managing Items in a Project)

• How to publish a single customization project or multiple project for a single company or multi-
company site? (Publishing Customization Projects)

• How to create a custom form and customize the look and behavior of an existing form of
Acumatica ERP? (Customizing Elements of the User Interface)

• How to create custom code or extensions for an existing data access class or business logic
controller? (Customizing Business Logic)

• How to customize an existing table or create a custom table in the database? (Customizing the
Database Schema)

• How to use Microsoft Visual Studio to develop the customization code? (Integrating the Project
Editor with Microsoft Visual Studio)

• How to integrate with TFS, Git, or another version control system? (Integrating the Project Editor
with a Version Control System)

• What can I do to solve an issue that occurs while I am developing or applying a customization?
(Troubleshooting Customization)

• Which examples can I use to enhance my understanding of the customization tasks I will
perform? (Examples)



 | Introduction | 11

Introduction

You can change the user interface and business logic of Acumatica ERP, as well as build custom
application modules that can be added to the system. The following diagram illustrates the different
types of changes that you can make to the system within the scope of the customization process.

Figure: Customization of Acumatica ERP

As a value-added reseller (VAR), you can deliver end-user customization that might be very specific
to each particular customer. At this level, you might want to add custom reports and data filters, and
configure generic inquiries for users. These changes do not involve programming unless you also want
to modify the business logic and the user interface of the application. For more information on the web-
based Generic Inquiry builder and the Acumatica Report Designer, see Managing Generic Inquiries and
Report Designer.

As an independent software vendor (ISV), you can develop vertical solutions and add-ons to the core
functionality of the system. At this level, you might want to modify the business logic and the UI of
the application, which you can do by using the Acumatica Customization Platform. To develop custom
application modules, you can use the API that is provided by the Acumatica Framework.

As an original equipment manufacturer (OEM), you can build your own cloud ERP products based on
high-level application objects of Acumatica ERP and the underlying Acumatica Framework technology.
This type of customization may involve intensive changes at all levels of the system: modifications of
the business logic and UI, development of custom modules, and report building.



 | Acumatica Customization Platform | 12

Acumatica Customization Platform

To customize Acumatica ERP, you can use the following parts of the Acumatica Customization Platform:

• The web-based Customization Tools to customize the UI and business logic and to gather the
changes into a distributable package that can be deployed to and applied on a target system

• The Customization Framework to develop customization code that changes the business logic of
Acumatica ERP

Since an instance of Acumatica ERP consists of the website and the database, you can use the platform
to customize both of these components. The website customization can include custom DLLs, custom
and modified ASPX files, and files with custom C# code that modifies the UI and business logic of the
product. The database customization can include changes in both the data and the schema of the
database.

This part describes in detail the technologies implemented in the Acumatica Customization Platform.

In This Part

• Customization Project

• Customization Tools

• Customization Framework

Customization Project
When you use the tools provided by the Acumatica Customization Platform, the platform uses a
customization project as a container that holds each change you make during the customization.

An Acumatica Customization Project is a set of changes to the user interface, configuration data, and
functionality of Acumatica ERP. As the following diagram shows, a customization project might include
any of the following:

• New custom forms and modifications to the existing forms of Acumatica ERP

• Custom C# code

• Custom database scripts

• Custom or modified reports (Acumatica Report Designer reports, generic inquiries, and analytical
reports)

• Changes in the application configuration (site map changes, new system locales, integration
scenarios, shared reusable filters, access rights of roles to forms, changes of wikis) that are saved
in the database for the current company

• Additional files that you need for Acumatica ERP customization



 | Acumatica Customization Platform | 13

Figure: Content of a customization project

You develop and maintain customization projects by using the tools of the Acumatica Customization
Platform (see Customization Tools for details). This platform provides the mechanisms to develop,
upgrade, publish, unpublish (that is, cancel publication), export, and import a customization project.
The content of a customization project is stored in the database of the Acumatica ERP instance.

To perform any customization of the UI or to extend the business logic, you have to create a new
customization project or modify an existing one. (See To Create a New Project and To Select an Existing
Project for details.)

Once you have selected a customization project for development, the customizations you perform
will be added to this project. The customization project holds each change you make during the
customization; however before the project is published, the changes exist only in the project and are
not yet applied to the product. To apply the content of a customization project to Acumatica ERP, you
have to publish the project.

When you need to apply the developed customization to a target environment, you should add all
the changes and additional files to the customization project and export the project as a deployment
package—a complete redistributable customization package. Then in the target environment, you
import the package and publish the project.

You can create as many customization projects as you need and independently develop and maintain
each customization project for a specific customization task.

In This Chapter

• Types of Items in a Customization Project

• Deployment of Customization

• Simultaneous Use of Multiple Customizations

• Customization of a Multi-Company Site

Types of Items in a Customization Project
When you customize an instance of Acumatica ERP by using the Customization Project Editor, the
platform keeps all items of a customization project as records in the CustObject table of the database.
Each record in this table keeps the data of an item, and includes the XML code of the item in a special
field. When you add an item to a customization project, the platform adds the new record to the table,
creates the XML code of the item, and stores the code within the Content field of the record.

:  You can view the content of an item of a customization project by using the Item XML Editor of the
Customization Project Editor, as the following screenshot shows.



 | Acumatica Customization Platform | 14

Figure: Viewing the content of an item of a customization project in the Item XML Editor

Different item types have XML code that is structured differently. For example, if you create the
UsrPersonalID bound custom field in the CR.Contact DAC (which is mapped to the SOOrder table) and
the control for the field on the Customers (AR.30.30.00) form, the customization project might contain
the following new objects:

• An item with the following XML code to add the column to the DB table.

<Table TableName="Contact">
  <Column TableName="Contact" ColumnName="UsrPersonalID" ColumnType="string" 
          AllowNull="True" MaxLength="15" DecimalPrecision="2"
          DecimalLength="15" IsNewColumn="True" IsUnicode="True" />
</Table>

• An item with the following XML code to add the field to the DAC.

<DAC type="PX.Objects.CR.Contact">
  <Field FieldName="UsrPersonalID" TypeName="string" MapDbTable="Contact" 
         TextAttributes="#CDATA" StorageName="AddColumn">
    <CDATA name="TextAttributes">
    <![CDATA[[PXDBString(15)][PXUIField(DisplayName="Personal ID")]]]></CDATA>
  </Field>
</DAC>

• An item with the following XML code to add the control to the form.

<Page path="~/pages/ar/ar303000.aspx" ControlId="5"
      pageSource="...binary content of the page...">
  <PXFormView ID="DefContact" ParentId="phG_tab_Items#0_DefContact"
              TypeFullName="PX.Web.UI.PXFormView">
    <Children Key="Template">



 | Acumatica Customization Platform | 15

      <AddItem>
        <PXTextEdit TypeFullName="PX.Web.UI.PXTextEdit">
          <Prop Key="Virtual:ApplyStylesheetSkin" />
          <Prop Key="ID" Value="CstPXTextEdit2" />
          <Prop Key="DataField" Value="UsrPersonalID" />
          <Prop Key="CommitChanges" Value="True" />
        </PXTextEdit>
      </AddItem>
    </Children>
  </PXFormView>
</Page>

Note that the items in these code blocks differ by type (Table, DAC, and Page) and structure.

All the possible types of items in a customization project are described in the following table.

Item Types Within a Customization Project

Item Type
(XML Tag, if
differs)

Object Description Editing Form Is
Unpublished

Page Custom form or
changes to an
existing form

For an existing form, layout
change instructions that have
to be applied by the platform
to the ASPX code of the form
during the project publication;
for a custom form, the content
of the form and path to the
.aspx file of the form (the path
is required for the system to
detect changes of the file on the
file system in the development
environment and to deploy the
file while publishing the project)

Layout Editor Yes

DAC Changes to an
existing data
access class

The data required to create the
corresponding extension for the
original data access class

Data Class
Editor

Yes

Table Changes to
the schema
of an existing
database table

Description of custom columns
added to a table for bound
custom fields created in the
appropriate DAC

- -

Code (Graph) Custom C#
code

A custom DAC or BLC, an
extension for an existing DAC
or BLC, a customization plug-
in, or any custom class: the
listed class types differ by the
base class—correspondingly,
PX.Data.IBqlTable, PXGraph<>,
PXCacheExtension<>,
PXGraphExtension<>,
CustomizationPlugin, and no
or any base class for a custom
class

Code Editor Yes

File Custom file Path to a custom file and GUID
of the file content in the file
storage of the database (the
path is relative to the website
folder; new custom forms are
added to the project as custom
files)

File Editor Yes



 | Acumatica Customization Platform | 16

Item Type
(XML Tag, if
differs)

Object Description Editing Form Is
Unpublished

GenericInquiryScreenCustom or
customized
generic inquiry

Data set of a custom or
customized generic inquiry form

Generic
Inquiry form
(SM.20.80.00)

-

Report Custom
Acumatica
Report
Designer report

Data set of a custom report
created by using the Acumatica
Report Designer

Acumatica
Report
Designer

-

SiteMapNode Custom or
customized site
map node

Data set of a custom or
customized site map node;
you should create a custom
site map node for each custom
form, generic inquiry, or report
included in the customization
project

Site Map form
(SM.20.05.20)

-

Sql Custom SQL
script

Custom database table definition
or custom SQL script that
has to be executed while
the customization project is
published

SQL Script
Editor

-

Locale Custom locale Data set of a custom system
locale, which is a set of
parameters that defines the
language and other local
preferences—such as how to
display numbers, dates, and
times in the user interface—for a
group of users

System
Locales form
(SM.20.05.50)

-

XportScenario Custom
integration
scenario

Data set of a custom export or
import scenario used to perform
data migration between a legacy
application and Acumatica ERP

Import
Scenarios form
(SM.20.60.25)
and Export
Scenarios form
(SM.20.70.25)

-

SharedFilter Custom shared
filter

Data set of a custom reusable
shared filter created on a
processing or inquiry form

Filters form
(CS.20.90.10)

-

ScreenWithRightsCustom access
rights to a form

Data set of the custom access
rights of roles to a form, down
to the control of form elements,
such as buttons, text boxes, and
check boxes

Access Rights
by Screen form
(SM.20.10.20)

-

WikiArticle Custom wiki
module

Data set of a custom wiki and all
the articles created within this
wiki

Wiki form
(SM.20.20.05)

-

EntityEndpoint Custom
web service
endpoint

Data set of a custom web service
endpoint

Web Service
Endpoints form
(SM.20.70.60)

-

ReportDefinition Custom
analytical
report

Data set of a custom analytical
report, including the data of
a predefined sets of rows,
columns, and units

Report
Definitions
form
(CS.20.60.00)

-



 | Acumatica Customization Platform | 17

Deployment of Customization
Once you have finished a customization project, you can export the project as a deployment package
that can be then imported and published as a customization on the end-user systems, as shown in the
following diagram.

Figure: Deployment of customization to target systems

A deployment package is a redistributable .zip file that includes the full content of a customization
project. A deployment package consists of the project.xml file and any custom files that you have
added to the project, such as external assemblies and custom ASPX pages. You can manually edit the
project.xml file in an XML Editor in the file system. However we recommend that you modify the
project items in the easiest and most reliable way: by using the Customization Project Editor.

When the project is finished, you can download the deployment package to deploy the customization to
the target system (see To Export a Project for details). If you have finished the project, we recommend
that you publish the project and test the customization before downloading the deployment package,
to ensure that you have no issues. Also, you can download the package to have a backup copy of the
customization project you are working on.

You can import a deployment package to work with the customization project or to publish the final
customization on the target website (see To Import a Project for details).

:  In MySQL, the maximum size of one packet that can be transmitted to or from a server is 4MB by
default. If you use MySQL and want to manage a customization project with the size that is larger than
the default maximum value, you have to increase the max_allowed_packet variable in the server. The
largest possible packet size is 1GB.

Simultaneous Use of Multiple Customizations
With the Acumatica Customization Platform, you can simultaneously manage multiple customizations by
using the Customization Projects (SM.20.45.05) form, also described in Customization Projects Form .
You can publish multiple customization projects to an Acumatica ERP instance at once.

When you publish more that one customization project, the platform merges the content of all projects
into a single customization project. If different projects include customization for the same object, the
platform tries to merge the changes by using the following approach:

• If the changes can be merged, the platform merges them. For example, the platform can merge
different properties of the same control in an ASPX page.

• If the changes cannot be merged, as with the same report being in different customization
projects, the platform stops the process and displays an error message.

On the Customization Projects form, you can specify an optional number (level) for each customization
project, assigning the highest number to the most important change. The level can be used to resolve
conflicts that arise while you are publishing customization projects if multiple modifications of the same
objects of an Acumatica ERP instance are merged. As a result, the customization from the project with
the highest level is added to the merged project.



 | Acumatica Customization Platform | 18

Multilevel customizations might be required when you develop an off-the-shelf customization solution
that is distributed in multiple editions, or applications that extend the functionality of Acumatica ERP or
other software based on Acumatica Framework in multiple markets. You may have a customization that
contains a solution common to all markets as well as multiple market-specific customizations, each of
which is deployed along with the base customization. Moreover, you can later apply a high-level project
to customize deployed solutions for the end user.

However if you have multiple customizations of the same object and have no market requirements
to keep multilevel customizations, we recommend that you merge the customizations into a single
customization project, as described in To Merge Multiple Projects.

Customization of a Multi-Company Site
The data of each company that uses the same instance of Acumatica ERP is isolated in the database.

Because a customization project is stored in the database, by default, the project data belongs to the
company in which the project is created or imported. When the project is published, the customization
applies to both the website files and the database. Because a customization project can contain
different types of items, the platform uses a specific approach to apply each type of items to the
website, database schema, and database data.

Initially the Page, DAC, Table, SQL, and Code items of a customization project are stored in the
database for a single company. However, while the project is being published, the platform creates
certain files for these items in the website folder or changes the database schema, if required. The new
files and the changed database schema are available from other companies. As a result, the listed item
types are applied for multiple companies.

During the publication of the project, for each File item, the platform creates the file in the file system,
so File items are shared for multiple companies as well.

For example, suppose you have logged in to the MyCompany company and have a customization
project that contains only items of the Page, DAC, Table, Code, and File types. After you have published
the project, the customization is applied to each company in the instance of Acumatica ERP. But the
customization project data is still available only in the MyCompany company.

However if you publish a customization project that contains items of other types (such as generic
inquiries and access rights of roles to forms), the customization does not apply to the website files
or to the database schema. This data is stored only in the database, and the application server uses
the data from the database at run time. Because this data is company-specific, it is available in only
the company where it was published. Moreover, for all companies that use the same site, on the Login
form and in the About Acumatica box, you can see that the website is customized, but you won't see
any published project on the Customization Projects (SM.20.45.05) form. This form, also described
in Customization Projects Form , displays the customization projects that have been uploaded to the
current company; therefore, no projects are displayed if they have been uploaded and published under
another company.

You can publish multiple customization projects for multiple companies at once. On the Customization
Projects form, you can select the customization projects that you need to publish for multiple
companies and use the Publish to Multiple Companies action to open the Publish to Multiple
Companies dialog box. You then select the required companies and apply the selected customization
projects to the selected companies. (See To Publish a Customization for a Multi-Company Site for
details.)

The following table shows the differences in applying a customization to a multi-company website if
the customization that has been published from another company is shared or not shared for your
company.



 | Acumatica Customization Platform | 19

Question Customization
published
for a multi-
company site
from another
company is
shared for your
company

Customization
published
for a multi-
company site
from another
company is NOT
shared for your
company

Is the customization applied to the application instance (see
To Detect Whether a Customization Project Is Applied to the
Application for more information) for your company?

Yes Yes

Do changes in the file system (Page, DAC, and Code items)
exist for your company?

Yes Yes

Do changes of the database schema (Table and SQL items)
exist for your company?

Yes Yes

Do custom reports and configuration (such items as Report,
SiteMapNode, and SharedFilter) exist for your company?

Yes No

Does the project list on the Customization Projects
form contain the project? (That is, can you access the
customization project data from your company?)

No No

Is it necessary to import the customization package to
access the customization project data from your company?

Yes Yes

After the customization package is imported for your
company and added to the list on the Customization Projects
form, is the project displayed in the list as an already
published one?

Yes No

Customization Tools
Depending on the complexity of the particular customization task, you can employ any the tools
implemented in the Acumatica Customization Platform.

For every type of customization, you can use the tools described in the following topics:

• Customization Projects Form

• Customization Menu

• Element Inspector

• Customization Project Editor

• Layout Editor

• ASPX Editor

• Data Class Editor

• Code Editor

• File Editor

• SQL Script Editor

• XML Editors

• Project XML Editor

• Item XML Editor



 | Acumatica Customization Platform | 20

• Source Code Browser

Customization Projects Form
The Acumatica Customization Platform stores the data of the customization projects that were created
or imported in the database of the instance of Acumatica ERP.

You can manage customization projects on the Customization Projects (SM.20.45.05) form, which is
shown in the following screenshot.

Figure: Viewing the Customization Projects form

On this form, you can add a new customization project, open a customization project for editing in
Customization Project Editor, publish any number of customization projects, cancel the publication
of customization projects, export a customization project as the deployment package, import a
customization project from an existing deployment package, and delete a customization project. (See
Managing Customization Projects for instructions.)

Published Customization Page

The Published Customization page of the Customization Projects (SM.20.45.05) form shows the merged
XML code of the customization projects that are currently published. On the Published Customization
page, you can:

• View the code.

• Download the deployment package that contains the code.

The following screenshot shows the merged project, which contains customizations introduced by two
different projects for the forms with the CR303010 and PO301000 identifiers.



 | Acumatica Customization Platform | 21

Figure: Viewing the merged XML code of the published customization projects

The Published Customization page includes a toolbar and a text area for viewing XML code. The text
area displays the XML content of a merged customization project. This area is not used for editing the
XML code.

The toolbar buttons of this page are described in the following table.

Button Description

Save to database Is not used.

Download
Package

Downloads the Customization.zip file, which includes the full content of
the merged customization project. You can use this file as a joint deployment
package to work with the customization project or to publish the final
customization on the target website. See To Merge Multiple Projects for details.

Upload Package Is not used.

Choose File Is not used.

Customization Menu
You can access the Customization menu on an opened Acumatica ERP form if you have the
Customizer role. (For details, see To Assign the Customizer Role to a User Account.)

Click Customization on the form to access the Customization menu associated with the form, as
shown in the following screenshot.

 

 



 | Acumatica Customization Platform | 22

You can use the following customization-related menu commands.

Command Description

Select Project Opens the Select Customization Project Dialog Box, which you use to select an
existing customization project or to create a new project for all modifications that
you are going to perform.

Inspect Element Launches the Element Inspector, which gives you an option to select a UI control
on the current form and opens the Element Properties Dialog Box for the selected
control. You use the dialog box to inspect and customize the control.

:  You can use the keyboard shortcut Ctrl+Alt+Click to inspect elements on pop-
up windows and dialog boxes.

If you have selected a customization project, all the modifications that you
initiate in the inspector will be added to this current project. Otherwise, the
inspector opens the Select Customization Project dialog box.

Edit Project Opens the Customization Project Editor for the currently selected customization
project.

Manage
Customizations

Opens the Customization Projects (SM.20.45.05) form.

Select Customization Project Dialog Box

You use the Select Customization Project dialog box to select an existing customization project or to
create a new project.

You open the dialog box, shown in the following screenshot, in the following ways:

• From the Customization menu of a form—by selecting the Select Project command

• From the Customization menu of a form—by selecting the Edit Project command if there is no
currently selected customization project

• From the Element Properties Dialog Box, which you access by clicking the Customize button if
there is no currently selected customization project

 

 

The dialog box contains the following UI controls.

Control Description

Project Name Provides the ability to select an existing customization project. The box contains
a selector, which you can use to find an existing customization project by the
name or by a part of the name.

OK Confirms your selection and exits the dialog box.

Cancel Cancels the operation and exits the dialog box.

New Opens the New Project Dialog Box, where you can create a new project.



 | Acumatica Customization Platform | 23

If you have selected a customization project, all customizations that you initiate will be added to this
current project until you select another project or sign out.

New Project Dialog Box

You use the New Project dialog box, shown in the following screenshot, to create a new customization
project.
 

 

The dialog box contains the following UI controls.

Control Description

Project Name Provides the ability to enter a name of the customization project.

:  The customization project name is used as the namespace if you create an
extension library from the project. The first character of the name must be a
letter or the underscore symbol.

OK Creates an empty customization project with the specified name and closes the
dialog box.

:  As soon as you click the OK button, the platform creates a new customization
project in the database.

Cancel Closes the dialog box.

Element Inspector
You can use the Element Inspector for the following purposes:

• To view the following reference information for any visual element on a form:

• Control type

• Data access class (if applied)

• Data field (if applied)

• Data view (if applied)

• Business logic controller

• Action name (if applied)

• To view the source code of the ASPX page that contains the UI control for the inspected element

• To view the source code of the data access class that provides data for the inspected element

• To view the source code of the business logic executed for the inspected element

• To start the customization of the inspected element

For a form, you can activate the Element Inspector from the Customization Menu. If you need to
activate the inspector for a pop-up panel, dialog box, or other UI element that opens in modal mode
and makes the Customization menu unavailable for selection, you can press Control-Alt.

After the inspector is activated, the  cursor indicates that you can select a UI element to inspect.
If you select an element, the Element Inspector opens the Element Properties Dialog Box.



 | Acumatica Customization Platform | 24

Element Properties Dialog Box

The Element Inspector opens the Element Properties dialog box, shown below, when you have
selected a UI element to inspect.
 

 
In this dialog box, you can perform the following:

• Inspect properties of the UI element selected on the form

• With a single click, launch the Layout Editor for the form to customize the inspected element

• Select an action to do any of the following:

• Launch the Code Editor to develop a graph extension for the business logic controller (BLC)
bound to the form

• Launch the Data Class Editor for the data access class (DAC) that contains the data field of
the inspected element to customize the DAC

• Open the Source Code Browser to view the following:

• The ASPX code of the inspected page

• The source code of the BLC bound to the form

• The source code of the DAC that contains the data field of the inspected element

The Element Properties dialog box contains the following controls.

Control Description

Control Type The type of the inspected UI element.

Data Class The name of the DAC to which the field for the inspected element belongs.

Data Field The string value of the DataField property of the inspected UI element. (It
corresponds to the name of the field in the DAC.)

View Name The name of the data view that provides data for the inspected UI element.

Business Logic The name of the BLC bound to the form.

Action Name The name of the action of the inspected toolbar button.

Customize A button that launches the Customization Project Editor, which opens on the
Layout Editor page for the form that contains the inspected element.

:  The successive use of the Element Inspector and the Customize button is the
easiest way to change a property of a UI control on a form, because the Layout
Editor opens with the Properties tab displayed for the element that is currently
being inspected.

Actions Opens the Actions menu with commands to customize or revise the element
source code using the Customization Project Editor (to customize) or the Source
Code browser (to view).

Cancel Cancels the operation and closes the dialog box.



 | Acumatica Customization Platform | 25

The Actions Menu

The Actions menu, shown in the screenshot below, contains commands you can invoke to customize or
revise the code of the following:

• The inspected element

• The current ASPX page on which the element is selected

• The DAC to which the field for the inspected element belongs

• The BLC (graph class) that is bound to the form

 

 
The menu contains the following commands.

Command Description

Customize
Business Logic

Creates a graph extension template for the BLC that is bound to the form, adds
the template code to the customization project, and opens the Customization
Project Editor on the Code Editor page, which loads the BLC extension template
so you can edit it.

Customize Data
Fields

Opens the Customization Project Editor on the Data Class Editor page in the Edit
Attributes section so you can customize the inspected element attributes.

View ASPX
Source

Opens the Source Code Browser on the Screen ASPX tab with the source code
of the current form.

View Business
Logic source

Opens the Source Code browser on the Business Logic tab with the source code
of the BLC that is bound to the form.

View Data Class
Source

Opens the Source Code browser on the Data Access tab with the source code of
the DAC to which the field for the inspected element belongs.

:  If you have opened the Customization Project Editor or the Source Code browser, you can access any
source code of the website—not only the source code of the inspected element and the current form, DAC,
and BLC.

Customization Project Editor
You can use the Customization Project Editor (Project Editor) to develop and manage the content of a
customization project. The editor contains separate pages to add and manage items of the following
types in the currently selected customization project:

• Screen (form)

• Data access class (DAC)



 | Acumatica Customization Platform | 26

• Code (C#)

• File

• Generic inquiry

• Acumatica Report Designer report

• Site map

• Database script

• Translation (language locale)

• Integration scenario

• Shared reusable filter

• Access rights of roles to forms

• Wiki changes

• Analytical report

(See Managing Items in a Project for instructions.)

To help you work with screens, data access classes, code, custom files, and database scripts in the
scope of a customization project, the Project Editor includes the following editors, which are displayed
as its pages:

• Layout Editor, which is the visual editor for the source code of an .aspx page

• Data Class Editor, which is used to create, develop, manage, and view in XML format the content
of extensions for data access classes

:  When the project is published, the Acumatica Customization Platform transforms the content of
extensions for data access classes from XML format to C# code and saves the code in .cs files in the
App_RuntimeCode folder of the website.

• Code Editor, which is used to manage, develop, and view the customization code (C#) added to
the project, including extensions for business logic controllers (BLCs) and DACs

• File Editor, which is a text editor used to edit and review the content of text files included in the
customization project

• SQL Script Editor, which is used to add and edit custom SQL scripts and add custom tables to the
customization project

Other types of items are custom data that can be added to the customization project from the
database. For these items, the Project Editor provides you the capabilities to add to the project, delete
from the project, and reload from the database. To create or edit these items, you can use dedicated
forms of Acumatica ERP. For example, to create or edit a generic inquiry in the database, you can use
the Generic Inquiry (SM.20.80.00) form.

Also, the Project Editor includes the following editors:

• ASPX Editor, which is used to edit the ASPX code of a page customized by means of the Layout
Editor

• XML Editors, which are used to edit and review the XML code of the customization project (Project
XML Editor) or a separate item of the project (Item XML Editor)

You can launch the Customization Project Editor only if you have selected a customization project. You
can launch the editor from any form of Acumatica ERP by using the Customization Menu or from the
Customization Projects (SM.20.45.05) form, also described in Customization Projects Form .

The Project Editor, shown in the following screenshot, looks like a regular webpage that consists of the
following parts:

• The main menu for working with the customization project

• A navigation pane, which displays the list of pages used to manage the corresponding project
items



 | Acumatica Customization Platform | 27

• The main area, which displays the list of project items or provides a work area to edit these items

 

 
In the navigation pane, a node with capitalized name can be expanded to get direct access to items of
the appropriate type.

The main menu contains the following items and commands.

Item Command Description

File Manage
Customization
Projects

Opens the Customization Projects (SM.20.45.05) form.

Edit Project XML Opens the Project XML page, which you can use to edit
the XML source code of the current customization project,
save it to the database, download the project package, and
upload a deployment package to replace the project content.

Edit Project
Items

Opens the Edit Project Items page, which you can use to
edit the XML source code of a project item.

Export Project
Package

Exports the deployment package of the project—that is,
the ZIP file that contains the project. The file has the same
name as the exported customization project has.

Replace from
Package

Initiates the import of a previously exported deployment
package from a ZIP file. Provides the Open Package dialog
box with the Choose File button and the Upload button to
replace the current project content.

Publish Publish Current
Project

Initiates the process of publishing the current customization
project. Launches a publication process that opens the
Compilation window to output a log with information
about the process. If both the validation and compilation
of the project are successful, the process makes the
Publish button available. This button is used to finalize the
publishing and to update the website.

Multiple Projects Opens the Customization Projects in a new window.

Publish with
Cleanup

Initiates the process of publishing the current customization
project as the Publish Current Project command does,



 | Acumatica Customization Platform | 28

Item Command Description
but with the following difference: When the Acumatica
Customization Platform publishes a project that contains a
database script, the platform executes the script and tries to
avoid executing the script at every publication of the project
for optimization purposes. Therefore, the platform keeps
information about each script that has been executed at
least once and has not since been changed in the database,
and omits the repeated execution of such scripts. If you run
the Publish with Cleanup operation, the platform cleans
all the information about previously executed scripts of the
customization project and executes this scripts once more
while publishing the project.

Extension
Library

Create New Creates a solution for Microsoft Visual Studio in which you
can develop an extension library for the customization
project. The solution contains the website and extension
library projects. This action also downloads the
OpenSolution.bat file. The file contains the absolute path
to the .sln file in the file system; you can use this file to
open the solution in Visual Studio.

:  By default, the system uses the App_Data\Projects
folder of the website as the parent folder for the solution
project. If the website folder is outside of the C:\Program
Files (x86) and C:\Program Files folders, such as
C:\AcumaticaSites\MySite, we recommend that you
not change it. Otherwise, we recommend that you specify
a parent folder outside these folders to avoid an issue with
permission to access files.

Bind to Existing Specifies the extension library project in the file system
to which the customization code will be moved if you click
Move to Extension Lib on the toolbar of the Code Editor.

Open in Visual
Studio

Downloads the OpenSolution.bat file, which is used to
open the existing solution in Visual Studio.

Show Active
Extensions

Starts the verification of extensions for data access classes
and business logic controllers, and opens the Validate
Extensions pop-up window to display the validation log.
In the log, every error is highlighted in red. We recommend
that you verify extensions if you have upgraded legacy DAC
customization.

Source Control Save Project to
Folder

Saves the customization project as a set of files to a local
folder that is used for integration with source control
systems. Invoking this action opens the Saves Project
to Folder dialog box (see To Save a Project to a Local
Folder for instructions) so that you can select the name and
location of the folder inside a repository.

Open Project
from Folder

Loads the customization project from the repository. (See
To Update the Content of a Project from a Local Folder for
instructions.)

Setup Source
Control

Opens the Source Control Setup dialog box, which you
can use to specify a configuration string for connection to
a version control system, if required. (See To Configure
a Connection String for details.) For example, to control
versions, you should set up the configuration string for the
Team Foundation Server (TFS), but it is not needed for Git.
(See To Integrate the Customization Project Editor with TFS
for instructions.)



 | Acumatica Customization Platform | 29

Layout Editor

The Layout Editor is the visual editor for the source code of an ASPX page. Use it to configure ASP.NET
containers, such as forms and grids, as well as to specify the properties of UI controls.

By using the editor, you can perform such customizations of a form as the following:

• Add a custom form to Acumatica ERP

• Add a container to a form

• Add a custom field to a data access class (DAC)

• Add a control for a field to a container

• View and modify the properties of a control

• Change the order of controls in a container

• Customize the attributes of a field in a data access class

• View the modifications made to the original declaration of the form

• Immediately preview in the browser the changes made during the customization of the layout

During customization, you can open the Layout Editor in the following ways:

• From the Element Properties Dialog Box, which you access by clicking the Customize button on
the form and selecting Inspect Element

:  For users' convenience, when the Layout Editor is opened, the control tree displays only the node
of the object selected with the Element Inspector. You can click Show/Hide All Controls ( ) on
the tree toolbar to view all the controls of the form in the tree.

• From the Customized Screens page of the Customization Project Editor, by selecting the Screen
ID of a screen

• From the navigation pane of the Customization Project Editor, by clicking an item within the
Screens folder

The title of the Layout Editor page includes the ID and name (in parentheses) of the customized form.
The page also has a toolbar, control tree pane, and tabs, as the following screenshot shows.
 

 



 | Acumatica Customization Platform | 30

Page Toolbar

The page toolbar includes standard and page-specific buttons. The page-specific buttons are described
below.

Button Description

Save Saves to the customization project the difference between the modified and
original code of the ASPX page.

Preview Changes Opens the customized form in a new browser window.

Actions Provides the following actions:

• Edit Aspx: Opens the ASPX Editor with the webpage source code.

• Open Screen: Opens the original form of Acumatica ERP.

• Customize Business Logic: Opens the Code Editor with the extension
class template of the business logic container (BLC) that is bound to the
form.

• Customize Data Class: Opens the Data Class Editor for customization of
the DAC that contains the field selected in the Control Tree.

Control Tree

The Control Tree displays the hierarchical structure of controls on the webpage. In the tree, you can:

• Select a container or control for review or customization.

• Change the order of controls in a container.

• Delete any selected item from the webpage.

:  We do not recommend that you remove the DataSource control.

The toolbar of the Control Tree includes the following buttons.

Button Description

Refresh Refreshes the Control Tree.

Delete Deletes the selected item from the form.

Show/Hide All
Controls

Hides or shows all containers in the tree except of the one with the selected item.

To change the order of controls in a container, manually drag controls on the Control Tree within their
containers.

Properties Tab

On the Properties tab, you can review and modify properties of the form controls.

The tab contains a toolbar and a table. The tab toolbar includes the Hide Advanced Properties button
( ) to hide or show advanced properties of the selected control. The tab table consists of the following
columns.

Column Description

Override A check box that indicates whether the property value was changed. It is selected
automatically after you have changed the property.



 | Acumatica Customization Platform | 31

Column Description

Property The property name or the name of the property group.

Value The value of the property. Default values are not displayed.

Attributes Tab

You use the Attributes tab to review and customize the attributes of the DAC field that is bound to the
control currently selected in the Control Tree.

The tab consists of the following:

• A summary area with the DAC field information

• Buttons to customize the field attributes

The summary area contains the following elements.

Element Description

Field Name The name of the field in the DAC. It is the name of the public virtual property in
the public abstract class of the field.

Data Class The name of the DAC to which the field belongs.

Original
Attributes

The original attributes of the field in the Acumatica ERP.

The Attributes tab provides the following buttons.

Button Description

Customize
Attributes

Opens the Data Class Editor to customize the field attributes in the DAC.

View Source Opens the Source Code Browser on the Data Access tab that displays the DAC
source code.

Override On
Screen Level

Opens the Code Editor with the BLC extension class template.
The template includes the field attributes and the template of the
DACName_FieldPropertyName_CacheAttached() method, which you can use to
replace the attributes within the BLC.

Events Tab

On the Events tab, you can view and add event handlers for the selected control.

The tab consists of a summary area, a toolbar, and a table. The summary area contains the following
elements.

Element Description

Data Class The name of the DAC to which the field belongs.

Field Name The name of the field in the DAC.

Business Logic The name of the BLC bound to the form.

The tab toolbar includes the following specific buttons.



 | Acumatica Customization Platform | 32

Button Description

Add Handler For the selected event, opens the Code Editor with the BLC extension class
template. The class template includes a code template for the event handler, so
you should implement only the body of the handler. Provides the following menu
commands:

• Keep Base Method: Creates the event handler with two parameters, as
it is defined in the base BLC. As a result, the event handler is added to the
appropriate event handler collection.

• Override Base Method: Creates the event handler with an additional
parameter to replace the base BLC event handler collection.

View Source Opens the Source Code browser with the source code of the BLC bound to the
form.

The table holds information about the event handlers used for the control. It contains the following
columns.

Column Description

Event The event name.

Handled in
Source

A check box that indicates whether the event handler is implemented within
Acumatica ERP.

Customized A check box that indicates whether the event handler is customized. This check
box is selected automatically after you have added the event handler.

Add Control Tab

On the Add Control tab, you can add new containers, controls, and layout rules to the form.

The tab consists of three groups of controls. To add a control, drag and drop it to the needed position in
the Control Tree, as the screenshot below shows. After you have added the control, you can configure
its properties on the Properties tab.

 



 | Acumatica Customization Platform | 33

 

Add Data Fields Tab

You can use the Add Data Fields tab to manage controls in the form container that is currently
selected in the Control Tree. On this tab, you can:

• Create a control for a DAC field and add it to the selected container.

• Create new custom field in a DAC, create a control for the field, and add it to the selected
container.

The tab contains the Data View drop-down list, a toolbar, and a table. In the Data View drop-down
list, you can select a DAC to view its fields in the table. The list includes all DACName(DataViewName)
pairs of the BLC bound to the form. The tab toolbar contains the following buttons.

Button Description

Create Controls Adds the selected fields to the container selected in the Control Tree.

New Field Opens the Create New Field Dialog Box so you can add a new custom field to the
DAC that is referenced in the data view selected in the Data View box.

:  Once you have created one or more fields, it is necessary to publish the
customization project before creating a control for the new fields.

The table displays fields that belong to the selected DAC. The table includes the following columns.

Column Description

Included An unlabeled check box that you can use to select a field, for which the Create
Controls operation will create a control in the object that is currently selected in
the Control Tree.

Used A check box that indicates whether a control for the field exists in the object that
is currently selected in the Control Tree. This check box is selected automatically
after you have created a control for the field.



 | Acumatica Customization Platform | 34

Column Description

Field Name The name and DisplayName (in parentheses) of the field in the DAC.

Control The type of the UI control.

You can use the following filters of DAC fields displayed in the table.

Filter Description

All Fields that are not represented by controls on the form.

Visible Fields that are visible due to the Visibility field attribute in the DAC.

Custom New custom fields of the DAC.

View ASPX Tab

The View ASPX tab displays the ASPX code of the control selected in the Control Tree. The changes in
the code of the original page are highlighted in yellow, as the following screenshot shows.
 

 

ASPX Editor

You can use the ASPX Editor to edit the ASPX code of a page that has been customized by means of the
Layout Editor. You can use this editor instead of the Layout Editor if you prefer a text editor rather than
a visual tool.

You can launch the ASPX Editor by clicking Actions > Edit Aspx on the toolbar of the Layout Editor.

The ASPX Editor page contains the following parts (see the screenshot below):

• A toolbar with the single Generate Customization Script button

• The work area of the editor

 



 | Acumatica Customization Platform | 35

 

You use the Generate Customization Script button instead of a Save button because this action
saves to the customization project not the modified ASPX code, but the difference between the modified
code and the original code of the page.

Data Class Editor

You use the Data Class Editor to develop the content of extensions for data access classes (DACs). By
using the editor, for example, you can do the following:

• Customize the attributes of the existing fields of a DAC

• Add custom fields to a DAC

• For a selector field, add, delete, and sort the columns of the selector table

• Review the modifications made to an original class

• View the source code of an original data access class

• Navigate to the form on which a field of a class is used

While performing the customization, you can open the editor in the following ways:

• From the Customization Menu > Inspect Element > Element Properties dialog box, by
selecting the Customize Data Fields command on the Actions menu

• From the Customized Data Classes page of the Customization Project Editor, by selecting the
Name field of a DAC

• From the navigation pane of the Customization Project Editor, by clicking an item in the Data
Access folder

The Data Class Editor page includes the following elements (see the screenshot below):

• The title with the name of the customized class

• A toolbar with standard and page-specific buttons

• A list of the customized fields of the class

• A work area to customize the attributes of the field that is currently selected in the list

 



 | Acumatica Customization Platform | 36

 

The page toolbar contains the following page-specific buttons.

Button Description

Add Field Provides the following actions:

• Create New Field: Opens the Create New Field Dialog Box, which you can
use to add a new custom field to the DAC.

• Change Attributes of Base Field: Opens the Change Existing Field
Dialog Box, which you can use to add an existing field of the DAC to the
customization project.

Open Screen For the DAC, opens the primary form of Acumatica ERP.

:  If there is a primary business logic controller (BLC) for the class, then the
primary form is the form bound to this container. Otherwise, the primary form is
the form bound to the BLC in which the class is the main DAC of the primary view.
See the Acumatica Framework training documentation for details.

View Source Opens the Source Code Browser on the Data Access tab, which displays the DAC
source code.

Selector
Columns

(Available for only the fields that are selectors.) Opens the Customize Selector
Columns Dialog Box, in which you can modify the columns in the selector table.

Edit Attributes (Unavailable for new custom fields.) Opens the Customize Attributes Dialog Box,
which you can use to customize the attributes of the selected field.

You use the list of the currently customized fields of the DAC to select the field that you can review or
change in the work area.

The work area of the page consists of the following:

• The title with the name and type (in parentheses: New Field or Customized Existing Field) of
the selected field

• The Customize Attributes text area, where you can edit the attributes of the selected field

• The Original Attributes text area, where you can view the original attributes of the selected field



 | Acumatica Customization Platform | 37

• A drop-down list that is visible for only existing customized fields of the data access class, so you
can select one of the following ways of applying the changes to the field attributes:

• Keep Original: The original attributes remain on the field until you select another option in
this box.

• Replace Original: The original attributes are replaced on the field with the custom attributes
specified in the Customize Attributes text area.

• Append to Original: The custom attributes are added to the end of the list of the original
attributes of the data field. If you use this option, make sure you do not duplicate attributes
on the field.

:  The platform gives you advanced possibilities to control the field customization by using additional
attributes in the DAC extension. See Customization of Field Attributes in DAC Extensions of Customization
Framework for details.

If you want to change the original attributes in the Customize Attributes text area, before typing
any text in the area, select the Replace Original option. The original attributes will be copied to the
Customize Attributes text area.

Create New Field Dialog Box

You can use the Create New Field dialog box to add a new data field to the customized DAC.

You can open the dialog box, shown in the following screenshot, in either of the following ways:

• From the Add Data Fields tab of the Layout Editor, by clicking the New Field button

• From the Add Field button of the Data Class Editor, by selecting the Create New Field command

 

 

The dialog box controls are described below.

Control Description

Field Name The name of the field in the DAC. Because the field is custom, the Usr prefix is
added automatically to the name when the box loses focus.

Display Name The name of the field to be displayed on the form. The specified string is inserted
into the DisplayName parameter of the PXUIField attribute of the field.

Storage Type The storage type for the field, which can be one of the following:

• NonPersistedField: An unbound field of the DAC. The unbound field is added
only to the data access class and is not mapped to the database.

• DBTableColumn: An ordinary bound field. The platform adds the database
column to the base table by altering the base table schema.

• NameValuePair: A "name-value" bound field. The platform stores the field
value in a dedicated table of the database without altering the schema of
the base table.



 | Acumatica Customization Platform | 38

Control Description

Data Type The data type to be used for a custom fields, which can be one of the following:
string, int, bool, decimal, datetime, and guid.

Length (Available if you have selected the string or decimal type.) For the string type,
the maximum number of symbols in the field value; for the decimal type, the
precision of the value (the maximum total number of decimal digits that will be
stored, both to the left of the decimal point and to the right of it).

Decimal (Available only if you have selected the decimal type.) The scale of the value
(that is, the number of decimal digits that will be stored to the right of the
decimal point).

OK Adds the new field with the specified properties to the data access class and
closes the dialog box. The field appears in the list of customized fields of the class
in the Data Class Editor.

Cancel Closes the dialog box.

Change Existing Field Dialog Box

The Change Existing Field dialog box, shown below, is used to add an existing field of the data access
class (DAC) to the list for customization.
 

 

You can open the dialog box by clicking the Add Field button of the Data Class Editor and selecting the
Change Attributes of Base Field command.

The dialog box controls are described below.

Control Description

Field Name The existing field of the DAC you want to change.

OK Adds the selected field to the list of the customized fields of the data access
class, and closes the dialog box.

Cancel Closes the dialog box.

Customize Selector Columns Dialog Box

The Customize Selector Columns dialog box, shown below, is available for only a selector field. In
the dialog box, you can add, delete, and sort columns to customize the selector table. The dialog box
contains a toolbar, a table, the OK and Cancel buttons.

You can open the dialog box from the Data Class Editor by clicking the Selector Columns button.

 



 | Acumatica Customization Platform | 39

 

The dialog box toolbar includes the buttons described below.

Button Description

Refresh Refreshes the list of columns displayed in the table.

Delete Deletes the selected column from the selector.

Add Columns Opens the Add Columns to Selector Dialog Box, which you can use to add
columns to the table of this dialog box.

Up Moves up the selected field so the column moves left in the selector.

Down Moves down the selected field so the column moves right in the selector.

The table contains information on the selector content and includes the following columns.

Column Description

Column Name The value of the DisplayName parameter of the PXUIField attribute of the field.

Data Field The name of the public virtual property of the field in the DAC.

After you click OK in the Customize Selector Columns dialog box, the system applies the
modifications to the selector table. As a result, the PXCustomizeSelectorColumns attribute is added to
the selector field, and you can view the attribute in the Customize Attributes text area of the Data
Class Editor. This attribute defines the new set and order of the columns in the selector.

The Cancel button closes the dialog box without saving changes to the selector table.

Add Columns to Selector Dialog Box

The Add Columns to Selector dialog box, shown in the following screenshot, is used to add one or
multiple columns to the selector table at once. The dialog box contains a table with filters and the OK
and Cancel buttons.

You can open the dialog box from the Customize Selector Columns dialog box by clicking the Add
Columns button.

 



 | Acumatica Customization Platform | 40

 

The table includes the following columns.

Column Description

Selected A check box you can use to select fields that will be added to the selector.

Column Name The value of the DisplayName parameter of the PXUIField attribute of the field.

Data Field The name of the public virtual property of the field in the DAC.

Each tab of the Add Columns to Selector dialog box displays the filtered list of fields. The tabs are
described below.

Filter Description

All All fields.

Selector Fields that are selectors.

Custom New custom fields.

After you click OK in the Add Columns to Selector dialog box, the system applies the modifications.
As a result, the selected columns are added to the table of the Customize Selector Columns dialog
box.

The Cancel button closes the dialog box without saving the changes to the selector table.

Customize Attributes Dialog Box

The Customize Attributes dialog box (shown in the following screenshot) provides the easiest way to
edit attributes of the field selected in the Data Class Editor. The dialog box contains an attribute pane, a
work area, and the OK and Cancel buttons.

You can open the dialog box from the Data Class Editor by clicking the Edit Attributes button.

 



 | Acumatica Customization Platform | 41

 

The attribute pane includes:

• A toolbar with the Refresh and Delete buttons.

• The list of the field attributes.

In the list, you can select an attribute to be deleted or edited.

You can use the Delete button to delete the selected attribute of the field. After you delete the
attribute and click OK, the [PXRemoveBaseAttribute(typeof(AttrNameAttribute))] attribute is
added to the field and you can view the attribute in the Customize Attributes text area of the Data
Class Editor.

The work area contains a table that lists the parameters of the attribute selected in the list. The table
columns are described below.

Column Description

Property The name of the parameter.

Value The original value of the parameter.

In the table, you can enter any string as the parameter value without type validation. If the value of the
customized parameter has an incorrect type, it causes a validation error during the publication of the
project.

After you click OK in the Customize Attributes dialog box, the platform applies the modifications
to the field. As a result, the [PXCustomizeBaseAttribute(typeof(AttrNameAttribute),
"ParameterName", NewValue)] attribute is added to the field for each modified parameter. You can
view the attribute in the Customize Attributes text area of the Data Class Editor.

You can click the Cancel button to close the dialog box.

Code Editor

With the Code Editor, you can develop, view, and edit the customization code that has been added to
the project.

You can open the Code Editor in the following ways:

• From a form of Acumatica ERP by using Customization > Inspect Element to open the
Element Properties dialog box, and then clicking Actions > Customize Business Logic

• From the Code page of the Customization Project Editor—by clicking the Object Name of an
existing Code item (see the screenshot below)
 



 | Acumatica Customization Platform | 42

 

• From the navigation pane of the Customization Project Editor, by clicking an item in the Code
folder

The Code Editor page includes a toolbar and a text area for editing code, as shown in the following
screenshot.
 

 

The toolbar buttons of the Code Editor page are described below.

Button Description

Save Saves the code in the project.

:  You can use the Control-S combination on the keyboard to save the code.

Cancel Cancels unsaved changes in the code.



 | Acumatica Customization Platform | 43

Button Description

Open Screen Opens the form bound to the business logic controller if you are editing the
customization code of the business logic executed for a form.

View Source Opens the Source Code Browser with the original source code of the business
logic controller (BLC) if you are editing the customization code of the business
logic executed for a form.

Override Method Opens the Select Methods to Override Dialog Box, which you can use to select
multiple virtual methods of the BLC to override.

New Action Opens the Create Action Dialog Box, which you can use to create a code template
for a new action.

Move to
Extension Lib

Launches the operation that converts the current Code item into a file of
customization code, adds the file to the extension library project in Microsoft
Visual Studio, and removes the item from the customization project. See Move to
Extension Lib Action for details.

:  The customization project must be bound to an existing extension library
project in Visual Studio before you invoke the Move to Extension Lib operation.
See Customization Project Editor for details.

Create Action Dialog Box

If the Code item you are viewing by using the Code Editor is a business logic controller (BLC, also
referred to as graph) extension, you can create a new action in this BLC. To do this, you can click the
New Action button of the Code Editor to open the Create Action dialog box, shown in the following
screenshot.

Figure: Opening the New Action dialog box

To create an action declaration in the BLC extension, you should specify the name of the action delegate
method in the Action Name box and the name of the action button in the Display Name box, as
shown in the screenshot above, and then click OK. The system adds to the graph extension a template
of the action declaration that includes the following class members:

• The declaration of the action delegate method

• The declaration of the button attributes to add the button to the form toolbar with the specified
name

• The template of the action delegate method



 | Acumatica Customization Platform | 44

The following example shows the template code for an action.

public PXAction<DACName> myActionDelegateMethod;

[PXButton(CommitChanges = true)]
[PXUIField(DisplayName = "MyActionButtonName")]
protected void MyActionDelegateMethod()
{
  // the body of the action delegate method
}

Select Methods to Override Dialog Box

If the Code item you are viewing in the Code Editor is a business logic controller (BLC) extension,
you can override a virtual method of this BLC. To do this, you can use the Override Method action
of the Code Editor, which opens the Select Methods to Override dialog box, shown in the following
screenshot.

Figure: Opening the Select Methods to Override dialog box

To add a method to the customization, you should select the check box for the method in the table,
as shown in the screenshot, and click Save. The system adds to the graph extension a template of an
overridden method for each method selected in the table.

The dialog box contains a table that lists the virtual methods of the current BLC and its parent classes,
and the Save and Cancel buttons. You use the table, which contains the following columns, to select
the virtual methods that you have to override.

Column Description

Selected A check box that you can use to select the virtual method to be overridden in the
BLC extension.

Type The identifier of the class type that contains the declaration of the virtual
method.

Method The signature of the virtual method.

To cancel the operation and close the dialog box, click Cancel.



 | Acumatica Customization Platform | 45

Click Save to close the dialog box and launch the process that adds a code template to the BLC
extension for each item selected in the table.

When you override a virtual method, the system generates an overridden method template that
includes the delegate declaration of the base method, the PXOverride attribute, and the method
declaration that invokes the base method delegate.

The following example shows the template code to override the MethodName method.

public delegate returnType MethodNameDelegate(...);
[PXOverride]
public returnType MethodName(..., MethodNameDelegate baseMethod)
{
      return baseMethod(...);
}

Move to Extension Lib Action

You can develop customization code either as Code items in a customization project or as source
code included in an extension library project to develop in Microsoft Visual Studio. Some part of a
customization may exist in the Code items of a customization project, while another part can be
included in an extension library that is added to the customization project as a dynamic link library
(DLL) file.

If you have a Code item in a customization project that you want to move to an extension library to
compile it into a DLL, you can use the Move to Extension Lib action on the page toolbar of the Code
Editor.

Before you launch the operation, be aware that the customization project is bound to an existing
extension library. (See Customization Project Editor for details.)

After the operation is complete, the Code item that is currently displayed in the work area of the Code
Editor is removed from the customization project, and the file with the same source code is appended
to the extension library that is bound to the customization project. The system assigns a similar name
to the file: For example, if the Code item name was CodeItemName, the name of the created file will be
CodeItemName.cs.

For example, suppose you need to move the CustomerMaint Code item to the YogiFon extension
library (see the screenshot below).

Figure: Viewing the content of the Code item before you move it to the extension library

When the operation is complete, the CustomerMaint Code item is removed from the customization
project, as the screenshot below shows.



 | Acumatica Customization Platform | 46

Figure: Viewing the Code item list after the operation was performed

In place of the removed item, the CustomerMaint.cs file with the same source code is appended to the
bound extension library project, as shown in the screenshot below.

Figure: Viewing the content of the source code file added to the extension library

The operation of moving code to an extension library is irreversible. If you need to move source code
from an extension library to a Code item of a customization project, use the following approach:

• In Visual Studio (or any text editor), open the file, select the needed source code, and copy it to
the clipboard.

• Create a new Code item in the customization project.

• Delete the code template from the created item.

• Paste the code from the clipboard, and save the Code item to the customization project.

• Delete the source code file from the extension library.

File Editor

You can use the File Editor to view or edit a custom file added to the customization project.



 | Acumatica Customization Platform | 47

To open a custom file in the editor, on the Custom Files page of the Customization Project Editor, click
the file name in the list of custom files.

You can use the editor as follows with custom files included in the project:

• To review and edit a text file

• To review the content of a binary DLL file (see the following screenshot)

Figure: Viewing the content of a custom DLL file in the File Editor

:  In the editor, you cannot save changes in DLL files.

If you have used the File Editor to modify a custom file in a customization project and have saved the
changes in the database, the changes are not saved in the original file in the file system. If you then
click Detect Modified Files on the toolbar of the Custom Files page, the platform does not detect a
conflict because the file in the database is newer. The platform automatically updates the original file in
the file system during the publication of the customization project.

SQL Script Editor

You can use the SQL Script Editor to do the following:

• Add a custom table to the customization project

• Add and edit a custom SQL script

You can open the editor, shown in the following screenshot, from the Database Scripts page of the
Customization Project Editor in the following ways:

• By selecting the Object Name field of an existing script: To edit the script

• By clicking the  Add New Record (+)  button on the toolbar: To create a new SQL script

 



 | Acumatica Customization Platform | 48

 

The SQL Script Editor includes the following UI controls.

Control Description

DBObjectName A text box with a selector that you can use as follows:

• To select an already created custom table to add the table schema to the
project

• To specify the name of the SQL script that you are going to add to the
project

Import Table
Schema from
Database

(This check box appears only if the DBObjectName box holds the name of an
existing DB table.) A check box that indicates (if selected) that the schema of the
selected table is added to the customization project.

:  You can view the table schema added to the project in the Source text box of
the Item XML Editor.

Custom Script A text area that you can use to view and edit a custom SQL script.

OK A button you click to save the custom SQL script to the customization project.

Cancel A button you click to close the dialog box without saving changes to the script.

See Database Scripts for details about using the SQL Script Editor.

XML Editors

In the database, the platform keeps each item of the customization project in XML format.

The platform provides the following tools for experienced users to edit the content of a customization
project in XML format:

• Project XML Editor

• Item XML Editor



 | Acumatica Customization Platform | 49

Project XML Editor

You can use the Project XML Editor to edit and review the content of a customization project in XML
format.

To open the editor, in the Customization Project Editor, click File > Edit Project XML on the menu (see
the following screenshot).

Figure: Opening the Project XML Editor

The editor page, shown in the screenshot below, contains the following UI elements:

• At the top of the page, the name of the customization project that is opened in the editor

• The page toolbar, which includes the file name of a selected deployment package (or the No file
chosen message) and the following buttons:

• Save to database: To save the XML code of the project to the database

• Download Package: To save the project locally as a deployment package ZIP file that has
the same name as the customization project

• Upload Package: To open the deployment package file whose name is currently selected
and displayed in the page toolbar

• Choose File: To select a deployment package file

• The work area of the editor



 | Acumatica Customization Platform | 50

Figure: Viewing the Project XML Editor page

Item XML Editor

You can use the Item XML Editor to edit and review an item of a customization project.

To open the editor, in the Customization Project Editor, click File > Edit Project Items on the menu
(see the following screenshot).

Figure: Opening the Item XML Editor

The editor page, shown in the following screenshot, contains the following UI elements:

• The page toolbar, which contains the Save and Cancel buttons

• The list of the items in the customization project

• The work area of the editor



 | Acumatica Customization Platform | 51

Figure: Viewing the Item XML Editor page

Source Code Browser
You can explore the source code of the Acumatica ERP application on the Source Code (SM.20.45.70)
form, which is shown in the following screenshot.



 | Acumatica Customization Platform | 52

Figure: Viewing the Source Code form

You can open the browser in the following ways:

• From the Element Properties Dialog Box, by selecting one of the following commands in the
Actions menu:

• View ASPX Source: To explore the source code of current form

• View Business Logic Source: To explore the source code of the business logic controller
(BLC) that is bound to the current form

• View Data Class Source: To explore the source code of the data access class (DAC) that
contains the data field of the inspected element

• From the Data Class Editor, by clicking View Source on the page toolbar

• From the Code Editor, by clicking View Source on the page toolbar

• From the Layout Editor, by clicking View Source on the toolbar of the Attributes or Events tab

You can use the Source Code browser for the following purposes:

• To search for the following types of source code:

• ASPX code, by the screen ID or by the screen title. You can search by any part of an ID or of
a title.

• C# source code of a BLC or DAC, by the class name. You can also type any part of the name
and select the name from the list of names that match your search string.

• Any source code, by a text fragment.

• To download a ZIP file with the source code for the website



 | Acumatica Customization Platform | 53

Customization Framework
The programming framework of the Acumatica Customization Platform, like Acumatica Framework, is
intended for developers experienced in C#.NET. Because the application objects of Acumatica ERP are
built on top of Acumatica Framework, the developers need to learn both the programming frameworks
to be able to effectively develop quality customizations.

When you have to customize an instance of Acumatica ERP, first you must determine the scope of the
customization. For each form that works with data from the database, the instance of Acumatica ERP
must contain at least the following objects (see the diagram below):

• An ASPX page: The page must contain, at minimum, the data source control and a control
container with controls for data fields.

• A business logic controller (BLC, also referred to as graph): The graph must be specified in the
TypeName property of the data source control of the page. The graph must contain at least one
data view, which is specified in the PrimaryView property of the data source control as well
as in the DataMember property of the control container. The graph instance is created on each
round trip and initializes the creation of the data view instance based on a BQL statement. The
data view provides data manipulations and data flows between the container control, the cache
object of the graph, and the corresponding table of the database. The BQL statement contains
a reference to at least one data access class that is required to map the database table to data
records in the cache object.

• A data access class (DAC): On each round trip, the DAC instance is created in the cache object
when the data view processes any operation with the corresponding data.

• A table in the database: The table is mapped to the data access class that defines the data record
type in the cache object of the graph instance.

Figure: Objects required for a form that works with data from a database table

By using the Acumatica Customization Platform, you can create or customize each of the object types
listed above.

Customization of ASPX Pages

To change the layout and behavior of an Acumatica ERP form, you must customize the corresponding
ASPX page. However for customizing an ASPX page, the platform uses an approach that does not
require you to change the original ASPX code of the Acumatica ERP form. Instead, the platform can
apply the .aspx file with the same name from a special subfolder within the website folder, if this file



 | Acumatica Customization Platform | 54

exists. At run time, while the platform is processing a request to open a form, the platform first tries
to find the needed .aspx file inside this subfolder to use it instead of the original file. If the file with
customized ASPX code is found, the platform opens the customized form. Otherwise, the original form
is opened.

To cancel a customization of a page, you need only to delete the file with the appropriate name from
the subfolder.

Customization of Application Classes (BLCs and DACs)

To provide the ability to customize the functionality or business logic of a form, the platform uses the
technology based on class extensions. With this technology, to customize a BLC or DAC, the platform
does not change the original code of Acumatica ERP. Instead, the platform uses an additional C# file for
each class extension.

At run time, the platform automatically detects a class extension during the first initialization of the
base (original) class. If an extension is found, the platform replaces the base class with the merged
result of the base class and the extension that was found.

To cancel a customization of business logic, you need only to delete the file that contains the
appropriate class extension.

This approach makes it easy to apply and cancel any customization of business logic in Acumatica ERP.

Customization of the Database Schema

The platform provides the following capabilities that you can use to customize the database schema:

• You can create an SQL script to execute while the customization is applied to an instance of
Acumatica ERP.

• You can create a custom bound field to add the corresponding column to a table while the
customization is applied to an instance of Acumatica ERP.

• You can define the UpdateDatabase() method of a class derived from the
CustomizationPlugin class to execute an SQL script or a stored procedure from the C# code
after the customization is applied to an instance of Acumatica ERP. (See Custom Processes During
Publication of a Customization for details.)

In This Chapter

• Changes in Webpages (ASPX)

• Changes in the Application Code (C#)

• Changes in the Database Schema

• Custom Processes During Publication of a Customization

Changes in Webpages (ASPX)
To customize the look and behavior of an Acumatica ERP form, you need to change the ASPX code of
the form. Because you need to include all the changes in a customization project, you have to perform
the form customization by using the Layout Editor of the Customization Project Editor.

To collect all the changes that you make while you customize a form, the Layout Editor creates a Page
item with a name that corresponds to the form ID, and includes the item in the currently selected
customization project. This item contains XML code with instructions that have to be applied to the
ASPX code of the form during the publication of the project.

For example, the following fragment of a Page item contains the XML code with the <AddItem> tag
used to add the UsrSIMCardID field as a column to the Transactions grid.

<PXGridLevel DataMember="Transactions"



 | Acumatica Customization Platform | 55

             ParentId="phG_tab_Items#0_grid_Levels#0"
             TypeFullName="PX.Web.UI.PXGridLevel">
  <Children Key="Columns">
    <AddItem>
      <PXGridColumn TypeFullName="PX.Web.UI.PXGridColumn">
        <Prop Key="DataField" Value="UsrSIMCardID" />
        <Prop Key="Width" Value="160" />
      </PXGridColumn>
    </AddItem>
  </Children>
</PXGridLevel>

In the XML code above, note that the <Prop> tag is used to set the Width property of the column to
160.

With the Layout Editor, you can customize any object in the ASPX code of an Acumatica ERP form and
save the resulting changeset to the customization project. To apply the customization to the website,
you have to publish the project.

For example, at the publication process, the platform transforms the XML code fragment above to the
following fragment of ASPX code.

<px:PXGridColumn DataField="UsrSIMCardID" Width="160" />

During the publication of the project, the platform applies the XML changeset to the appropriate form
to create a customized version of the .aspx file with the same name in the pages_xx subfolder of the
CstPublished folder of the website. If the form ID contains the SO prefix, the customized ASPX code is
located in the \CstPublished\pages_so folder, as the following screenshot shows.

Figure: Viewing the files with customized ASPX code in the CstPublished folder

After the project has been published, when Acumatica ERP has to display a form, first it tries to find the
.aspx file of the form in the CstPublished folder. If it finds it, Acumatica ERP opens the customized
version of the form instead of the original one.

Any customization of Acumatica ERP can be unpublished. If you unpublish a form customization, the
platform deletes the corresponding file in the CstPublished folder of the website.

Changes in the Application Code (C#)
In this section, you can find information about the customization of the application functionality, which
is provided by the application business logic (implemented in C# code) of data access classes and
business logic controllers.

BLC and DAC Extensions

To give you the ability to customize the functionality or behavior of a form, the Acumatica
Customization Platform uses technology based on extension models. When you are resolving a typical



 | Acumatica Customization Platform | 56

customization task, you generally create extensions for original data access classes and business logic
controllers.

An extension for a business logic controller (BLC, also referred to as graph) or a data access class
(DAC) is a class derived from a generic class defined in the PX.Data assembly of Acumatica ERP. To
declare an extension for a DAC, you derive a class from the PXCacheExtension<T> generic class. To
declare an extension of a BLC, you derive a class from the PXGraphExtension<T> generic class.

If you have created an extension for a BLC or DAC in a customization project and published the project,
the platform applies the extension to the base class at run time. During publication of the project, all
the code extensions created for an instance of Acumatica ERP in the project are saved as C# source
code files in the App_RuntimeCode folder of the application instance (see the diagram below).

Figure: Use of DAC and BLC extensions for a customization

At run time, during the first initialization of a base class, the Acumatica Customization Platform
automatically finds the extension for the class and applies the customization by replacing the base class
with the merged result of the base class and the extension it found.

When you unpublish all customization projects, the platform deletes all the code files from the
App_RuntimeCode folder. As a result, the platform has no custom code to merge at run time.

Multilevel Extensions

The Acumatica Customization Platform supports multilevel extensions, which are required when you
develop off-the-shelf software that is distributed in multiple editions. Precompiled extensions provide a
measure of protection for your source code and intellectual property.

The figure below illustrates the DAC extension model.



 | Acumatica Customization Platform | 57

Figure: DAC extension levels

The figure below illustrates the BLC extension model.

Figure: BLC extension levels

The platform can be used to customize the end production application. You can use multilevel
extensions to develop applications that extend the functionality of Acumatica ERP or other software
based on Acumatica Framework in multiple markets. You may have a base extension that contains
the solution common to all markets as well as multiple market-specific extensions. Every market-
specific solution is deployed along with the base extension. Moreover, you can later customize deployed
extensions for the end user by using DAC and BLC extensions.

:  When extensions can be deployed separately, the application developer should use multiple extension
levels. Otherwise, we recommend using a single extension level.

The Order in Which Extensions Are Loaded

For each DAC or graph type, the system loads and applies extensions at run time as follows:

1. The system collects extensions for the DAC or graph type.

2. The system sorts the list of extensions in alphabetical order.

3. If there is a subscriber to the PX.Data.PXBuildManager.SortExtentions event, the system
passes the list of extensions in alphabetical order to this subscriber, which can sort extensions in
a custom way. A sample implementation of the subscriber is shown in the following code.

using System; 
using Autofac;
using System.Web.Compilation;
using PX.Data.DependencyInjection;

namespace MyLib
{
  public class ServiceRegistration : Module 



 | Acumatica Customization Platform | 58

  {  
    protected override void Load(ContainerBuilder builder)
    {
      builder.ActivateOnApplicationStart<ExtensionSorting>();
    }
    private class ExtensionSorting
    {
      public ExtensionSorting()
      {
        PXBuildManager.SortExtensions += (list) => 
        {
          list.Sort((a, b) => 
          { 
            return -string.Compare(a.FullName, b.FullName,
 StringComparison.InvariantCulture); 
          } ); 
        };
      }
    } 
  }
}

4. The system changes the order of dependent extensions (such as Dac1Ext:
PXCacheExtension<Dac1> and Dac1ExtExt: PXCacheExtension<Dac1Ext, Dac1>)
so that the higher-level extensions have higher priorities during the merge operation.

Suppose that the website folder contains five extensions of the Contact DAC that are available in
the MyLib and ExternalLib namespaces, and the customization project includes an external
sorter, which sorts the extensions in a custom way. The following diagram shows how these
extensions are sorted. As a result of the sorting in this example, the first extension that is applied is
MyLib.ContactExt. The ExternalLib.ExtExtForContact class has the highest priority during
the merge operation.
 

 

In This Section

• DAC Extensions

• Graph Extensions

• Run-Time Compilation

• Extension Library

DAC Extensions

This topic explores the ways provided by the Acumatica Customization Platform to define data access
class (DAC) extensions of different levels and shows how different DAC extensions can interact.

To declare a DAC extension, you derive a class from PXCacheExtension<T>.



 | Acumatica Customization Platform | 59

First-Level DAC Extension

The example below shows a declaration of a first-level DAC extension.

class BaseDACExtension : PXCacheExtension<BaseDAC>
{
    public void SomeMethod()
    {
        BaseDAC dac = Base;
    }
}

The extension class includes the read-only Base property, which returns an instance of the base DAC.

Second-Level DAC Extension

The example below shows a declaration of a second-level DAC extension.

class BaseDACExtensionOnExtension :
    PXCacheExtension<BaseDACExtension, BaseDAC>
{
    public void SomeMethod()
    {
        BaseDAC dac = Base;
        BaseDACExtension dacExt = Base1;
    }
}

The extension class includes the following:

• The read-only Base property, which returns the instance of the base DAC

• The read-only Base1 property, which returns the instance of the first-level DAC extension

Two Variants of a Higher-Level DAC Extension

A definition of an extension of a higher level has two possible variants. In the first variant, you derive
the extension class from the PXCacheExtension generic class with two type parameters, where the
first type parameter is set to an extension of the previous level. In the second variant, you derive the
extension class from the PXCacheExtension generic class with the same number of type parameters as
the level of the extension of the new class. In this case, you set type parameters to extension classes
from all lower extension levels, from the previous level down to the base class.

First Variant of a Higher-Level DAC Extension

The example below shows the declaration of a third- or higher-level DAC extension that derives from
the PXCacheExtension generic class with two type parameters.

class BaseDACMultiExtensionOnExtension :
    PXCacheExtension<BaseDACExtensionOnExtension, BaseDAC>
{
    public void SomeMethod()
    {
        BaseDAC dac = Base;
        BaseDACExtensionOnExtension dacExtOnExt = Base1;
    }
}

An extension class defined this way includes the following:

• The read-only Base property, which returns the instance of the base DAC



 | Acumatica Customization Platform | 60

• The read-only Base1 property, which returns the instance of the DAC extension from the previous
level

Second Variant of a Higher-Level DAC Extension

The example below shows a declaration of a third- or higher-level DAC extension that derives from the
PXCacheExtension generic class with three or more type parameters.

class BaseDACAdvMultiExtensionOnExtension : 
    PXCacheExtension<BaseDACExtensionOnExtension, BaseDACExtension, BaseDAC>
{
    public void SomeMethod()
    {
        BaseDAC dac = Base;
        BaseDACExtension dacExt = Base1;
        BaseDACExtensionOnExtension dacExtOnExt = Base2;
    }
}

An extension class defined in this way includes the following:

• The read-only Base property, which returns the instance of the base DAC

• The read-only BaseN properties for all extension levels below the current level, where N is the
sequence number of an extension level

Attributes Hierarchy of a DAC Field

Conceptually, a DAC extension is a substitution of the base DAC. The base DAC is replaced at run time
with the merged result of the base DAC and every extension discovered.

Each extension on another extension completely overrides the DAC field attributes. The attributes
declared on the highest-level extension override all previously declared attributes.

For example, suppose that the attributes of the same DAC field are defined on different extension levels
as follows:

• In the base DAC, as shown below

 [PXUIField(DisplayName = "Base Name")]
 [PXDefault("Default base value")]

• In the first-level DAC extension, as the following code shows

[PXUIField(DisplayName = "Level1 Name", Visible = false)]

• In the second-level DAC extension, as shown below

[PXUIField(DisplayName = "Level2 Name")]
[PXDefault("Default 2nd level value")]

If all the extensions are applied, any field of the second-level DAC extension will have the following
parameters specified by attributes:

• Display name: Level2 Name

• Visible: true

• Default value: Default 2nd level value

:  You cannot modify the same member of the base DAC in the DAC extensions of the same level. You
should use DAC extensions of different levels that successively extend one another.



 | Acumatica Customization Platform | 61

DAC Field Read and Write Operations

The Acumatica Framework can access the value of a DAC field only through an instance of the base
DAC. The instance of the DAC extension is used to get the field value only when the field is declared in
the extension and is not present in the base DAC.

To assign a value to a field, the application developer should use the instance of the base DAC. You
must use the instance of a DAC extension to assign a field value when the field is declared within the
extension and is not present in the base DAC.

In This Section

• Access to a Custom Field

• Customization of Field Attributes in DAC Extensions

• Supported DAC Extension Formats

Access to a Custom Field

You can customize a data access class (DAC) in either of the following ways (see the diagram below):

• By altering the attributes of existing fields. You can use an altered field just as you would any
other existing field.

• By declaring new (custom) fields.

Figure: Analyzing the content of the merged DAC instance in the cache object

Every custom field is declared within the code of a DAC extension; therefore, at run time, the custom
field is accessible only through the DAC extension instance of the cache object.

You can access a custom field:

• From a Method

• From a BQL Statement

• From a Field Attribute



 | Acumatica Customization Platform | 62

From a Method

You can access the extension instance through the base (original) DAC object by using one of the
following generic methods:

• The GetExtension<T>(object) static generic method of the PXCache<T> generic class

• The GetExtension<T>(object) static generic method declared within the non-generic PXCache
class

:  There are no differences between these generic methods. You can use either one.

For example, you might access an instance of a DAC extension as follows. This example uses the row
instance of the base DAC to retrieve the rowExt DAC extension object.

DACNameExt rowExt = PXCache<DACName>.GetExtension<DACNameExt>(row);

To access a custom field, use the instance of a DAC extension that contains the field as follows.
The code below illustrates the use of the GetExtension<T>(object) static generic method of the
PXCache<T> generic class to access an instance of a DAC extension used to access a custom field.

var fieldValue = PXCache<DACName>.GetExtension<DACNameExt>(row).UsrFieldName;

You can retrieve a DAC extension object or particular field from it by using the methods of PXCache,
as shown in the code below. This code demonstrates how you can access a field by using the
GetExtension<> method.

//Access to the field through the GetExtension<> method
//localCategory gets the value of the usrLocalTaxCategoryID custom field 
//defined in the InventoryItemExtension DAC extension for the InventoryItem class
protected void InventoryItem_RowUpdating(PXCache sender, PXRowUpdatingEventArgs e)
{
    InventoryItem row = e.NewRow as InventoryItem;
    InventoryItemExtension rowExt =
 sender.GetExtension<InventoryItemExtension>(row);
    string localCategory = rowExt.UsrLocalTaxCategoryID;
...

In event handlers, you can also use the GetValue() and GetValueExt() methods to access the
custom field by its string name, as the code below shows.

//Access to the field through the GetValue() method
//localCategory gets the value of the usrLocalTaxCategoryID custom field 
//defined in a DAC extension for the InventoryItem class
protected void InventoryItem_RowUpdating(PXCache sender, PXRowUpdatingEventArgs e)
{
    InventoryItem row = e.NewRow as InventoryItem;
    string localCategory = (string)sender.GetValue(row, "usrLocalTaxCategoryID");
...

For custom fields defined in DAC extensions, you can also use other methods of PXCache classes, such
as SetValue() and SetDefaultExt(). For more information, see the PXCache<Table> class in
the API Reference Documentation of Acumatica Framework.

You can refer to the custom field by its BQL name in any methods of Acumatica Framework. The
example below shows how you can refer to the field in the SetEnabled<T>() method of the
PXUIFieldAttribute that you can use to configure the UI representation of the field at run time.
For more information on available classes and their methods, see the API Reference Documentation of
Acumatica Framework.

//The usrLocalTaxCategoryID custom field is defined
//in the InventoryItemExtension DAC extension for the InventoryItem class
protected void InventoryItem_RowSelected(PXCache sender, PXRowSelectedEventArgs e)



 | Acumatica Customization Platform | 63

{
    InventoryItem row = e.Row as InventoryItem;
   
 PXUIFieldAttribute.SetEnabled<InventoryItemExtension.usrLocalTaxCategoryID>(sender,
 row, true);
...

From a BQL Statement

In BQL expressions, you have to refer to the custom field by its BQL name in the extension class.

For example, after you have added the UsrSearchKeywords field to the
InventoryItemExtension class, which is a DAC extension for the InventoryItem class, the field
is accessible in BQL, as shown in the code below.

//The usrLocalTaxCategoryID custom field is defined
//in the InventoryItemExtension DAC extension for the InventoryItem class
PXSelect<InventoryItemExtension, 
    Where<InventoryItemExtension.usrLocalTaxCategoryID, IsNotNull>>

From a Field Attribute

In DAC extensions, you have to refer to a custom field by its BQL name.

After you have added the UsrSearchKeywords field to the InventoryItemExtension class, which
is a DAC extension for the InventoryItem class, the field is accessible in other DAC extensions.

For example, if you need to specify the type of the custom DAC field. For example, in attributes, you
can use the typeof operator, as shown in the code below.

//The usrLocalTaxCategoryID custom field is defined
//in the InventoryItemExtension DAC extension for the InventoryItem class
[PXSelector(typeof(InventoryItemExtension.usrLocalTaxCategoryID))]

Customization of Field Attributes in DAC Extensions

If you have a customization that replaces original attributes of a field with custom attributes, after
upgrading Acumatica ERP to a new version, a new functionality may became unavailable, as the
following diagram shows.



 | Acumatica Customization Platform | 64

Figure: Possible result of using the Replace (default) method to customize the attributes of a DAC field

To solve this issue, the customization framework provides advanced possibilities to control the field
customization by using additional attributes in the DAC extension.

When you customize Acumatica ERP, you can specify how the system should apply the original and
custom attributes to the field. Thus you can make the customizations more flexible and use the
collections of original attributes that could be updated between Acumatica ERP versions.

To specify the way the system should apply the field attributes in a DAC extension, you can use the
following attributes.

Attribute Description

PXMergeAttributes Specifies how to apply custom attributes to the
existing ones.

PXRemoveBaseAttribute Removes the specified existing attribute.

PXCustomizeBaseAttribute Defines a new value for the specified attribute
parameter.

PXCustomizeSelectorColumns Defines the new set and order of the columns in
the selector.

PXMergeAttributes Attribute

You use the PXMergeAttributes attribute to specify for each field how to apply custom attributes to the
existing ones.

There are three options to specify the operation: Append, Replace, and Merge. These options are
declared by the MergeMethod enumerator as follows.

public enum MergeMethod { Append, Replace, Merge }

The Append option is used to add custom attributes to the existing ones.



 | Acumatica Customization Platform | 65

The Replace option forces the system to use custom attributes instead of the existing ones. This option
is used by default if you do not specify the PXMergeAttributes attribute on the customized field.

The Merge option makes the system apply the union of the custom and existing attributes to the
customized field. The resulting collection of attributes includes:

• An existing attribute if the custom attribute collection does not contain the same attribute.

• Each attribute of the custom attribute collection.

To define a merge method for a field, insert the PXMergeAttributes attribute of the field in the DAC
extension, and define the option as the value of the Method parameter, as shown in the examples
below.

For example, suppose that for the customized FieldName field, you have to add the PXDefault attribute
and change the value in the PXUIFieldAttribute. Suppose the original code of the FieldName field is
the following.

 #region FieldName 
   ...
  [PXDBDecimal(2)]
  [PXUIField(DisplayName = "Display Name")]
  public virtual decimal? FieldName
  {...}
 #endregion

In the DAC extension code for the customized field, specify the Merge option, as shown below.

public class DACName_Extension: PXCacheExtension<DACName>
{
 #region FieldName

  [PXMergeAttributes(Method = MergeMethod.Merge)]

  [PXDefault(TypeCode.Decimal, "0.0")]
  [PXUIField(DisplayName = "Name")]

  public string FieldName{get;set;}

 #endregion 
}

The system will merge attributes for the FieldName field. In the result of the merge, the FieldName
field will have the following collection of attributes.

      ...
  [PXDBDecimal(2)]
  [PXDefault(TypeCode.Decimal, "0.0")]
  [PXUIField(DisplayName = "Name")]
  public virtual decimal? FieldName
  {...}

PXRemoveBaseAttribute Attribute

The PXRemoveBaseAttribute attribute is added to the field to remove the specified attribute of the
field.

For example, to remove the PXUIField attribute of the field, add the following attribute to the field
region of the DAC extension.

[PXRemoveBaseAttribute(typeof(PXUIFieldAttribute))]

PXCustomizeBaseAttribute Attribute

The PXCustomizeBaseAttribute attribute is added to the field for each modified parameter.



 | Acumatica Customization Platform | 66

For example, to set the Enabled parameter of the PXUIField attribute of a field to false, add the
following attribute to the field region of the DAC extension.

[PXCustomizeBaseAttribute(typeof(PXUIFieldAttribute), "Enabled", false)]

The following example shows how to change the Required parameter of the PXUIField attribute
for the MyField field of the MyDAC data access class in the MyGraph graph extension by using the
CacheAttached() event handler.

public class MyGraph_Extension:PXGraphExtension<MyGraph>
{
...
 [PXCustomizeBaseAttribute(typeof(PXUIFieldAttribute), "Required", true)]
  protected void MyDAC_MyField_CacheAttached(PXCache cache)
  {
  }
...
}

PXCustomizeSelectorColumns Attribute

This attribute defines a new set and order of the columns in the specified selector.

For example, suppose that you have to add a new column to the ItemClassID selector, which is
located on the General Settings tab of the Stock Items form. The original attributes of the field are
the following.

#region ItemClassID 
  public abstract class itemClassID : PX.Data.IBqlField
  {
  }
  protected String _ItemClassID;

  [PXDBString(10, IsUnicode = true)]
  [PXUIField(DisplayName = "Item Class", Visibility =
 PXUIVisibility.SelectorVisible)]
  [PXSelector(typeof(Search<INItemClass.itemClassID>))]
  public virtual String ItemClassID
  {
      get { return this._ItemClassID; }
      set { this._ItemClassID = value; }
  }
#endregion

The ItemClassID selector contains two columns for the INItemClass.itemClassID and
INItemClass.descr fields.

The code below shows how to customize only the PXSelector attribute of the field if you need to insert
a new column for the INItemClass.baseUnit field between the existing columns.

public class IN_InventoryItem_Extension:
 PXCacheExtension<PX.Objects.IN.InventoryItem>
{
  #region ItemClassID 
   [PXMergeAttributes(Method = MergeMethod.Append)]
   [PXCustomizeSelectorColumns( 
      typeof(PX.Objects.IN.INItemClass.itemClassID),
      typeof(PX.Objects.IN.INItemClass.baseUnit),
      typeof(PX.Objects.IN.INItemClass.descr))]
  #endregion
}

The system will append attributes for the ItemClassID field because of the Append method in the
PXMergeAttibutes specified in the DAC extension. In the result of the specified merge method, the
ItemClassID field has all original attributes, and the PXCustomizeSelectorColumns attribute is



 | Acumatica Customization Platform | 67

added through the DAC extension. The selector control of the ItemClassID field has three columns,
as specified in the PXCustomizeSelectorColumns attribute.

Supported DAC Extension Formats

You can keep a DAC customization in a customization project in any of the following ways:

• As a DAC item of a customization project in XML format. When you publish the
project, the platform creates the DAC extension source code and saves the code in the
<DACItemName>_extensions.cs file in the App_RuntimeCode folder of the website.

:  The system creates the file name based on the item name by replacing all symbols
except letters and digits with the _ symbol and adding the _extensions suffix. For example,
the extension code file for the PX.Objects.CR.Contact DAC item has the name
PX_Objects_CR_Contact_extensions.cs.

• As a Code item of a customization project that is the C# code of the DAC extension
wrapped in XML format. When you publish the project, the platform saves the code in the
<CodeItemName>.cs file in the App_RuntimeCode folder of the website.

• As a .dll file of the extension library in the Bin folder of the website. The library contains the
binary code of the DAC extension. To deploy the extension library to the production environment
along with a customization project, you include the extension library in the project as a File item.
See Extension Library for details.

By using the Customization Project Editor, you can:

• Convert a DAC item to a Code item.

:  The system creates the Code name based on the DAC item name by using the last word of the
name and adding the Extensions suffix. For example, the PX.Objects.CR.Contact DAC item is
converted to the ContactExtensions Code item.

• Move a Code item to the extension library included in the customization project as a File item.

If you have a customized data access class that is added to the project as a DAC item, then you can
click Convert to Extension on the page toolbar of the Customized Data Classes page to convert the
class changes into the class extension code used to complete the extension development in either the
Code Editor or Microsoft Visual Studio (see the diagram below).

Figure: Converting the code format of a DAC extension in a customization project

For a Code item included in a customization project, if you want to move the code to an extension
library to compile it into a .dll file, you can click the Move to Extension Lib button on the page
toolbar of the Code Editor. After the operation is complete, the Code item that is currently displayed
in the work area of the Code Editor is removed from the customization project. The file with the same
source code is appended to the extension library that is bound to the customization project. If the Code
item name was CodeItemName, the name of the created file will be CodeItemName.cs.

Graph Extensions

This topic explores the ways provided by the Acumatica Customization Platform to define business logic
controller (BLC, also referred as graph) extensions of different levels, and shows how different BLC
extensions can interact.

To declare an extension of a BLC, you derive a class from PXGraphExtension<T>.



 | Acumatica Customization Platform | 68

First-Level BLC Extension

The example below shows a declaration of a first-level BLC extension.

class BaseBLCExtension : PXGraphExtension<BaseBLC>
{
    public void SomeMethod()
    {
        BaseBLC baseBLC = Base;
    }
}

The extension class includes the read-only Base property, which returns an instance of the base BLC.

Second-Level BLC Extension

The example below shows a declaration of a second-level BLC extension.

class BaseBLCExtensionOnExtension :
    PXGraphExtension<BaseBLCExtension, BaseBLC>
{
    public void SomeMethod()
    {
        BaseBLC baseBLC = Base;
        BaseBLCExtension ext = Base1;
    }
}

The extension class includes the following:

• The read-only Base property, which returns the instance of the base BLC

• The read-only Base1 property, which returns the instance of the first-level BLC extension

Two Variants of a Higher-Level BLC Extension

A definition of a higher-level BLC extension has two possible variants. In the first variant, you derive
the extension class from the PXGraphExtension generic class with two type parameters, where the
first type parameter is set to an extension of the previous level. In the second variant, you derive the
extension class from the PXGraphExtension generic class with the same number of type parameters as
the level of the extension of the new class. In this case, you set type parameters to extension classes
from all lower extension levels, from the previous level down to the base class.

First Variant of a Higher-Level BLC Extension

The example below shows a declaration of a third- or higher-level BLC extension that is derived from
the PXGraphExtension generic class with two type parameters.

class BaseBLCMultiExtensionOnExtension :
    PXGraphExtension<BaseBLCExtensionOnExtension, BaseBLC>
{
    public void SomeMethod()
    {
        BaseBLC BLC = Base;
        BaseBLCExtensionOnExtension prevExt = Base1;
    }
}

An extension class defined in this way includes the following:

• The read-only Base property, which returns the instance of the base BLC



 | Acumatica Customization Platform | 69

• The read-only Base1 property, which returns the instance of the BLC extension from the previous
level

Second Variant of a Higher-Level BLC Extension

The example below shows a declaration of a third- or higher-level BLC extension that is derived from
the PXGraphExtension generic class with three or more type parameters.

class BaseBLCAdvMultiExtensionOnExtension : 
    PXGraphExtension<BaseBLCExtensionOnExtension, BaseBLCExtension, BaseBLC>
{
    public void SomeMethod()
    {
        BaseBLC BLC = Base;
        BaseBLCExtension ext = Base1;
        BaseBLCExtensionOnExtension extOnExt = Base2;
    }
}

An extension class defined in this way includes the following:

• The read-only Base property, which returns the instance of the base BLC

• The read-only BaseN properties for all extension levels below the current level, where N is the
sequence number of an extension level

Conceptually, a BLC extension is a substitution of the base BLC. The base BLC is replaced at run time
with the merged result of the base BLC and every extension the platform found. The higher level of a
declaration an extension has, the higher priority it obtains in the merge operation.

In This Section

• Event Handlers

• Customization of a Data View

• Customization of an Action

• Override of a Method

Event Handlers

The business logic associated with data modifications is implemented through event handlers. Event
handlers are methods that are executed when the PXCache objects of a particular data access class
(DAC) raise data manipulation events.

Every business logic controller (BLC, also referred to as graph) instance has a collection of event
handlers for each type of data manipulation event. Every collection is filled automatically with event
subscribers that are declared within the base (original) BLC and that meet the naming conventions of
Acumatica Framework event handlers.

With Acumatica Customization Platform, you can define new event handlers within BLC extensions. You
can define an event handler in two possible ways:

• You define the event handler in the same way as it is defined in the base BLC. As a result, the
event handler is added to the appropriate event handler collection. Depending on the event type,
the event handler is added to either the end of the collection or the start of it. When the event
occurs, all event handlers in the collection are executed, from the first to the last one.

• You define the event handler with an additional parameter, which represents the delegate for one
of the following:

• The event handler with an additional parameter from the extension of the previous level, if
such an event handler exists.



 | Acumatica Customization Platform | 70

• The first item in the collection of event handlers, if no handlers with additional parameters
declared within lower-level extensions exist. The collection contains event handlers without
the additional parameter from extensions discovered at all levels.

In either case, you can decide whether to invoke the delegate.

:  The CacheAttached() event handler declared in the highest-level BLC extension is used to
replace base DAC field attributes. Attributes attached to the CacheAttached() event handlers
within the base BLC or its extensions are attached to the PXCache object, each time completely
replacing the previous ones, from the base BLC to the highest extension discovered.

Event Handler Added to the End of the Collection

The following event handlers are added to the end of the collection:

• FieldUpdated(PXCache sender, PXFieldUpdatedEventArgs e)

• RowSelecting(PXCache sender, PXRowSelectingEventArgs e)

• RowSelected(PXCache sender, PXRowSelectedEventArgs e)

• RowInserted(PXCache sender, PXRowInsertedEventArgs e)

• RowUpdated(PXCache sender, PXRowUpdatedEventArgs e)

• RowDeleted(PXCache sender, PXRowDeletedEventArgs e)

• RowPersisted(PXCache sender, PXRowPersistedEventArgs e)

The system executes event handlers from the base (original) event handler up to the highest extension
level (referred to as the bubbling strategy). The lower the BLC extension's level of declaration, the
earlier the event subscriber is called. The figure below illustrates this principle.

Figure: Event execution with the bubbling strategy

Event Handlers Added to the Beginning of the Collection

The following event handlers are added to the beginning of the collection:

• FieldSelecting(PXCache sender, PXFieldSelectingEventArgs e)

• FieldDefaulting(PXCache sender, PXFieldDefaultingEventArgs e)

• FieldUpdating(PXCache sender, PXFieldUpdatingEventArgs e)

• FieldVerifying(PXCache sender, PXFieldVerifyingEventArgs e)

• RowInserting(PXCache sender, PXRowInsertingEventArgs e)



 | Acumatica Customization Platform | 71

• RowUpdating(PXCache sender, PXRowUpdatingEventArgs e)

• RowDeleting(PXCache sender, PXRowDeletingEventArgs e)

• RowPersisting(PXCache sender, PXRowPersistingEventArgs e)

• CommandPreparing(PXCache sender, PXCommandPreparingEventArgs e)

• ExceptionHandling(PXCache sender, PXExceptionHandlingEventArgs e)

Event handlers are added by the system to the beginning of the collection by using the tunneling
strategy. The system executes event handlers from the highest extension level down to the base event
handler. The higher the BLC extension's level of declaration, the earlier the event subscriber is called.
The figure below illustrates this principle.

Figure: Event execution with the tunneling strategy

Event Handlers with an Additional Parameter

The event handler with an additional parameter replaces the base BLC event handler collection. When
the event is raised, the system calls the event handler with an additional parameter of the highest-level
BLC extension. The system passes a link to the event handler with an additional parameter from the
extension of the previous level, if such an event handler exists, or to the first item in the event handler
collection. You use a delegate as an additional parameter to encapsulate the appropriate event handler.

The Acumatica Framework provides the following delegates to encapsulate event handlers:

• PXFieldSelecting(PXCache sender, PXFieldSelectingEventArgs e)

• PXFieldDefaulting(PXCache sender, PXFieldDefaultingEventArgs e)

• PXFieldUpdating(PXCache sender, PXFieldUpdatingEventArgs e)

• PXFieldVerifying(PXCache sender, PXFieldVerifyingEventArgs e)

• PXFieldUpdated(PXCache sender, PXFieldUpdatedEventArgs e)

• PXRowSelecting(PXCache sender, PXRowSelectingEventArgs e)

• PXRowSelected(PXCache sender, PXRowSelectedEventArgs e)

• PXRowInserting(PXCache sender, PXRowInsertingEventArgs e)

• PXRowInserted(PXCache sender, PXRowInsertedEventArgs e)

• PXRowUpdating(PXCache sender, PXRowUpdatingEventArgs e)

• PXRowUpdated(PXCache sender, PXRowUpdatedEventArgs e)



 | Acumatica Customization Platform | 72

• PXRowDeleting(PXCache sender, PXRowDeletingEventArgs e)

• PXRowDeleted(PXCache sender, PXRowDeletedEventArgs e)

• PXRowPersisting(PXCache sender, PXRowPersistingEventArgs e)

• PXRowPersisted(PXCache sender, PXRowPersistedEventArgs e)

• PXCommandPreparing(PXCache sender, PXCommandPreparingEventArgs e)

• PXExceptionHandling(PXCache sender, PXExceptionHandlingEventArgs e)

For example, for the FieldVerifying event, the event handler with an additional parameter looks like
FieldVerifying(PXCache sender, PXFieldVerifyingEventArgs e, PXFieldVerifying
del).

You can execute del() to invoke the event handler to which del points, or you can decide not to
invoke it. When del() points to the base BLC event handler collection, its invocation causes the
execution of the whole collection. All other event handlers in the collection are invoked sequentially
after the first handler is executed.

Suppose that you have declared event handlers as follows.

public class BaseBLC : PXGraph<BaseBLC, DAC>
{
    protected void DAC_RowUpdated(PXCache cache, PXRowUpdatedEventArgs e)
    {
        
    }

    protected void DAC_Field_FieldVerifying(PXCache sender,
 PXFieldVerifyingEventArgs e)
    {
        
    }
}

public class BaseBLCExt : PXGraphExtension<BaseBLC>
{
    protected void DAC_RowUpdated(PXCache cache, PXRowUpdatedEventArgs e)
    {
        
    }

    protected void DAC_Field_FieldVerifying(PXCache sender,
 PXFieldVerifyingEventArgs e)
    {
        
    }

    protected void DAC_RowUpdated(PXCache cache, PXRowUpdatedEventArgs e,
 PXRowUpdated del)
    {
        if (del != null)
            del(sender, e);
    }

    protected void DAC_Field_FieldVerifying(PXCache sender,
 PXFieldVerifyingEventArgs e, PXFieldVerifying del)
    {
        if (del != null)
            del(sender, e);
    }
}

public class BaseBLCExtOnExt : PXGraphExtension<BaseBLCExt, BaseBLC>
{
    protected void DAC_RowUpdated(PXCache cache, PXRowUpdatedEventArgs e)



 | Acumatica Customization Platform | 73

    {
        
    }

    protected void DAC_Field_FieldVerifying(PXCache sender,
 PXFieldVerifyingEventArgs e)
    {
        
    }

    protected void DAC_RowUpdated(PXCache cache, PXRowUpdatedEventArgs e,
 PXRowUpdated del)
    {
        if (del != null)
            del(sender, e);
    }

    protected void DAC_Field_FieldVerifying(PXCache sender,
 PXFieldVerifyingEventArgs e, PXFieldVerifying del)
    {
        if (del != null)
            del(sender, e);
    }
}

In this case, the RowUpdated and FieldVerifying event handlers are invoked in the appropriate
sequences, explained below.

The following figure illustrates the order in which the RowUpdated events are invoked.

Figure: The order of the RowUpdated event handler execution

The following figure illustrates the order in which the FieldVerifying events are invoked.

Figure: The order of the FieldVerifying event handler invocation

Customization of a Data View

The platform provides a way to alter or extend the data views defined in a BLC.

:  A data view is a PXSelect BQL expression declared in a BLC for accessing and manipulating data. A
data view may contain a delegate, which is an optional graph method that executes when the data view is
requested. Every data view is represented by the PXView object and placed in the Views collection of the



 | Acumatica Customization Platform | 74

appropriate BLC. To construct an instance of the PXView class, you use a PXSelect BQL expression and
an optional delegate from the highest-level extension discovered.

Suppose that you have declared the Objects data view within the base BLC, as shown below.

 public class BaseBLC : PXGraph<BaseBLC, DAC>
{
    public PXSelect<DAC> Objects;
}

You can alter a data view within a BLC extension in the following ways:

• By altering the data view within a BLC extension. A data view that is redeclared within a BLC
extension replaces the base data view in the Views collection of the BLC instance. Consider the
following example of a first-level BLC extension.

public class BaseBLCExt : PXGraphExtension<BaseBLC>
{
    public PXSelectOrderBy<DAC, 
               OrderBy<Asc<DAC.field>>> Objects;
}

The Views collection of a BLC instance contains the PXView object, which uses the Objects data
view declared within the first-level extension, instead of the data view declared within the base
BLC.

:  A data view redeclared within a BLC extension completely replaces the base data view within
the Views collection of a BLC instance, including all attributes attached to the data view declared
within the base BLC. You can either attach the same set of attributes to the data view or completely
redeclare the attributes.

• By declaring or altering the data view delegate in a BLC extension. The new delegate is attached
to the corresponding data view. Consider the following example of a second-level BLC extension.

 public class BaseBLCExtOnExt : PXGraphExtension<BaseBLCExt, BaseBLC>
{
    protected IEnumerable objects()
    {
        return PXSelect<DAC>.Select(Base);
    }
}

The Views collection of a BLC instance contains the PXView object, which uses the Objects data
view declared within the first-level extension, with the objects() delegate declared within the
second-level extension (see the screenshot below).



 | Acumatica Customization Platform | 75

Figure: The interaction among the levels of a BLC extension

To query a data view declared within the base BLC or a lower-level extension from the data
view delegate, you should redeclare the data view within a BLC extension. You do not need to
redeclare a data member when it is not meant to be used from the data view delegate. Consider
the following example of a second-level BLC extension.

public class BaseBLCExtOnExt : PXGraphExtension<BaseBLCExt, BaseBLC>
{
    protected IEnumerable objects()
    {
        return Base.Objects.Select();
    }
}

The new delegate queries the data view declared within the base BLC. Having redeclared the data
view within the first-level extension, you prevent the data view execution from an infinite loop
(see the following screenshot).

Figure: The view of the base BLC from the second-level delegate



 | Acumatica Customization Platform | 76

:  If a data view declared within the base BLC contains a delegate, this delegate also gets invoked
when the data view is queried from the new delegate (see the following figure).

Figure: The view with the delegate of the base BLC from the second-level delegate

Customization of an Action

The platform provides a way to alter or extend an action defined in a business logic controller (BLC, also
referred as graph).

:  An action is a BLC member of the PXAction type. An action always has the delegate defined. Every
action is represented by the PXAction object and placed in the Actions collection of the appropriate BLC.
To construct an instance of the PXAction class, you use a BLC member of the PXAction type and a
delegate from the highest-level extension discovered.

Suppose that you have declared the Objects data view and the ValidateObjects action within the
base BLC, as shown below.

 public class BaseBLC : PXGraph<BaseBLC, DAC>
{
    public PXSelect<DAC> Objects;
 
    public PXAction<DAC> ValidateObjects;
    [PXButton]
    [PXUIField(DisplayName = "Validate Objects")]
    protected virtual void validateObjects()
    {
    }
}

You can alter actions within BLC extensions in the following ways:

• By overriding action attributes within a BLC extension.

To override action attributes in a BLC extension, you should declare both the BLC member of
the PXAction type and the delegate. You should attach a new set of attributes to the action
delegate. Also, you need to invoke the Press method on the base BLC action. Having redeclared
the member of PXAction<>, you prevent the action delegate execution from an infinite loop.
Consider the following example of a first-level BLC extension.

 public class BaseBLCExt : PXGraphExtension<BaseBLC>
{
    public PXAction<DAC> ValidateObjects;
    [PXButton]
    [PXUIField(DisplayName = "Validate All Objects")]
    protected void validateObjects()
    {
        Base.ValidateObjects.Press();



 | Acumatica Customization Platform | 77

    }
}

The Actions collection of a BLC instance contains the ValidateObjects action, which consists of
the PXAction type member and the delegate, both of which were declared within the first-level
extension (see the following figure).

:  When overriding an action delegate within a BLC extension, you completely redeclare the attributes
attached to the action. Every action delegate must have PXButtonAttribute (or the derived
attribute) and PXUIFieldAttribute attached.

Figure: The interaction among the first-level and base actions

• By overriding the action delegate within the BLC extension.

The new delegate is used by the appropriate action. Consider the following example of a second-
level BLC extension.

 public class BaseBLCExtOnExt : PXGraphExtension<BaseBLCExt, BaseBLC>
{
    [PXButton]
    [PXUIField(DisplayName = "Validate Objects")]
    protected void validateObjects()
    {
    }
}

The Actions collection of a BLC instance contains the ValidateObjects action, which consists of
the PXAction<> type member declared within the first-level extension and the delegate declared
within the second-level extension. To use an action declared within the base BLC or the lower-
level extension from the action delegate, you should redeclare the action within a BLC extension.
You do not need to redeclare an action when it is not meant to be used from the action delegate.

Figure: The case when you don't need to redeclare an action



 | Acumatica Customization Platform | 78

:  To modify the same member of the base BLC or any BLC extension, you should use extensions of
higher levels.

Override of a Method

The platform provides a way to override a method of a BLC.

Suppose that you need to override the Persist method of the BaseBLC class, which is defined in the
code below.

public class BaseBLC : PXGraph<BaseBLC>
{
    public virtual void Persist()
    {
        ...
    }
}

You can override the method within a BLC extension as follows.

public class BaseBLC_Extension : PXGraphExtension<BaseBLC>
{
    public delegate void PersistDelegate();
    [PXOverride]
    public void Persist(PersistDelegate baseMethod)
    {
        ...
        baseMethod();        
        ...
    }
}

The graph extension should include the declaration of the base method delegate, the PXOverride
attribute, and the overridden method, which invokes the base method delegate, as the code above
shows.

Because the PXOverride attribute on the declaration of the method is included in the graph extension,
it forces the system to override the original method in the graph instance. Otherwise, the overridden
method will never be invoked.

Run-Time Compilation

If you have created an extension for a business logic controller or a data access class in a customization
project, during the project publication, the Acumatica Customization Platform stores the code of the
class extension in a .cs file within the App_RuntimeCode folder of the website.

At run time, the platform compiles the code in a separate library that is dynamically merged with the
original classes. Run-time compilation is used by default for the code of the DAC and Code project
items. (See Types of Items in a Customization Project for details.)

Publication of a customization updates the files in the App_RuntimeCode folder of the website. Unlike
when the Bin folder is updated, update of files in the App_RuntimeCode folder doesn't cause the
application domain to restart. (See Performing the Publication Process for details.)

Extension Library

An extension library is a Microsoft Visual Studio project that contains customization code and can be
individually developed and tested. An extension library .dll file must be located in the Bin folder of the
website. At run time during the website initialization, all the .dll files of the folder are loaded into the
server memory for use by the Acumatica ERP application. Therefore, all the code extensions included in
a library are accessible from the application.

During the first initialization of a base class, the Acumatica Customization Platform automatically
discovers an extension for the class in the memory and applies the customization by replacing the



 | Acumatica Customization Platform | 79

base class with the merged result of the base class and the extension discovered (see the following
diagram).

Figure: Actual approach to the use of an extension library for a customization

If you need to deploy the customization code of an extension library to another system, you have to
add the library to a customization project as a File item to include it in a customization package.

The use of extension libraries that are precompiled provides a measure of protection for your source
code and intellectual property.

Extension Library (DLL) Versus Code in a Customization Project

While developing source code for a customization task, you can either keep the code in the
customization project as DAC and Code items or move the code to an extension library and include the
library in the project as a File item.

DAC and Code items are saved in the database and, if the customization project is published, in the
files located in the App_RuntimeCode folder of the website. Acumatica Customization Platform compiles
all the code located in this folder at run time.

We recommend that you keep the source code in the customization project only if the customization is
elementary, such as if the code contains an event handler for a control on a form. When you work with
a code item, it is easy to view the code of the applied customization directly in the Code Editor without
Microsoft Visual Studio. However if you are solving a complex customization task, it is generally better
to develop the solution code in an extension library using Visual Studio.

You can use Visual Studio to develop a Code item as well as code in an extension library. But you
have no IntelliSense feature in Visual Studio for the source code of a Code item if the code either uses
custom fields or invokes members of class extensions defined in other Code and DAC items.

You can later customize deployed extensions for the end user by means of code extensions. Therefore,
if the customization is compiled to an extension library, more than one customization can be applied to
a single Acumatica ERP form.

The following table shows the differences in the use of the code in DAC and Code items and in an
extension library.



 | Acumatica Customization Platform | 80

Code in DAC and Code items Code in an Extension Library

Best for: Quick start of a customization Development of a customization
project when more than one
developer is involved

Primary storage: Database File system

Location within the website
folder:

App_RuntimeCode Bin

Intellectual property protection: No—the source code is open in
the deployment package

Yes—the source code is not
provided in the deployment
package

Run-time compilation without
the application domain being
restarted:

Yes No

Editor: Code Editor, Visual Studio Visual Studio

IntelliSense feature in Visual
Studio:

No Yes

Debugging: Yes Yes

Integration with a version
control system:

Yes Yes

Additional: Can be moved to an extension
library when needed

To make a decision about how to work with the code, you should answer the following questions:

• What amount of the code will be in the customization project?

• Is there a need for replicability of the customization?

• How many developers will take part in coding?

• Do you need to open the source code on the production environment?

We recommend that you use an extension library if any of the following conditions is met:

• You intend to have more than five class extensions for business logic controllers.

• The customization will be deployed on more than one system.

• The customization code will be developed by a team that needs to use a version control system.

• You have a reason to protect the intellectual property of the source code of the solution.

Changes in the Database Schema
The Acumatica Customization Platform permits the following changes to the database in the scope of a
customization project:

• Creation of custom tables

• Creation of custom columns in existing tables

• Creation of views, indexes, and other database objects

Creation of Custom Tables

We recommend that you create a custom table in the database of your development environment by
using a database administration tool, such as SQL Server Management Studio, and then import the
table schema from the database to a customization project by using the Customization Project Editor.
The project keeps the schema in XML format. While publishing the customization project, the platform



 | Acumatica Customization Platform | 81

executes a special procedure to create the table by the schema, while meeting all the requirements of
Acumatica ERP.

Creation of Custom Columns in Existing Tables

To create a custom database-bound field, you add a column to the database table and declare the field
in the extension of the base (original) DAC.

The new column is appended to the original table by altering the table schema. When you create the
database-bound field by using the Data Class Editor, the platform generates the DAC extension code
for the new field and adds to the customization project the XML definition of the new column to be
created in the database. To be able to create a UI control for the new field to display on a form, you
have to publish the project to make the system create the column in the database table and compile
the customization code. After the publication, you can add the control for the new field to the form by
using the Layout Editor.

Creation of Views, Indexes, and Other Database Objects

The platform permits you to add to a customization project an SQL script, written in Transact-SQL (MS
SQL) dialect, to be executed during the publication of the project. However we recommend that you
avoid doing this for the following reasons:

• Because Acumatica ERP supports multi-tenancy, it is difficult to create an SQL script that correctly
creates a database object.

• It is difficult to properly specify and use the company mask in custom database objects.

• If you include in a customization project an SQL script written for MS SQL, avoid applying the
customization to a website on MySQL Server, because an SQL script created for MS SQL Server
might not work properly on MySQL Server.

Warning:  A possible result of a custom SQL script is the loss of the integrity and the consistency of data.

Custom Processes During Publication of a Customization
The platform provides you the ability to execute custom processes within the instance of Acumatica ERP
at the following times during the publication of a customization project:

• After website files are updated but before the website is restarted

• After the customization has been published and the website is restarted

To implement such processes, you can create a class derived from the CustomizationPlugin class,
further referred to as the customization plug-in, and override one or both of the following methods,
which can be invoked at the end of the publication process:

• The OnPublished() method is executed right after website files are updated but before the
website are restarted. This method is invoked only if run-time compilation is enabled. In a cluster
environment, the method is invoked on each cluster node. By using this method, you can update
any files within the website except the customization code files located in the /Bin folder. For
example, you can set up your own UI styles and skins or log-in images.

• The UpdateDatabase() method is executed after the customization is published and the
website is restarted. In this method, for example, you can already manipulate data in the
database by using the business logic implemented in the customization. For example, you can
develop source code to import data by using a scenario included in the customization.

In a customization project, you can include multiple classes derived from the CustomizationPlugin
class.

:  The platform does not provide you the ability to set the order of execution of customization plug-ins in a
published customization.



 | Acumatica Customization Platform | 82

For details about how to create a class derived from the CustomizationPlugin class, see To Add a
Customization Plug-In to a Project.



 | Performing Customization | 83

Performing Customization

As a rule, the process of resolving a customization task can be divided into four stages:

• Exploration stage: During this stage, you explore the original code of your Acumatica ERP
application instance. This stage is executed in the development environment, which must be the
same as the production environment.

• Development stage: This stage includes the steps to develop a customization project; the stage is
also executed locally in the development environment, which must include all customizations that
are included in the production environment.

• Final testing stage: In this stage, you test the newly developed customization project in the
staging environment, which can be a local copy of the customized production environment. The
staging environment must include a copy of the production database.

• Deployment stage: This stage must be executed in the production environment.

:

The version number of Acumatica ERP used in the development, staging, and production
environments should be the same. If they are not, before deploying and publishing a project on
the production instance, you should update the application instances to the same version. If the
production application instance has been updated (or will be updated soon) to a particular version,
you should update the development and staging instances to the target version and repeat all testing
steps. Then, if the tests are successful, you should again create the deployment package to upload it
to the production environment.

Also, keep in mind that to carry out the final testing (with the production database) and deployment
stages, you must be registered as an internal user with the Customizer role assigned.

You develop and maintain customization projects by using the Customization Tools of Acumatica
Customization Platform. The platform provides the mechanisms to develop and publish customization
projects. After the customization project is ready, you prepare the deployment package to distribute the
customization project to the staging or production environment (see Deployment of Customization for
details).

In This Part

• To Assign the Customizer Role to a User Account

• To Detect Whether a Customization Project Is Applied to the Application

• Exploring the Source Code

• To Develop a Customization Project

• To Perform Final Testing of a Customization

• To Deploy a Customization Project

To Assign the Customizer Role to a User Account
A user with the Administrator role has full access rights in the system and can assign the Customizer
role to the needed users by using the Users (SM.20.10.10) form.

:  The default admin user has the Administrator role.

If you have the Administrator role, do the following to assign the Customizer role to a user account:

1. Navigate to Configuration > User Security > Manage > Users.

2. In the Login box, select the user account to which the Customizer role should be assigned.



 | Performing Customization | 84

3. Make sure the user account is not a guest account (in the Summary area) and is not assigned to
a guest role (on the Roles tab).

4. On the Roles tab, select the check box for the Customizer role, and click Save on the form
toolbar.

The screenshot below shows the Johnson user account assigned to the Customizer role. The
account is not a guest account and is not assigned to any guest roles.

Figure: Assigning the Customizer role to a user account

After you save your changes, the user gets full access for customization of the system as soon as the
user refreshes a form in the web browser.

User Access Rights for Customization
A user account must be granted the Customizer role to have the appropriate access needed for
customization of Acumatica ERP.

The default admin user account is granted this role. Therefore, if you are a developer who is going to
work with a customization project, you can install an application instance of Acumatica ERP on the local
computer and use the admin user account to start doing the customization. For testing and deployment
of the customization, you should also assign the Customizer role to the appropriate user accounts on
the test instance of the application and on the production instance. On the production instance, only the
users who manage the deployment of customization packages should be granted the Customizer role.

The users who will be granted the Customizer role must be Acumatica ERP internal users. You cannot
assign the Customizer role to a user if either of the following conditions is true (or if both are true):



 | Performing Customization | 85

• The user has a guest account—that is, the user account has the Guest Account check box
selected on the Users (SM.20.10.10) form.

• The user is assigned to a guest role. A guest role has the Guest Role check box selected on the
User Roles (SM.20.10.05) form. The default guest roles are Anonymous, Guest, and Portal User.

A user account that is assigned to the Customizer role has access to the following objects of the
system:

• The Customization Menu and Element Inspector, which give this user the ability to inspect the
element properties on every form of Acumatica ERP and to add items to a customization project.

• The Customization Projects (SM.20.45.05) form, which is used to manage and publish multiple
customization projects. (See also Customization Projects Form .)

• The Customization Project Editor, which is used to manage and develop the content of a selected
customization project.

To Detect Whether a Customization Project Is Applied to the
Application

You can see whether a customization project is applied to the application on the Welcome screen,
with more detailed information available on the Customization Projects (SM.20.45.05) form. To detect
whether an Acumatica ERP instance is customized, perform the following actions:

1. Launch the application in the browser.

2. In the bottom of the Welcome screen, check for the presence of the Customized string.

If the string exists, it is followed by the names of the customization projects that are currently
published, as shown in the following screenshot.

Figure: Viewing the customization projects that are currently published



 | Performing Customization | 86

3. Enter your credentials and click Sign In.

4. Navigate to System > Customization > Manage > Customization Projects.

5. On the form, view the list of the customization projects that are accessible in the application for
your company (see the following screenshot).

Figure: Viewing the list of customization projects

:  If a customization project that you know to be published is absent in the list, the project may be
published for another company. See Customization of a Multi-Company Site for details.

6. In the Published column of the list, notice which customization projects have the check box
selected. These are the projects that are currently published.

7. Use the Customization Project Editor to explore the content of each published customization
project. To open a project in the editor, click the name of the project.

You can also view the names of the customization projects that are currently published in the About
Acumatica dialog box, as the following screenshot shows.

Figure: Viewing the list of the customization projects that are currently published

To open the dialog box, click Help > About on a form of Acumatica ERP.

Exploring the Source Code
Before you start to customize an Acumatica ERP application instance, you should analyze your business
requirements to identify the changes in business processes that must be done and to identify the
application objects for the customization. We recommend that you learn about the structure of the
involved webpages by exploring the .aspx pages, the code of the business logic controllers (BLCs), and
the data access classes (DACs) that are used within the BLCs.

You can use the Source Code (SM.20.45.70) form (see also Source Code Browser) to explore the
original source code of the application for the following purposes:

• To learn about the structure of the webpages involved in the customization

• To understand which data views are bound with the customized form areas



 | Performing Customization | 87

• To analyze the code that provides the business logic for a form to be customized

• To find and analyze the data views used on a customized webpage

• To understand which data access classes the form being customized is based on

• To learn the attributes of the DAC fields and the relations between DACs

This section contains instructions on how to do the following:

• To Explore the C# Code of a BLC

• To Explore the C# Code of a DAC

• To Explore the ASPX Code of a Page

• To Find a Customization of the ASPX Code

• To Find Source Code by a Fragment

To Explore the C# Code of a BLC
If you need to customize the business logic for a form of Acumatica ERP, you have to explore the
original source code of the business logic controller (BLC) that provides the business logic for the form.
The goal of exploring the code is to discover the data views, methods, and event handlers of the BLC.

To do this, perform the following actions:

1. On a selected form, click Customization > Inspect Element, as item a of the screenshot
below shows, to activate the Element Inspector.

2. Click a control or area of the form to open the Element Properties Dialog Box for the control or
area. See item b on the screenshot.

3. In the dialog box, click Actions > View Business Logic Source (item c).

Figure: Selecting the grid container for the customization

4. In the Source Code (SM.20.45.70) form (see also Source Code Browser), which opens for the
BLC, view the source code in the work area, and use the navigation pane to find a method or
event handler by its name and open it.

Also, you can open the original BLC code in the Source Code browser in the following ways:

• From the Code Editor, by clicking View Source on the page toolbar



 | Performing Customization | 88

• From the Layout Editor, by clicking View Source on the toolbar of the Events tab

To Explore the C# Code of a DAC
If you need to customize the attributes of a data field for an existing control or create a new field for a
custom control on a form, you may need to explore the original source code of the appropriate DAC.

To do this, perform the following actions:

1. On the selected form, click Customization > Inspect Element, as item a of the screenshot
below shows, to activate the Element Inspector.

2. Click a control or area of the form to open the Element Properties Dialog Box for the control or
area. See item b on the screenshot.

3. In the dialog box, click Actions > View Data Class Source (item c).

Figure: Selecting the grid container for the customization

4. On the Source Code (SM.20.45.05) form (see also Source Code Browser), which opens for the
DAC, view the data field declarations in the work area.

Also you can open the original DAC code in the Source Code browser in the following ways:

• From the Data Class Editor, by clicking View Source on the page toolbar

• From the Layout Editor, by clicking View Source on the toolbar of the Attributes tab

To Explore the ASPX Code of a Page
If you need to look closely at the data views that provide data for control containers on a form or to see
the corresponding webpage structure—that is, the layout of the containers and the types and properties
of the controls—you may need to explore the original ASPX code of the webpage.

To explore this code, perform the following actions:

1. On the selected form, click Customization > Inspect Element, as item a in the screenshot
below shows, to activate the Element Inspector.

2. Click a control or area of the form to open the Element Properties Dialog Box for the control or
area. See item b on the screenshot.



 | Performing Customization | 89

3. In the dialog box, click Actions > View ASPX Source (item c).

Figure: Selecting the grid container for the customization

4. On the Source Code (SM.20.45.70) form (see also Source Code Browser), which opens for the
form, view the original ASPX code of the page in the work area.

5. If you need to look closely at the data views that provide data for control containers on the
current form, perform a browser search to find the DataMember string. The DataMember property
is used to bind a control container of a form to a data view defined in the business logic
controller (BLC) of the form. The property value is the name of the data view.

:  Each DataMember property value can correspond to any data view name of the BLC. Any
container (for example, PXTab, PXGridLevel, or PXFormView) must be bound to a data view
declared within a BLC. Any data view except for the main data view can be used by an unlimited
number of containers. The main data view must be bound to a single container.

To Find a Customization of the ASPX Code
If the ASPX code for a form is customized, to explore changes in the code, you use the Layout Editor of
the Customization Project Editor, which you access by using the Customization Projects (SM.20.45.05)
form.

:  The Source Code browser can display only the original ASPX code of a webpage.

To detect whether a form is currently customized, do the following:

1. Open the form in the browser.

2. Click Help on the title bar of the form, as the following screenshot shows.



 | Performing Customization | 90

Figure: Checking whether a form has been customized

If the form has been customized, the form identifier has the CST. prefix.

Once you know the form has been customized, to find the customization of the ASPX code of the form,
perform the following actions:

1. Determine the published customization projects that contain changes for the form as follows:

a. Navigate to System > Customization > Manage > Customization Projects

b. On the form, view the list of the customization projects (see the following screenshot)

Figure: Viewing the list of customization projects

c. In the Screen Names column, for the published customization projects (those for which
the Published check box is selected), scan the form IDs to identify the projects that
contains changes for this form.

2. To explore a published project that contains changes for this form, perform the following actions:

a. Click the name of the project to open it in the Customization Project Editor.

b. In the navigation pane of the editor, click Screens to open the Customized Screens page.

c. On the page (see the screenshot below), click the form ID in the Screen ID column to
open the Layout Editor for the form.



 | Performing Customization | 91

Figure: Viewing the Customized Screens page of the Customization Project Editor

d. In the Layout Editor, select the View ASPX tab item to view the customized ASPX code of
the node that is currently selected in the Control Tree

e. Explore each node of the tree to find the changes, which are highlighted in yellow, as the
following screenshot shows.

Figure: Viewing the customization of the ASPX code

To Find Source Code by a Fragment
In an instance of Acumatica ERP, a repository with the original C# source code of the application is kept
in the \App_Data\CodeRepository folder of the website. You can use the Source Code (SM.20.45.70)
form to find the source code within the repository by a code fragment. (For more information, see also
Source Code Browser.)

To do this, perform the following actions:

1. Navigate to System > Customization > Explore > Source Code.

2. Click the File in Files tab item.

3. In the Find Text box, enter (by typing or by copying and pasting) a code fragment.



 | Performing Customization | 92

4. Click Find to start the procedure.

The results of the code search are displayed on the form, as the following screenshot shows.

Figure: Viewing the results of the code search in the Source Code browser

The form displays the results in the following elements:

• A list of the locations of the specified code fragment in the repository files

• A text area with the source code of the location selected in the list

5. Explore the use of the code fragment in the original source code by selecting a location in the list
and scrolling the code in the text area.

To Develop a Customization Project
We recommend that you use a separate application instance for each developer working on a single
project or group of projects. Multiple developers should not work simultaneously with the same project
or projects. You should divide customization scope among the developers on a separate areas so
each developer works with a separate application instance. The created customization projects can be
sequentially imported into the customer's production environment and applied as if all the divided tasks
had been resolved as a single common one.

During the development stage, you develop the customization, which involves implementing your
planned changes by using the framework and tools provided by the Acumatica Customization Platform.

Follow this recommended workflow during the development process:

1. Prepare the development environment in accordance with System Requirements for Acumatica
ERP 6.1.

2. Install a version of Acumatica ERP that has the same number as the version used in the
production environment. (See Installing Acumatica ERP for details.) All of the following actions
must be performed in this environment.

3. Start the application instance.

4. Create a new customization project or select an existing one.



 | Performing Customization | 93

5. Open the project in the Customization Project Editor.

6. Split the customization process into discrete steps, such as adding an UI element or extending
business logic, and perform the needed changes step by step. (See Customizing Elements of the
User Interface, Customizing Business Logic, and Customizing the Database Schema for details.)

7. After the completion of every step, validate the changes you have performed.

Before the validation process begins, the platform automatically saves the content of the project
(items and all the external files) to the database of the application instance that is currently
being customized. Therefore, we recommend that you download (export) a package that may be
used as an archive copy of the current state of the customization project; you may also create
an archive copy before saving new changes to the database or before validating the changes.
This copy may be useful if the validation process fails. In this case, you can upload the latest
archive file to restore the previous state of the customization project.

8. Publish the project.

9. Test the customized application instance.

To Perform Final Testing of a Customization
In this stage, you test the newly developed customization project in the staging environment, which
can be a local copy of the production environment. The staging environment must include a copy of the
production database.

To apply the customization to the staging environment, you have to do the following:

1. Export the deployment package of the customization project in the development environment.
See To Export a Project for details.

2. Prepare the staging environment in accordance with System Requirements for Acumatica ERP
6.1.

3. In the staging environment, install a version with the same Acumatica ERP version number that
is used in the production environment (see Installing Acumatica ERP for details). All further
actions must be performed in the staging environment.

4. Copy the deployment package file to the system where the staging environment was prepared.

5. Start the application instance.

6. Import the project. See To Import a Project for details.

7. Explore the project content. Ensure that the project items contain appropriate data.

8. Publish the project. See Publishing Customization Projects for details.

9. Test the customization.

If you have developed a complex project for an application with multiple customization projects
published and you can't address some issues that have emerged during this stage, try to perform the
original installation with all previous updates, and then upload the saved content of the current project
to the staging environment.

To Deploy a Customization Project
In this stage, you deploy the successfully tested customization project to the production environment.

To apply the customization to the production environment, perform the following actions:

1. Export the deployment package of the customization project in the development environment.
See To Export a Project for details.

2. Copy the deployment package file to the file system where the production environment is
located.

3. Import the project in the production environment, as described in To Import a Project.



 | Performing Customization | 94

4. Publish the project in the production environment to apply the customization. See Publishing
Customization Projects for details.



 | Managing Customization Projects | 95

Managing Customization Projects

A customization project is a set of changes to the user interface and functionality of Acumatica ERP. A
customization project, described more fully in Customization Project, might include the following:

• New custom forms and modifications to existing forms of Acumatica ERP

• Extensions for the business logic

• Custom reports

• Custom application configuration

• Additional files that you need for the customization

In Acumatica ERP, you manage customization projects by means of the Customization Projects
(SM.20.45.05) form, which is shown in the screenshot below. (See also Customization Projects Form 
for more information.) On this form, you can add a new customization project, open a customization
project for editing in the Customization Project Editor, publish any number of customization projects,
cancel the publication of customization projects, export a customization project as the deployment
package, import a customization project from an existing deployment package, and delete a
customization project.

Figure: Viewing the Customization Projects form

:  In MySQL, the maximum size of one packet that can be transmitted to or from a server is 4MB by
default. If you use MySQL and want to manage a customization project with the size that is larger than
the default maximum value, you have to increase the max_allowed_packet variable in the server. The
largest possible packet size is 1GB.

In This Part

• To Create a New Project

• To Select an Existing Project

• To Open a Project

• To Update a Project

• To Delete a Project

• To Export a Project

• To Import a Project



 | Managing Customization Projects | 96

• To Replace the Content of a Project from a Package

• To Merge Multiple Projects

• To Manipulate Customization Projects from the Code

To Create a New Project
Because the Acumatica Customization Platform uses a customization project as a container for the
customization items, the platform does not permit you to perform any customization without starting a
customization project.

You can create a customization project in the following ways:

• On the Customization Projects form

• From the Customization menu

• From the Element Inspector

There are no differences between these ways because the result is the same: a new customization
project with the specified name is added to the Acumatica ERP instance as a record in the database.
The platform can then use this project as a container of customization items.

Adding a Customization Project on the Customization Projects Form

To add a customization project on the Customization Projects (SM.20.45.05) form, perform the
following actions:

1. Navigate to System > Customization > Manage > Customization Projects.

2. On the form toolbar, click Add Row (+), as shown in the following screenshot, to add a row to
the list of the projects on the form.

Figure: Adding a row to the customization project list

3. In the new row, specify a unique name for the project, as the screenshot below shows.

4. Click Save on the form toolbar to save the new project in the database.



 | Managing Customization Projects | 97

Figure: Entering the new project name

Creating a Customization Project from the Customization Menu

To create a customization project from the Customization Menu, perform the following actions:

1. On any form of Acumatica ERP, click Customization > Select Project, as the following
screenshot shows (item a).

2. In the Select Customization Project Dialog Box, which opens, click New (item b).

3. In the New Project Dialog Box, which opens, enter the name of the new project (item c).

4. In this dialog box, click OK (item d) to create the project in the database and close the dialog
box.

Figure: Creating a customization project from the Customization menu

Creating a Customization Project from the Element Inspector

Suppose that you have not selected a customization project. In the Element Properties Dialog
Box, if you have tried to start performing customization by clicking Customize, Actions >



 | Managing Customization Projects | 98

Customize Business Logic, or Actions > Customize Data Fields, the inspector opens the Select
Customization Project dialog box to force you to select or create a customization project.

To create a customization project from this dialog box, perform the following actions:

1. In the dialog box, click New.

2. In the New Project dialog box, which opens, enter the name for the new project (item c).

3. In this dialog box, click OK to create the project in the database and close the dialog box.

To Select an Existing Project
Because the Acumatica Customization Platform uses a customization project as a container for the
customization items, the platform does not permit you to perform any customization without starting a
customization project.

You can select an existing customization project in the following ways:

• By selecting it from the Customization menu

• By selecting it from the Element Inspector

To Select a Customization Project from the Customization Menu

To create a customization project from the Customization Menu, perform the following actions:

1. On any form of Acumatica ERP, click Customization > Select Project, as the following
screenshot shows (item a).

2. In the Select Customization Project Dialog Box, which opens, click the Project Name selector
and select a project name (items b and c).

3. In this dialog box, click OK (item d) to select the project and close the dialog box.

Figure: Selecting a customization project from the Customization menu



 | Managing Customization Projects | 99

To Select a Customization Project from the Element Inspector

Suppose that you have not selected a customization project. If in the Element Properties Dialog Box,
you have tried to perform customization by clicking Customize, Actions > Customize Business
Logic, or Actions > Customize Data Fields, the inspector opens the Select Customization Project
dialog box to force you to select a customization project.

To select a customization project, in the Select Customization Project dialog box, perform the
following actions:

1. In the Project Name selector, select a project name.

2. Click OK to select the project and to close the dialog box.

To Open a Project
If you have selected a customization project, you can open the project for editing in the Customization
Project Editor in the following ways:

• On the Customization Projects Form : Click the project name in the table.

• From the Customization Menu: Click Customization > Edit Project.

• From the Element Properties Dialog Box: Click Customize, Actions > Customize Business
Logic, or Actions > Customize Data Fields.

To Update a Project
If you have modified an item of a customization project in the file system by using an integrated
development environment (IDE), such as Microsoft Visual Studio, these changes may not be reflected in
the customization project yet. You have to update the project in the database before the publication or
export of the deployment package of the project.

To update a customization project, perform the following actions:

1. Open the project in the Customization Project Editor. (See To Open a Project for details.)

2. In navigation pane of the editor, select Files to open the Custom Files page.

3. On the page toolbar, click Detect Modified Files, as shown in the screenshot below, to review
the files included in the project that could have been modified in the file system but haven't been
updated in the customization project yet.

If at least one conflict is detected, the Modified Files Detected dialog box opens (also shown in
the following screenshot). The dialog box displays each changed file with the check boxes in the
Selected and Conflict columns selected. See Detecting the Project Items Modified in the File
System for details.

4. To update the selected files in the project, on the toolbar of the dialog box, click Update
Customization Project, as the following screenshot shows.



 | Managing Customization Projects | 100

Figure: Updating files in the project

To Delete a Project
If a customization project is not published, you can delete the project from the instance of Acumatica
ERP by using the Customization Projects (SM.20.45.05) form.

To delete a customization project, perform the following actions:

1. Navigate to System > Customization > Manage > Customization Projects.

2. In the project list, select the row of the project that has to be deleted, as shown in the
screenshot below (item a).

3. On the form toolbar, click Delete Row (X), item b in the screenshot, to delete the selected
project from the list.

4. On the form toolbar, click Save (item c in the screenshot) to save the changes to the database.

Figure: Deleting a customization project



 | Managing Customization Projects | 101

The platform deletes from the database the project data and the data of the project items. The platform
does not delete the files and the objects that were added to the projects from the database, such as
site map nodes, reports, user access rights, and integration scenarios.

To Export a Project
You can export (download) a customization project when the project is finished to deploy the
customization to the target system. Also, you can download the package to have a backup copy of the
customization project you are working on.

Before you download the package, we recommend that you make sure you have included all the needed
changes in the customization project. To do this, you take the following actions:

• Make sure that you have added all custom files to the project and uploaded the latest actual
version of the files to the project. See To Update a Project for details.

• Make sure that the database schema is updated in the customization project. See To Update
Custom Tables in the Project for details.

• Make sure you have added the needed site map nodes to the project. See Site Map for details.

• Publish the project and test the customization before downloading the deployment package, to
ensure that you have no issues.

To download the deployment package of a customization project, you should export the project. You can
export a customization project in the following ways:

• By using the Customization Projects form

• Through the Customization Project Editor

The system creates the deployment package of the project and downloads the zip file of the package
on your machine. The file has the same name as the customization project. For more information about
a deployment package, see Deployment of Customization.

Exporting a Customization Project by Using the Customization Projects form

To export a customization project by using the Customization Projects (SM.20.45.05) form, perform the
following actions:

1. Navigate to System > Customization > Manage > Customization Projects.

2. In the project list of the form, click the row of the customization project to be exported.

The row is highlighted in the table, as the screenshot below shows.

3. Click Export on the form toolbar to export the highlighted project.



 | Managing Customization Projects | 102

Figure: Exporting a customization project

Exporting the Customization Project Opened in the Customization Project Editor

To export the customization project that is currently opened in the Customization Project Editor, click
File > Export Project Package on the editor menu, as shown in the following screenshot.

Figure: Exporting the current customization project

Also, you can export the customization project from the Project XML Editor of the Customization Project
Editor by clicking Download Package on the page toolbar, as shown in the following screenshot.



 | Managing Customization Projects | 103

Figure: Exporting the current customization project from the Project XML Editor

To Import a Project
You can import a deployment package to work with the customization project or to publish the final
customization on the target website.

:  You can import deployment packages of earlier versions of Acumatica ERP to Acumatica ERP 6.1.

To upload the deployment package of a customization project, you should import the project by
using the Customization Projects (SM.20.45.05) form. (See Customization Projects Form  for more
information.)

To do this, perform the following actions:

1. Navigate to System > Customization > Manage > Customization Projects.

2. Click Import on the form toolbar, as the screenshot below shows.

3. In the Open Package dialog box, which opens, click Choose File.

4. In the Open dialog box, which opens, select the deployment package file to be uploaded.

The name of the selected file is displayed in the File path box of the Open Package dialog box,
as shown in the screenshot.



 | Managing Customization Projects | 104

Figure: Importing a customization project

5. In the Open Package dialog box, click Upload.

The platform uploads the selected package, create the corresponding customization project, and saves
the project in the database. As the result, the new customization project appears in the list on the
Customization Projects form; therefore, you can access the project data and manage the project.

To Replace the Content of a Project from a Package
You might need to upload a newer version of the customization project that has been modified outside
the system on which you are working, or upload the project from a backup copy.

You can replace the content of a customization project from a deployment package in the following
ways:

• By using the Customization Projects form

• Through the Customization Project Editor

:  The platform does not verify the content of a deployment package before replacing a customization
project in the database.

Replacing a Customization Project from a File by Using the Customization Projects Form

To replace the content of a customization project from a file by using the the Customization Projects
(SM.20.45.05) form (see also Customization Projects Form ), perform the following actions:

1. Navigate to System > Customization > Manage > Customization Projects.

2. In the project list, click the row of the customization project to be updated, as the screenshot
below shows.

3. Click Import > Replace Highlighted Project Content on the form toolbar, as the screenshot
below also shows.

4. In the Open Package dialog box, which opens, click Choose File.

5. In the Open dialog box, which opens, select the deployment package file to be uploaded.

The name of the selected file is displayed in the File path text box of the Open Package dialog
box, as shown in the screenshot.



 | Managing Customization Projects | 105

Figure: Replacing the content of a customization project

6. In the Open Package dialog box, click Upload.

The platform uploads the selected package and replaces in the database the content of the selected
project with the content of the deployment package.

Replacing the Customization Project Opened in the Customization Project Editor from a File

To replace the content of a customization project that is currently opened in the Customization Project
Editor, perform the following actions:

1. Click File > Replace from Package on the editor menu, as shown in the following screenshot.

Figure: Replacing the content of the current customization project

2. In the Open Package dialog box, which opens, click Choose File.

3. In the Open dialog box, which opens, select the deployment package file to be uploaded.

The name of the selected file is displayed in the File path text box of the Open Packagedialog
box.

4. In the Open Package dialog box, click Upload.

The platform uploads the selected package and replaces in the database the content of the selected
project with the content of the deployment package.

Also, you can replace the content of the customization project by using the Project XML Editor of the
Customization Project Editor. To do this, perform the following actions:



 | Managing Customization Projects | 106

1. In the Customization Project Editor, click File > Edit Project XML to open the Project XML
Editor for the current customization project.

2. On the toolbar of the Project XML Editor, click Choose File.

3. In the Open dialog box, which opens, select the deployment package file to be uploaded.

The name of the selected file is displayed in the text box right of the toolbar buttons instead of
the No file chosen string (which is shown in the screenshot below).

4. On the editor toolbar, click Upload Package.

Figure: Replacing the content of a customization project from the Project XML Editor

The platform uploads the selected package and displays its XML code in the Project XML Editor.

5. Explore the content of the uploaded package to ensure that this is the needed one.

6. To replace the content of the project that is currently opened in the Customization Project Editor
with the content of the uploaded package, click Save to Database on the page toolbar.

By using this approach, you can explore the content of the package before replacing the content of the
customization project that is currently opened in the Customization Project Editor.

To Merge Multiple Projects
As a rule, it is better to have multiple customization projects instead of a single one. But if you have
two or more customization projects that contain changesets with the same items, and if you are
sure that each project is valid and that the merged customization applies to the website properly, we
recommend that you merge the projects. You use the Customization Projects (SM.20.45.05) form as a
starting point.

To merge multiple customization projects, perform the following actions:

1. Navigate to System > Customization > Manage > Customization Projects.

2. In the project list, select the check boxes for only the projects to be merged.

3. Click Publish on the form toolbar.

4. Click View Published on the form toolbar to open the Published Customization Page.

5. Click Download Package on the page toolbar to download the Customization.zip file, which
includes the full content of the merged customization project.



 | Managing Customization Projects | 107

The Customization.zip file is the deployment package of the merged customization project. You can
use the merged project to publish the final customization project on the target website. You can rename
the .zip file to assign the needed name to the customization project. To upload the deployment
package to a target system, import the .zip file, as described in To Import a Project.

To Manipulate Customization Projects from the Code
You can use the web service API for manipulating customization projects from the code. Methods of
the web service API can be used, for example, to deploy customization packages to local and remote
instances of Acumatica ERP.

For manipulating customization projects, the web service API includes the methods, which are
accessible through the SOAP API, described in the following topics:

• GetPackage() Method

• PublishPackages() Method

• UnpublishAllPackages() Method

• UploadPackage() Method

:  A user of an application that invokes any of these methods should be assigned the Customizer role in the
appropriate instance of Acumatica ERP. See To Assign the Customizer Role to a User Account for details.

The web service used for manipulating customization projects is available under the URL, which is
specified in one of the following ways (see the screenshot below):

• http://<Computer Name>/<Website Name>/api/servicegate.asmx, such as http://MyComputer/
YogiFon/api/servicegate.asmx

• http://<IP Address>/<Website Name>/api/servicegate.asmx, such as http://111.222.3.44/
YogiFon/api/servicegate.asmx



 | Managing Customization Projects | 108

Figure: Accessing the web service through the browser

To use the listed methods in the code, you should create a service gate for the specified URL and log in,
as shown in the following code fragment.

var webserviceurl = "http://localhost/AcumaticaInstance/api/ServiceGate.asmx";
var username = "admin";
var password = "123";

var client = new ServiceGate.ServiceGate
{
  Url = webserviceurl,
  CookieContainer = new CookieContainer(),
  Timeout = (int) TimeSpan.FromMinutes(5).TotalMilliseconds
};

var loginResult = client.Login(username, password);

if (loginResult.Code == ErrorCode.OK)
{
  // Use the methods to manipulate customization projects
}

GetPackage() Method
You use the GetPackage() method to get the content of a customization project from the database of
an Acumatica ERP instance.

Syntax

public byte[] GetPackage(string packageName)



 | Managing Customization Projects | 109

Parameters

• packageName: The name of the customization project to be loaded from the database.

Return Value

The method returns an array of bytes that corresponds to the content of the deployment package .zip
file.

Example

The following code logs in to an Acumatica ERP instance, gets the content of the package1
customization project from the database, and returns the content as a byte array. You can then, for
example, save the array to a .zip file to download the deployment package in the file system.

var webserviceurl = "http://localhost/AcumaticaInstance/api/ServiceGate.asmx";
var username = "admin";
var password = "123";
var packageName = "package1";

var client = new ServiceGate.ServiceGate
{
  Url = webserviceurl,
  CookieContainer = new CookieContainer(),
  Timeout = (int) TimeSpan.FromMinutes(5).TotalMilliseconds
};

var loginResult = client.Login(username, password);

if (loginResult.Code == ErrorCode.OK)
{
  var packageContents = client.GetPackage(packageName);
  //do something with the packageContents package content
}

Usage Notes

If there are multiple companies in an instance of Acumatica ERP, this method affects the company to
which the service is logged in. To log in to a specific company, add the company name to the user name
using the following format: user@MyCompany.

PublishPackages() Method
You use the PublishPackages() method to publish multiple customization projects that exist in the
database of an Acumatica ERP instance.

Syntax

public void PublishPackages(string[] packageNames, bool mergeWithExistingPackages)

Parameters

• packageNames: An array of names of the customization projects to be published.

• mergeWithExistingPackages: An indicator of whether the specified customization projects must
be merged with the customization projects that are currently published in the same instance
of Acumatica ERP. If the value of the parameter is true and there are published customization
projects in the instance, the platform merges the content of the projects specified in the method
with the content of the currently published projects and then applies the merged customization
to the instance. If the value of the parameter is false, the platform cancels the currently applied
customization and publishes only the projects specified in the method.



 | Managing Customization Projects | 110

Example

The following code logs in to an Acumatica ERP instance and publishes the package1, package2, and
package3 customization projects that exist in the database of the instance.

var webserviceurl = "http://localhost/AcumaticaInstance/api/ServiceGate.asmx";
var username = "admin";
var password = "123";
var packageNames = new []{"package1", "package2", "package3"};
var mergeWithExistingPackages = true;

var client = new ServiceGate.ServiceGate
{
  Url = webserviceurl,
  CookieContainer = new CookieContainer(),
  Timeout = (int) TimeSpan.FromMinutes(5).TotalMilliseconds
};

var loginResult = client.Login(username, password);

if (loginResult.Code == ErrorCode.OK)
{
  client.PublishPackages(packageNames, mergeWithExistingPackages);
}

Usage Notes

If there are multiple companies in an instance of Acumatica ERP, this method affects the company to
which the service is logged in. To log in to a specific company, add the company name to the user name
using the following format: user@MyCompany.

UnpublishAllPackages() Method
You use the UnpublishAllPackages() method to cancel customization of an Acumatica ERP instance.

Syntax

public void UnpublishAllPackages()

Example

The following code logs in to an Acumatica ERP instance and cancels all customization projects that is
currently applied to the instance.

var webserviceurl = "http://localhost/AcumaticaInstance/api/ServiceGate.asmx";
var username = "admin";
var password = "123";

var client = new ServiceGate.ServiceGate
{
 Url = webserviceurl,
 CookieContainer = new CookieContainer(),
 Timeout = (int) TimeSpan.FromMinutes(5).TotalMilliseconds
};

var loginResult = client.Login(username, password);

if (loginResult.Code == ErrorCode.OK)
{
 client.UnpublishAllPackages();
}



 | Managing Customization Projects | 111

Usage Notes

The method removes all customization changes from the file system, regardless of the companies
where the customization projects were published.

UploadPackage() Method
You use the UploadPackage() method to import a customization project from the file system. The
method saves the content of an uploaded deployment package to the database of an instance of
Acumatica ERP.

Syntax

public void UploadPackage(string packageName, byte[] packageContents, 
                                    bool replaceIfPackageExists)

Parameters

• packageName: The name of the customization project to be saved in the database.

• packageContents: An array of bytes that contains the content of the deployment package .zip
file and will be saved in the database.

• replaceIfPackageExists: An indicator of whether the customization platform must replace an
existing customization project with the same name in the database. If the value of this parameter
is true and the database contains a customization project with the same name, the platform
replaces the project with the specified content. If the value of the parameter is false and the
database contains a customization project with the same name, an exception occurs.

Example

The following code logs in to an Acumatica ERP instance, loads the C:\package1.zip file content, and
saves or updates the package1 customization project in the database of the instance.

var webserviceurl = "http://localhost/AcumaticaInstance/api/ServiceGate.asmx";
var username = "admin";
var password = "123";
var packageName = "package1";
var packageContents = File.ReadAllBytes("C:\package1.zip");
var replaceIfPackageExists = true;

var client = new ServiceGate.ServiceGate
{
  Url = webserviceurl,
  CookieContainer = new CookieContainer(),
  Timeout = (int) TimeSpan.FromMinutes(5).TotalMilliseconds
};

var loginResult = client.Login(username, password);

if (loginResult.Code == ErrorCode.OK)
{
  client.UploadPackage(packageName, packageContents, replaceIfPackageExists);
}

Usage Notes

If there are multiple companies in an instance of Acumatica ERP, this method affects the company to
which the service is logged in. To log in to a specific company, add the company name to the user name
using the following format: user@MyCompany.



 | Publishing Customization Projects | 112

Publishing Customization Projects

To apply a customization project to an instance of Acumatica ERP, you have to publish the
customization project. You can also publish multiple customization projects at once; see Simultaneous
Use of Multiple Customizations for details.

When you publish a customization project, the system applies the changes in the project to the website.
After the customization project has been published, users see the modified Acumatica ERP. The changes
apply to the website of Acumatica ERP and therefore affect all company tenants in the system (see
Customization of a Multi-Company Site for details).

The Acumatica Customization Platform provides the following ways to manage the publication process:

1. You can develop and include in a customization project the custom code that is executed during
the project publication. See Custom Processes During Publication of a Customization for details.

2. By using additional attributes in DAC extensions, you can specify how the system should apply
the original and custom attributes to the field. See Customization of Field Attributes in DAC
Extensions for details.

3. By using SQL script attributes, you can control the execution of batches in SQL scripts. See
Using the SQL Script Attributes for details.

You can cancel the publication of the project and publish the project again, which you might do often
during the development and testing of the customization. The application domain does not restart every
time you publish the customization project because Run-Time Compilation is enabled for the website by
default.

Detailed instructions are provided in the following topics:

• To Publish a Single Project

• To Publish Multiple Projects

• To Prepare a Project for Publication

• To Publish the Current Project

• To Publish the Current Project with a Cleanup Operation

• To Publish a Customization for a Multi-Company Site

• Validating Customization Code

• To View a Published Customization

• To Unpublish a Customization

To Prepare a Project for Publication
Before you publish a customization project, we recommend that you make sure you have included all
the needed changes in the customization project. To do this, you should take the following actions:

• Make sure that you have added all custom files to the project and uploaded the latest version of
the files to the project.

• Make sure that the database schema is updated in the customization project. You could have
modified custom tables by using a database management tool, such as SQL Management Studio.
On the DB Scripts page toolbar, click Update From Database. This procedure regenerates
the database table schema of the custom tables that have the Import Table Schema from
Database check box selected. See SQL Script Editor for details.



 | Publishing Customization Projects | 113

• Make sure you have added the needed site map nodes to the project. Open the Site Map page and
add any needed site map nodes to the project.

• Make sure that all other objects (generic inquiries, system locales, integration scenarios, shared
reusable filters, access rights, wikis, web-service endpoints, and analytical reports) are updated in
the project. If an object was changed in the application instance, open the appropriate page of the
Customization Project Editor and click Reload From Database on the page toolbar to update the
corresponding item in the project. (See To Update a Project for details.)

To Publish a Single Project
You can publish a single customization project by using the Publish action on the Customization
Projects (SM.20.45.05) form.

To to do this, perform the following actions:

1. Navigate to System > Customization > Manage > Customization Projects.

2. In the project list, select the check box (in the unlabeled column) for the needed customization
project, as the screenshot below shows.

3. Clear any selected check boxes in this column for other customization projects.

:  All previously published projects that are not selected will be unpublished.

4. Click Publish on the form toolbar to initiate the publication of the selected project.

Figure: Publishing a single customization project

To Publish Multiple Projects
To publish multiple customization projects, you perform the following actions on the Customization
Projects (SM.20.45.05) form:

1. Navigate to System > Customization > Manage > Customization Projects.

2. In the project list, select the check boxes (in the unlabeled column) for the customization
projects you want to publish.

:  You can save these selections by clicking Save on the form toolbar. The form opens with the
selections that are previously saved in the database.

3. Click Publish on the form toolbar to initiate publication of the selected projects.



 | Publishing Customization Projects | 114

:  All previously published projects that are not selected will be unpublished.

The platform merges the selected projects into one project and then publishes the project. For more
details, see Performing the Publication Process and Validating Customization Code.

Performing the Publication Process
When you run the publication process, the Acumatica Customization Platform executes the process in
the following stages:

1. If you publish more than one customization project, the platform merges the projects into a
single customization project.

2. The platform validates the customization project. (See Validating Customization Code for
details.)

3. If the validation completes successfully, the platform applies the changes to the application
instance when you click Publish in the Compilation window.

When the platform merges multiple projects, if different projects include customization for the
same application object, the customization from the project with the highest level (an optional
number assigned to each project) is added to the merged project. See Simultaneous Use of Multiple
Customizations for details.

:  If you manage multiple customization projects and some projects are published, you do not have to
unpublish any projects before other projects are published (leaving the check boxes selected for already-
published projects in the list). On the Customization Projects (SM.20.45.05) form, you just need to
select any projects you want to publish and click Publish on the toolbar. If you clear the check box for a
published project, it will be unpublished.

After the publication is complete, you can view the content of the merged customization project by
clicking the View Published button on the form toolbar of the Customization Projects form. (See To
View a Published Customization for details.)

After the project is ready, the platform validates and compiles the customization code included in the
project. If there are any validation errors, the system displays the error messages in the browser
and doesn't compile the code. If the compilation completes successfully, you can click Publish in the
Compilation window to apply the changes contained in the project items to the website.

During the actual publication, the platform applies the changes to the application and database objects
and updates the files in the website folder as follows:

• The custom layout is applied to the forms of Acumatica ERP.

• The .cs files with the DAC extension code for the existing data access classes are generated and
placed in the file system.

• The .cs files with the BLC extension code for the existing business logic are generated and placed
in the file system.

• The .cs files with the custom code (Code items) are generated and placed in the file system.

• The custom files of the project are added to the website folder.

• The custom tables are created in the database, and custom SQL scripts are executed.

• The custom generic inquiries, reports, site map nodes, system locales, integration scenarios,
shared reusable filters, access rights, wikis, web-service endpoints, and analytical reports are
added to the database.

:  We recommend that you back up the database before you publish customization projects, because
canceling publication doesn't revert changes made to the database. See To Unpublish a Customization for
details.

After the publication is complete, the application domain always restarts if the project includes
assemblies, which are placed in the /Bin folder of the website. If you have no assemblies in the project,
you can enable run-time compilation and publication will not cause a restart.



 | Publishing Customization Projects | 115

If a published customization project contains classes derived from the CustomizationPlugin class, the
platform launches the implemented custom processes after website files were updated and after the
website was restarted. (See Custom Processes During Publication of a Customization for details.)

After you have published the customization project, the files with the customization code are updated in
the file system, and you can work with them in MS Visual Studio. The .cs files with code are placed in
the App_RuntimeCode folder of the website.

Validating Customization Code
While the Acumatica Customization Platform processes publication of a customization project, the
platform validates the customization code included in the project. This validation of the code provides
not only checking for syntax and semantics but also checking of the compatibility of the code included
in the customization project with the original application code.

If you have a customization project that works properly for the current version of Acumatica ERP and
have upgraded an application instance to a newer version, the customization project might not work
properly or might even prevent the website from starting after the upgrade. This could occur because
the code of Acumatica ERP is continuously developed to implement new features or enhance existing
functionality. Thus, the code of an updated instance of Acumatica ERP can become inconsistent with
the code in a customization project. For example, if the signature of a method that is overridden in the
customization code is changed in the original code, a run-time error may occur in the graph extension.
As another example, modified or deleted database columns and tables might cause the functionality of
a data access class extension to fail.

The platform checks the compatibility of the code included in a customization project with the original
application code every time it publishes the project. If there are any compatibility errors, the platform
displays the warning and error messages in the Compilation window and stops the publication process.
See Messages for Validation Errors and To Resolve an Issue Discovered During the Validation for
detailed information about, respectively, the error messages and the ways to fix the validation errors.

To Publish the Current Project
If you create a customization project in the Customization Project Editor, the best way to publish
the customization project that is under development is to use the Publish Current Project menu
command provided by the editor. This publication does not influence the publication of other
customization projects that exist in the application instance.

To publish the customization project that is currently open in the Customization Project Editor, perform
one of the following actions:

• Use the Control+Space combination on the keyboard.

• In the editor menu, select Publish > Publish Current Project.

When you perform one of these actions, the platform initiates the publication of the project. If another
customization project is already published, the platform merges the projects into a single project, and
then compiles and validates the merged project. If the validation succeeds, the platform applies the
merged customization to the application instance.

You can publish the customization project as described above again after you have made any change to
the project.

To Publish the Current Project with a Cleanup Operation
If a customization project contains a database script, during the project publication, the platform
executes the script. For optimization purposes, to avoid the execution of database scripts during every
publication of the project, the platform saves information about each script that has been executed at
least once and has not yet been changed in the database, and omits the repeated execution of such
scripts. You can force the platform to clean up all such information about previously executed scripts of
a customization project and execute the scripts once more while publishing the project.

To do this, perform the following actions:



 | Publishing Customization Projects | 116

1. Open the project in the Customization Project Editor (see To Open a Project for details).

2. On the menu of the editor, click Publish > Publish with Cleanup, as shown in the screenshot
below, to clean information about previously executed scripts of the project and initiate the
process of publishing the customization project.

Figure: Publishing a customization project with a cleanup operation

To Publish a Customization for a Multi-Company Site
You can publish a customization project for multiple companies in a multi-company site; see
Customization of a Multi-Company Site for details. You use the Customization Projects (SM.20.45.05)
form to publish this customization.

To share customization content stored exclusively in the database for multiple companies, perform the
following actions:

1. Navigate to System > Customization > Manage > Customization Projects.

2. Select the check boxes that correspond to the customization projects that you need to publish
for multiple companies, as the screenshot below shows (item a).

3. On the toolbar of the form, click Publish > Publish to Multiple Companies (item b).

4. In the Publish to Multiple Companies dialog box, which opens, do the following:

a. Select the companies to which you want to apply the selected customization projects
(item c).

b. To skip updating the site files, select the Database Only check box (item d).

:  If you have published all the selected customization projects in the website for a single
company at least once, you do not need to update website files. You can apply only the
database changes.

c. To execute all database scripts of the selected customization projects, select the Publish
with Cleanup check box (item e).

:  When the platform publishes a project that contains a database script, it executes the
script and tries to avoid the execution of the script during every publication of the project,
for optimization purposes. Therefore, the platform keeps information about each script
that is executed at least once and has not yet been changed in the database, and omits
the repeated execution of such scripts. If you run the publication with the Publish with
Cleanup check box selected, the platform cleans up such information about previously
executed scripts and executes them once more while publishing the project.

d. Click OK (item f).



 | Publishing Customization Projects | 117

Figure: Publishing Customization for a Multi-Company Site

The platform applies the customization content to each company selected in the dialog box. As a result,
the published customization content is saved in the database for each selected company.

To View a Published Customization
You can view the merged content of multiple customization projects that are currently published by
using the Published Customization page of the Customization Projects (SM.20.45.05) form.

When you publish multiple projects at once, the platform merges the projects into a single project and
then applies this project to the application instance. (See To Publish Multiple Projects for details.) To
view the content of the merged project, perform the following actions:

1. Navigate to System > Customization > Manage > Customization Projects.

2. On the form toolbar, click View Published on the toolbar, as the following screenshot shows.

Figure: Opening the Published Customization page



 | Publishing Customization Projects | 118

The Published Customization page opens. The screenshot below shows two simultaneously published
customization projects, HideSSN and POstatus. The Published Customization page shows the result of
merging these projects.

Figure: Viewing the merged XML code of published customization projects

To Unpublish a Customization
When there are multiple customization projects published in an instance of Acumatica ERP, you can the
following options to unpublish the projects:

• Unpublish all projects

• Unpublish some projects

In both cases, you use the Customization Projects (SM.20.45.05) form as a starting point.

To Unpublish All Projects

To remove all customization projects from publication, perform the following actions:

1. Navigate to System > Customization > Manage > Customization Projects.

2. On the form toolbar, click Unpublish All.

The platform removes all published customization from the Acumatica ERP instance. See Unpublishing
Customization Projects for details.

To Unpublish Some Projects

To remove some customization projects from publication, perform the following actions:

1. Navigate to System > Customization > Manage > Customization Projects.

2. In the project list of the form, be sure the check boxes for projects that you want to remain
published are selected, and clear the check boxes for the unnecessary projects.

3. On the form toolbar, click Publish.

The platform removes all published customization from the Acumatica ERP instance, merges the content
of the customization projects that are currently selected on the form, and applies the merged content to
the instance.



 | Publishing Customization Projects | 119

Unpublishing Customization Projects
When you unpublish all customization projects, the system reverses the changes introduced by the
customization as follows:

• The forms of Acumatica ERP return to their original layout.

• The .cs files of the project with customization code are removed from the website folder in the
file system.

• The custom files of these projects are removed from the website folder on the file system.

Some changes aren't reversed, as described below:

• Database changes remain in the database after the customization is unpublished. Thus, the
generic inquiries, reports, changes to the site map, custom tables, custom database objects, and
custom data remain in the database. Changes to the site map remain in the navigation menu of
Acumatica ERP. If you need to remove these changes, you must do so manually.

• The .sln file of the integrated Microsoft Visual Studio solution and its projects (if any) remain in
the file system. However the customization code of the unpublished customization project and the
external files added to the customization project are removed from the solution.

For example, if a customization project contains a Report item and a SiteMapNode item for the report,
after you publish and unpublish the project, the report and the site map node remain in the database
and remain available in the application, so you need to remove them manually.

There is no difference in the unpublishing process for a single-company site and a multi-company site:
The platform deletes the same files in the file system and keeps all the changes in the database.



 | Managing Items in a Project | 120

Managing Items in a Project

You use the Customization Project Editor to manage the items in a customization project. The editor
includes a page to support for each type of item in a customization project. (See Types of Items
in a Customization Project for details.) By using the navigation pane of the editor, as the following
screenshot shows, you can open these pages (each of which is described in detail in the corresponding
part of this guide).

Figure: Viewing the navigation pane of the editor

In This Part

• Customized Screens

• Customized Data Classes

• Code

• Custom Files

• Generic Inquiries

• Custom Reports

• Site Map

• Database Scripts

• System Locales

• Import and Export Scenarios

• Shared Filters

• Access Rights

• Wikis

• Web Service Endpoints

• Analytical Reports



 | Managing Items in a Project | 121

Customized Screens
You use the Customized Screens page of the Customization Project Editor to manage Page items in the
customization project.

:  The Page item for an existing form contains layout change instructions that have to be applied by the
platform to the ASPX code of the form during the project publication. For a custom form, the Page item
keeps the content of the form and the path to the ASPX file of the form. (The path is required to detect
changes of the file in the file system in the development environment and to update the file while you
publish the project.)

When you start to modify the layout of an existing form, to store the changes, the platform adds a Page
item for the form to the customization project. (See for details.) When you use the Layout Editor to
change the form layout, the platform saves each change to this item.

To create a custom form, you invoke Add Screen > Create New Screen on the Customized Screens
page to create the workable template for the form, and add the template to the customization project
as a Page, Code, SiteMapNode, and two File items, as described in To Add a New Custom Form to a
Project. You can then develop the custom form by using both the Layout Editor and Microsoft Visual
Studio.

The Customized Screen page contains the list of the Page items for existing and custom forms added
to the customization project. The following screenshot shows the Page items added to the YogiFon
customization project. In the screenshot, the check mark in the Is New column of the table indicates
that the form with the name Subscription Usage Details (AR.40.90.00) is a custom one.

Figure: Viewing the customized and custom forms of Acumatica ERP in the project

On the page, you can perform the operations with the customized screens that are described in the
following topics:

• To Add a Page Item for an Existing Form

• To Delete a Page Item from a Project

• To Add a New Custom Form to a Project

• To Delete a Custom Form from a Project

• To Delete Items from the Project on the Edit Project Items Page

To Add a Page Item for an Existing Form
You can add a Page item for an existing form to a customization project by using both the
Customization Menu and the Element Inspector, or you can add the item in the Customization Project
Editor.

The following sections provide detailed information:



 | Managing Items in a Project | 122

• To Add a Page Item by Using the Element Inspector

• To Add a Page Item on the Customized Screens Page

To Add a Page Item by Using the Element Inspector

To add a Page item for an existing form to a customization project by using the Element Inspector,
perform the following actions:

1. Open the form in the browser.

2. On the form title bar, click Customization > Inspect Element to launch the Element Inspector.

3. On the form, select the UI element (or area) to be customized, to open the Element Properties
Dialog Box for the element (or area).

4. In the dialog box, click Customize.

5. If there is no currently selected customization project and the inspector opens the Select
Customization Project Dialog Box, select an existing customization project or create a new one.

Acumatica Customization Platform creates the Page item for the form, adds the item to the currently
selected customization project, and opens the form in the Layout Editor.

The platform assigns to the new item a name that corresponds to the form ID.

To Add a Page Item on the Customized Screens Page

To add a Page item for an existing form to a customization project by using the Customization Project
Editor, perform the following actions:

1. Open the customization project in the editor. (See To Open a Project for details.)

2. Click Screens in the navigation pane to open the Customized Screens page.

3. On the page toolbar, click Add Screen > Customize Existing Screen.

4. In the Customize Existing Screen dialog box, which opens, double-click the needed form in
the tree, which corresponds to the site map of the application.

The following screenshot demonstrates how you can select the Payments and Applications form
(Finance > Accounts Receivable > Work Area > Enter) in the Customize Existing Screen dialog
box.



 | Managing Items in a Project | 123

Figure: Selecting the form in the Customize Existing Screen dialog box

As soon as you add the item, the Layout Editor opens for the form so that you can start changing the
form layout.

To go back to the Customized Screens page of the Customization Project Editor, click Screens on the
navigation pane. You can see that the added form is saved to the list of project items.

As an alternative to selecting a form in the tree, if you know the screen ID of the form, you can add the
appropriate item directly to the table of the Customized Screens page. To do this, perform the following
actions (shown in the screenshot below):

1. On the page toolbar, click Add Row (+).

2. In the Screen ID column of the new row, type the screen ID of the form.

3. On the page toolbar, click Save to save the item to the project.

The screenshot below shows the screen ID of the Journal Transactions form entered in the table:
GL.30.10.00. As soon as you specify the screen ID, press Tab on the keyboard to view the name of the
form, which appears in the Title column; make you sure you are adding the item for the needed form.

Figure: Adding the screen ID of an existing form to the table



 | Managing Items in a Project | 124

To modify the layout of a form, open the Layout Editor for the form by clicking the Screen ID of the
form in the table or in the navigation pane of the Project Editor.

To Delete a Page Item from a Project
To remove from a customization project a Page Item created for an existing or custom form, perform
the following actions:

1. Open the project in the Customization Project Editor. (See To Open a Project for details.)

2. Click Screens in the navigation pane to open the Customized Screens page.

3. In the page table, click the item for the form.

4. On the page toolbar, click Delete Row (X).

5. On the page toolbar, click Save to save the changes to the customization project.

To Add a New Custom Form to a Project
To add a new custom form to a customization project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Screens in the navigation pane to open the Customized Screens page.

3. On the page toolbar, click Add Screen > Create New Screen.

4. In the Create New Screen dialog box, which opens, specify the following parameters to create
the files for the new form:

• Screen ID: The unique identifier of the new form

• Graph Name: The name of the new class of the business logic code for the form (also
called graph)

• Graph Namespace: The namespace to which the new business logic class should be
added

• Page Title: The title of the new form

• Template: The form template that provides the default set of containers on the form

• Site Map Parent: The parent node in the site map to which the new form should be added

5. In the dialog box, click OK.

For the new form, the system creates the following items and adds them to the customization project:

• The .aspx and .aspx.cs files, which appear in the Files list of the project items.

• The .cs file with the business logic code for the form, which appears in the Code list of project
items.

• The site map node, which appears in the Site Map list of project items.

• The Page item, with a name that corresponds the new screen ID; this item appears in the
Screens list of project items. This item contains the link to the new page content, which you can
later develop by using the Layout Editor.

To obtain the actual files in the file system, publish the customization project after you have added the
form to the project. After that, the following files are available on the file system:

• The .aspx and .aspx.cs files in the Pages/<First segment of ScreenID>/ folder of the website

• The .cs file with the business logic code in the App_RuntimeCode folder of the website

You can develop business logic code for the custom form in Microsoft Visual Studio later.

The screenshot below shows the files of the custom form that has been added to the customization
project (through the Add Screen > Create New Screen command) with the following parameters:



 | Managing Items in a Project | 125

• Screen ID: KW.30.20.10

• Graph Name: KeywordsMaint

Figure: Viewing the files of the custom form in Visual Studio solution

To Delete a Custom Form from a Project
To remove a custom form from a customization project, you have to delete all the items that have been
added to the project for the form.

To do this, perform the following actions:

• Delete from the customization project the Page item that was added by the New Screen wizard.
(See To Delete a Page Item from a Project for details.)

• Delete from the project the Code item that was added by the New Screen wizard. (See To Delete
a Code Item From a Project.)

• Delete from the project the <FormID>.aspx and <FormID>.aspx.cs File items that were added by
the New Screen wizard. (For more information, see To Delete a Custom File From a Project.)

• Delete from the project the SiteMapNode item that was added by the New Screen wizard. (See To
Delete a Site Map Item from a Project for details.)

• If you added other items for the custom form, such as items for the mobile site map or custom
files, delete these items.

To delete multiple items from the customization project successively on a single page, you can use the
Edit Project Items page of the Customization Project Editor. (See To Delete Items from the Project on
the Edit Project Items Page for details.)

The system applies the changes to the file system as soon as you publish the customization project.

To Delete Items from the Project on the Edit Project Items Page
You can delete multiple items from the customization project on the Edit Project Items page of the
Customization Project Editor. To do this, perform the following actions:

1. On the menu of the editor, click File > Edit Project Items.

2. In the table of the Edit Project Items page, which opens, click the item to be deleted, as the
following screenshot shows.



 | Managing Items in a Project | 126

Figure: Using the Edit Project Items page to delete an item from the customization project

3. Press Delete on the keyboard to delete the selected row from the table.

4. If you need to delete multiple items from the project, repeat Steps 2–3 for each item.

5. On the page toolbar, click Save to save the change in the project.

Customized Data Classes
You use the Customized Data Classes page of the Customization Project Editor to manage DAC items in
a customization project.

:  A DAC item contains data in the XML format used by the platform to create an appropriate extension for
the original data access class.

The Customized Data Classes page displays the list of DAC items for existing data access classes of
Acumatica ERP added to the project. The following screenshot shows the IN.InventoryItem data access
class that was added to the KeyWords customization project.



 | Managing Items in a Project | 127

Figure: Viewing a customized data access class in the project

On the page, you can perform several operations with the customized data access classes, as described
in the following topics:

• To Add a DAC Item for an Existing Data Access Class to a Project

• To Delete a DAC Item from a Project

• To Convert a DAC Item to a Code Item

• To Upgrade Technology for Legacy DAC Customization

:  You cannot create a custom data access class on this page. Instead, you have to use the Code page of
the editor. Custom classes are added to the project as Code items. See To Create a Custom Data Access
Class for details.

You can use Microsoft Visual Studio to work with a DAC item of a customization project
that is currently published. During the project publication, the platform creates the
PX_Objects_<DACItemName>_extensions.cs file with the item content in the App_RuntimeCode folder
of the website. If you make changes to the code in Visual Studio, you have to update the item in the
customization project. See Detecting the Project Items Modified in the File System for details.

To Add a DAC Item for an Existing Data Access Class to a Project
Before modifying an existing data access class, you have to add a DAC item for the class to the
customization project. This item is used to store the data of the class extension in XML format. After
the item is created, you can modify the class members by using the Data Class Editor. After the
customization project is published, the .cs file for the item is created in the file system, and you can
develop the C# code of the class extension in Microsoft Visual Studio. You can use the Data Class Editor
as well as Visual Studio to add custom fields to existing data access classes.

You can add a DAC item for an existing data access class to a customization project by using the
Element Inspector, or you can create and add the item on the Customized Data Classes page of the
Customization Project Editor.

The following sections provide detailed information:

• To Add a DAC Item by Using the Element Inspector

• To Add a DAC Item on the Customized Data Classes page

To Add a DAC Item by Using the Element Inspector

1. Open the form in the browser.

2. On the form title bar, click Customization > Inspect Element to launch the Element Inspector.

3. On the form, select a UI element for a field of the class to be customized to open the Element
Properties Dialog Box for the element.



 | Managing Items in a Project | 128

The dialog box displays the name of the data access class that contains the selected element in
the Data Class box, as shown in the screenshot below.

4. In the dialog box, click Actions > Customize Data Fields.

Figure: Using the Element Properties dialog box to start customization of the class

If there is no currently selected customization project, the inspector opens the Select
Customization Project Dialog Box to force you to select an existing customization project or to
create a new one.

Acumatica Customization Platform creates the DAC item for the class, adds the item to the currently
selected customization project, and opens the class in the Data Class Editor.

The platform assigns the new item the name of the data access class.

To Add a DAC Item on the Customized Data Classes page

1. Open the customization project in the editor. (See To Open a Project for details.)

2. Click Data Access in the navigation pane to open the Customized Data Classes page.

3. On the page toolbar, click Add New Record (+).

4. In the Select Existing Data Access Class dialog box, which opens, select the class in the
Class Name box.

You can type the class name in the Class Name box or search for the class by a part of its
name, as shown in the screenshot below. As soon as you add the class, the Data Class Editor
opens for it so that you can modify the fields of this class and add custom fields to it.



 | Managing Items in a Project | 129

Figure: Adding an existing data access class to the project

5. On the page toolbar, click Save to save the item in the customization project.

As soon as you have modified the attributes of an existing field of the class or added a new field to the
class and saved the changes in Data Class Editor, the class is added to the customization project and
appears in the table of the Customized Data Classes page.

To go back to the Customized Data Classes page of the Customization Project Editor, select Data
Access on the navigation pane. You can see that the added item is saved to the list of project items.

To Delete a DAC Item from a Project
To remove changes to an existing data access class from a project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Data Access in the navigation pane to open the Customized Data Classes page.

3. In the page table, select the item to be deleted.

4. On the page toolbar, click Delete Row.

5. On the page toolbar, click Save to save the changes to the customization project.

If you added a bound custom field to an existing data access class, the platform includes the DAC and
Table items for this class in the customization project.

:  The Table item contains a description of custom columns added to a database table for bound custom
fields created in the appropriate data access class.

After you publish the customization project at least once, the database schema is changed. Changes to
the database schema aren't deleted when you delete the DAC and Table items and publish the project.
You have to remove the changes manually.



 | Managing Items in a Project | 130

You can delete a DAC or Table item (or another item) from the customization project on the Edit Project
Items page of the Customization Project Editor. (See To Delete Items from the Project on the Edit
Project Items Page for details.)

To Convert a DAC Item to a Code Item
If you have a customized data access class that is added to the project as a DAC item, then you can
convert the class changes into the class extension code (a Code item) to complete the extension
development in the Code Editor or in Microsoft Visual Studio. (See Supported DAC Extension Formats
for details.)

To do this, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Data Access in the navigation pane to open the Customized Data Classes page.

3. In the page table, select the item to be converted, as the screenshot below shows.

4. On the page toolbar, click Convert to Extension.

:  This action can be applied for only data access classes customized using the technology based on
extensions. If you have legacy DAC customization, upgrade it before converting DAC items to class
extensions. See To Upgrade Technology for Legacy DAC Customization for details.

Figure: Converting the DAC item to the Code item

The platform converts the XML content of the selected item to C# code, deletes the DAC item in the
customization project, adds the created code to the project as a Code item, and opens it in the Code
Editor, as shown in the following screenshot.



 | Managing Items in a Project | 131

Figure: Viewing the result of the conversion

This operation is irreversible. After you convert the XML data to C# code, you will not be able to work
with the item in the Data Class Editor or convert it back to a DAC item. You will be able to edit the code
in Code Editor and Visual Studio.

Attention:  The Convert to Extension action also affects all the inherited classes of the specified DAC if
the classes are customized.

The system obtains the name of the Code item from the DAC name by appending the Extensions
suffix to it. After the publication of the customization project, the actual customization code of
the class is available in the <DACName>Extensions.cs file in the App_RuntimeCode folder of the
website. For example, if you apply the action to the CR.Contact class, as shown in the screenshots
above, the operation converts the DAC item to the Code item, automatically giving it the name of
ContactExtensions. The action removes the CR.Contact DAC item class from the project and adds the
ContactExtensions Code item.

To Upgrade Technology for Legacy DAC Customization
In Acumatica Customization Platform 4.2 and earlier versions, the customization of data access classes
was implemented through the direct Microsoft Intermediate Language (MSIL) injection of custom fields
into PX.Objects.dll. This resulted in a complex process of publication in which the original library was
replaced with the modified version. In Acumatica Customization Platform 6.1, the customization uses
the technology based on class extensions and the DAC extension is compiled into a separate library that
is dynamically merged with the original DAC by the platform at run time.

If you do not need to change the contents of a customization project, there is no reason to
upgrade it. The system will successfully publish the project using the injection of custom fields into
PX.Objects.dll in the newer version of the system as well. However if you have to continue the
development of the project, we recommend that you upgrade the technology of DAC customization in
the project.

The following sections provide detailed information:



 | Managing Items in a Project | 132

• To Upgrade a Legacy DAC Customization

• To Upgrade a Library with a Legacy DAC Customization

To Upgrade a Legacy DAC Customization

To upgrade the legacy DAC customization to the technology based on class extensions, perform the
following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Data Access in the navigation pane to open the Customized Data Classes page.

3. On the page toolbar, click Upgrade All, as shown in the following screenshot.

Figure: Upgrading legacy customization

This action launches the upgrade wizard, which processes all the project items of the DAC and Code
types to discover and update the following cases of DAC customization based on the MSIL injection
technology:

• A field of a data access class does not contain the StorageName attribute, which specifies the
storage type of the field. For more information about the storage types, see Create New Field
Dialog Box.

:  In the Acumatica Customization Platform, you must select the way a custom field will be stored in
the database when you add the field to a data access class.

• The code contains a direct reference to a custom field of a row.

• The code contains a direct reference to an abstract class of a DAC field.

See Using the Upgrade Wizard  for details.

After the process is complete, the wizard opens the message box with the list of the items that have
been upgraded (see the screenshot below).



 | Managing Items in a Project | 133

Figure: Viewing the list of upgraded items

If there is no legacy customization in the project, the wizard opens a message box with the relevant
information (see the screenshot below).

Figure: Viewing the message box that indicates no legacy customization in the project

To Upgrade a Library with a Legacy DAC Customization

If you have legacy customization of data access classes as a library (.dll) and have to modify the
customization project, you can add the source code of the library as Code items to the customization
project and then upgrade it as follows:

1. In the Microsoft Visual Studio project of the library, for each source code file that contains a data
access class customization, do the following:

a. In Visual Studio (or any text editor), open the file, select All, and copy the source code to
the clipboard.

b. Create a new Code item in the customization project.

c. Delete the code template from the created item.

d. Paste the clipboard content into the item and save the Code item to the customization
project.

2. Upgrade the customization project.



 | Managing Items in a Project | 134

3. Test the upgraded customization project to ensure that the project is valid and applies to the
system after publication.

4. If you need to move the source code back to the library, use the clipboard and the copy-paste
approach as well.

Using the Upgrade Wizard

While upgrading the DAC items, the wizard does the following:

• Adds the StorageName attribute and sets its value to "ExistingColumn" for an existing field.

• Adds the StorageName attribute and sets its value to "AddColumn" for a custom field.

• Finds and replaces all references to custom fields in the attributes of other customized
fields, such as a PXSelector, PXParent or PXFormula. For example, the wizard inserts the
typeof(DACNameExt.usrFieldName) reference in the PXSelector declaration instead of the
typeof(DACName.usrFileName) reference.

While upgrading items of the Code type, the wizard processes each item to find references to the
custom fields and replaces the references by using the following approach:

• The wizard updates the references to the abstract class of the DAC field from
DACName.usrFieldName to DACNameExt.usrFieldName, where the DACNameExt is the
name of the new extension class.

• The wizard replaces the references to the field Row.UsrFieldName with a reference to the field
through the DAC extension: Row.GetExtension<DACNameExt>().UsrFieldName.

For example, the following code contains the references to the APRegister.usrVoucherNbr class
and doc.UsrVoucherNbr field, which is a field customized based on the MSIL injection technology.

 sender.RaiseExceptionHandling<APRegister.usrVoucherNbr>(doc,
         doc.UsrVoucherNbr,
         new PXSetPropertyException("..."));

After technological upgrade for the customization of DAC classes in the project, the references
will look as the following code shows. Now the code refers to the usrVoucherNbr class of the
APRegisterExt extension class that will be generated during publication of the project.

 sender.RaiseExceptionHandling<APRegisterExt.usrVoucherNbr>(doc,
         doc.GetExtension<APRegisterExt>().UsrVoucherNbr,
         new PXSetPropertyException("..."));

Warning:  There might be a situation when a legacy customization includes two data access classes
with custom fields that have the same names, such as DACName1.usrTheSameFieldName
and DACName2.usrTheSameFieldName. When you upgrade the customization, the wizard
replaces the Row.usrTheSameFieldName references to each field by using the following pattern:
Row.GetExtension<DACName1Ext or DACName2Ext>().usrTheSameFieldName. The expression
"GetExtension<DACName1Ext or DACName2Ext>" is invalid and causes a compilation error. You are
supposed to review these references and insert the correct reference to the needed class, DACName1Ext
or DACName2Ext.

Code
You use the Code page of the Customization Project Editor to manage Code items in the customization
project. On the page, you can perform the following operations with items:

• Add a new Code item of any of the following subtypes to the project:

• New Graph: A new business logic controller that is derived from the PXGraph<> class

• New DAC: A data access class that is derived from the IBqlTable class

• Graph Extension: A graph extension that is derived from the PXGraphExtension<> class



 | Managing Items in a Project | 135

• DAC Extension: A DAC extension that is derived from the PXCacheExtension<> class

• Code File: Custom C# code

• Customization Plug-in: A class that is derived from the CustomizationPlugin class

• Delete a Code item from the project

The screenshot below shows the Code items that have been added to the YogiFon project.

Figure: Viewing the Code items included in the customization project

You can open the Code Editor for a Code item by clicking the object name of the item in the page table.

:  You can develop the customization code in the Code Editor. However we recommend that you develop the
code in Microsoft Visual Studio (as described in Integrating the Project Editor with Microsoft Visual Studio)
and use the editor for either minor code correction or the insertion of ready portions of code.

To move the code from a Code item to the extension library that is bound to the customization project,
use the Move to Extension Lib action on the Code Editor toolbar.

For detailed information on working with Code items, see the following topics:

• To Create a Custom Business Logic Controller

• To Create a Custom Data Access Class

• To Customize an Existing Business Logic Controller

• To Customize an Existing Data Access Class

• To Add Custom Code to a Project

• To Add a Customization Plug-In to a Project

• To Delete a Code Item From a Project

• To Move a Code Item to the Extension Library

You can use Visual Studio to work with a Code item of a customization project that is currently
published. During the publication of the project, the platform creates the <CodeItemName>.cs file
with the item content in the App_RuntimeCode folder of the website. If you make changes to the code
in Visual Studio, you have to update the item in the customization project. See Detecting the Project
Items Modified in the File System for details.



 | Managing Items in a Project | 136

To Create a Custom Business Logic Controller
You can add a custom business logic controller to a customization project on the Code page of the
Customization Project Editor.

To do this, perform the following actions:

1. Open the customization project in the editor. (See To Open a Project for details.)

2. Select Code in the navigation pane to open the Code page.

3. Click Add New Record (+) on the page toolbar.

4. In the Create Code File dialog box, which opens, select New Graph in the File Template box,
as the screenshot below shows.

5. In the Class Name box, specify the class name of the business logic controller to be created.

6. Click OK.

Figure: Adding a Code item for a custom graph to the project

The platform creates the code template of the class derived from the PXGraph<> class, saves the code
as a Code item of the project in the database, and opens the item in the Code Editor.

To Create a Custom Data Access Class
You can add a new data access class (DAC) to a customization project by generating the code from the
definition of a database table.

To create a custom data access class for a custom database table and add the created item to a
customization project, you have to generate the class template on the Code page of the Customization
Project Editor.

To do this, perform the following actions:

1. Create the needed custom table in the database by using a database management tool.

2. Generate the DAC code for the customization project as follows:

a. Open the customization project in the Project Editor.

b. Click Code in the navigation pane to open the Code page.

c. Click Add New Record (+) on the page toolbar.

d. In the Create Code File dialog box, which opens, select New DAC in the File Template
box, as the screenshot below shows.

e. In the Class Name box, specify the class name that corresponds to the name of the table
created in the database.

:  If you have just created the table, restart Internet Information Services (IIS) or recycle
the application pool to make sure Acumatica ERP is aware of the new table, because it
caches the database schema once, when the domain starts.

f. Select the Generate Members from Database check box.

g. Click OK.



 | Managing Items in a Project | 137

Figure: Adding a new data access class to the customization project

The platform does the following:

• Generates the data access class with members that correspond to the table columns. The
class is added to the customization project namespace.

• Adds the class to the customization project as a Code item.

• Saves the customization project.

• Opens the created item in the Code Editor.

You can use the Code Editor to modify the generated code. After you publish the customization
project, you can work with the custom data access class in MS Visual Studio.

3. In the Code Editor, define the key fields in the DAC. To include a data field in the key, in the type
attribute of the field, you have to add the IsKey parameter, as the example below shows.

[PXDBString(15, IsKey=true)]

4. Add the table definition to the customization project by doing the following:

a. In the navigation pane of the Project Editor, select DB Scripts.

b. On the Database Scripts page, which opens, click Add New Record (+) on the toolbar.

c. In the Edit SQL Script dialog box, which opens, select the table name in the DBObject
Name selector.

d. Select the Import Table Schema from Database check box, which appears in the
dialog box once the platform has found the specified table in the database (see the
screenshot below).

e. Click OK.



 | Managing Items in a Project | 138

Figure: Adding an SQL script to the customization project

The platform does the following:

• Adds the XML definition of the table to the customization project as an Sql item

• Saves the customization project

Every time you publish the customization project, the system checks whether a table with
this SQL definition exists in the database. If the table doesn't exist, the system creates
the table. If the table exists, the system adjusts the table schema by using the definition,
if there is any difference (no data is truncated).

To Customize an Existing Business Logic Controller
You can create the class extension for an existing business logic controller (BLC) and add the Code item
with the created code to a customization project in several ways, as described in the following sections:

• To Add a Code Item by Using the Element Inspector

• To Add a Code Item by Using the Layout Editor

• To Add a Code Item on the Code page

If you need to extend the code of a BLC that has no webpage associated (such as ARReleaseProcess),
follow the instructions described in To Add a Code Item on the Code page.

As soon as you add the Code item for customization of the business logic to the project, the system
generates an extension class for it and opens the code in the Code Editor. You can work with the
extension classes in the Code Editor. After you publish the customization project, you can develop the
code in MS Visual Studio.

To Add a Code Item by Using the Element Inspector

Typically, you want to modify the business logic that is executed for a certain form of Acumatica ERP.

To add a Code item for customization of the business logic for an existing form to a customization
project by using the Element Inspector, perform the following actions:

1. Open the form in the browser.



 | Managing Items in a Project | 139

2. On the form title bar, click Customization > Inspect Element to launch the Element Inspector.

3. On the form, select any UI element to open the Element Properties Dialog Box for the element.

The Business Logic box of the dialog box displays the name of the business logic controller that
provides business logic for the form, as shown in the screenshot below.

4. In the dialog box, click Actions > Customize Business Logic.

Figure: Using the Element Properties dialog box to customize the business logic for the form

5. If there is no currently selected customization project and the inspector opens the Select
Customization Project Dialog Box, select an existing customization project or to create a new
one.

The platform creates the template of the class that is derived from the PXGraphExtension<> class,
saves the code as a Code item of the project in the database, and opens the item in the Code Editor, as
shown in the following screenshot.

Figure: Viewing the created code template in the Code Editor



 | Managing Items in a Project | 140

To Add a Code Item by Using the Layout Editor

Often, you start a customization of an Acumatica ERP form in the Layout Editor and you later want to
modify the business logic for this form. To customize the business logic of the form, you can add a Code
item to a customization project from the Layout Editor.

To do this, perform the following action:

1. On the toolbar of the Layout Editor, click Actions > Customize Business Logic, as the
following screenshot shows.

Figure: Starting the customization of the business logic from the Layout Editor

The platform creates the template of the class that is derived from the PXGraphExtension<> class,
saves the code as a Code item of the project in the database, and opens the item in the Code Editor.

To Add a Code Item on the Code page

If you know the name of the business logic controller to be customized, you can create a Code item
with the graph extension template on the Code page of the Customization Project Editor by using the
Create Code File dialog box.

To do this, perform the following actions:

1. Open the customization project in the editor. (See To Open a Project for details.)

2. Click Code in the navigation pane to open the Code page.

3. Click Add New Record (+) on the page toolbar.

4. In the Create Code File dialog box, which opens, select Graph Extension in the File Template
box, as the screenshot below shows.

5. In the Base Graph box, select the class name of the business logic controller to be customized.

6. Click OK.



 | Managing Items in a Project | 141

Figure: Adding a Code item with the graph extension to the project

The platform creates the template of the class that is derived from the PXGraphExtension<> class,
saves the code as a Code item of the project in the database, and opens the item in the Code Editor.

To Customize an Existing Data Access Class
If you know the name of the data access class to be customized, you can create a Code item with the
DAC extension template on the Code page of the Customization Project Editor by using the Create
Code File dialog box.

To do this, perform the following actions:

1. Open the customization project in the editor. (See To Open a Project for details.)

2. Click Code in the navigation pane to open the Code page.

3. Click Add New Record (+) on the page toolbar.

4. In the Create Code File dialog box, which opens, select DAC Extension in the File Template
box, as the screenshot below shows.

5. In the Base DAC box, select the name of the data access class to be customized.

6. Click OK.



 | Managing Items in a Project | 142

Figure: Adding a Code item with the DAC extension to the project

The platform creates the template of the class that is derived from the PXCacheExtension<> class,
saves the code as a Code item of the project in the database, and opens the item in the Code Editor.

To Add Custom Code to a Project
You can add a .cs file with some custom code to a customization project. To do this, perform the
following actions:

1. Open the customization project in the editor. (See To Open a Project for details.)

2. Click Code in the navigation pane to open the Code page.

3. Click Add New Record (+) on the page toolbar.

4. In the Create Code File dialog box, which opens, select Code File in the File Template box, as
the screenshot below shows.

5. In the Class Name box, specify the name of the new class to be added to the project.

6. Click OK.

Figure: Adding a Code item for a custom graph to the project

The platform creates the code template of the new class, saves the code as a Code item of the project
in the database, and opens the item in the Code Editor, as the following screenshot shows.



 | Managing Items in a Project | 143

Figure: Viewing the custom code file added to the project

To Add a Customization Plug-In to a Project
As a part of a complex customization, you might need to make changes to the website beyond the
customization project. For example, you might need to change the website configuration. In such
situations, you can add a customization plug-in to the project with the code to be executed at the end
of the publication process.

To add a customization plug-in, perform the following actions:

1. Open the customization project in the editor. (See To Open a Project for details.)

2. Click Code in the navigation pane to open the Code page.

3. Click Add New Record (+) on the page toolbar.

4. In the Create Code File dialog box, which opens, select Customization Plug-in in the File
Template box, as the screenshot below shows.

5. In the Class Name box, enter the name of the plug-in to be added to the project..

6. Click OK.

Figure: Adding a customization plug-in to the project

The system generates the plug-in code by template, as shown below.

using System;
using PX.Data;
using Customization;

namespace YogiFon
{
  //The customization plug-in is used to execute custom actions after the
 customization project has been published 
  public class MyPlugin: CustomizationPlugin
  {
    //This method is executed right after website files are updated, but before the
 website is restarted
    //The method is invoked on each cluster node in a cluster environment
    //The method is invoked only if runtime compilation is enabled
    //Do not access custom code published to bin folder; it may not be loaded yet



 | Managing Items in a Project | 144

    public override void OnPublished()
    {
      this.WriteLog("OnPublished Event");
    }
    
    //This method is executed after the customization has been published and the
 website is restarted. 
    public override void UpdateDatabase()
    {
      this.WriteLog("UpdateDatabase Event");
    }
  }
}

When a customization project that contains a customization plug-in has been published, the
corresponding .cs file is created in the App_RuntimeCode folder of the website.

:  The Acumatica Customization Platform uses the App_RuntimeCode folder to keep the CS code of the
DAC and Code items of all the published customization projects. By default, at run time, the platform
compiles the code of this folder in a separate library and dynamically links the library to the Acumatica
ERP application. (See Run-Time Compilation for details.) If you set the UseRuntimeCompilation key in
the <appSettings> section of the web.config file (located in the website folder) to False, the platform
uses the App_Code/Caches folder instead the App_RuntimeCode one for the customization code. In
this case, the OnPublished method of a customization plug-in cannot be executed. Execution of the
UpdateDatabase method does not depend on the UseRuntimeCompilation key value.

To Delete a Code Item From a Project
To remove a Code item from a project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Code in the navigation pane to open the Code page.

3. In the page table, click the item to be deleted.

4. On the page toolbar, click Delete Row (X).

5. On the page toolbar, click Save to save the changes to the customization project.

You can delete a Code item from the customization project on the Edit Project Items page of the
Customization Project Editor. (See To Delete Items from the Project on the Edit Project Items Page for
details.)

If you are working in Microsoft Visual Studio, to update the files in the file system, publish the
customization project. The .cs file of the deleted Code item will be removed from the file system.

To Move a Code Item to the Extension Library
You can develop customization code either as Code items in a customization project or as source code
included in an extension library project in Microsoft Visual Studio. Some part of a customization may
exist in the Code items of a customization project, while another part can be in an extension library that
is included in the customization project as DLL file. (See Extension Library for details.)

To move the code from a Code item to an extension library, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Code in the navigation pane to open the Code page.

3. In the page table, click the name of the item to be moved to open the Code Editor for the item.

4. On the editor toolbar, click Move to Extension Lib.

:  Before you launch the operation, be sure that the customization project is bound to an existing
extension library. (See Customization Project Editor for details.)



 | Managing Items in a Project | 145

For more information about the operation, see Move to Extension Lib Action. Also, see Extension Library
(DLL) Versus Code in a Customization Project for our recommendations about where you should keep
your customization code.

Custom Files
You can add to a customization project any custom file located in the website folder of your instance of
Acumatica ERP. When you add a file to a project, the Acumatica Customization Platform stores a copy
of the file in the database as a File item. The platform then uses the copy of the file from the database
for inclusion in the deployment package.

:  A File item contains the path to a custom file and the GUID of the file content in the file storage of the
database. The path is relative to the website folder.

You use the Custom Files page of the Customization Project Editor to manage File items in the
customization project. The page displays the list of File items included in the project, as shown in the
following screenshot.

Figure: Viewing custom files in the project

When you run the project publication process or export the project, the platform compares each file
in the project (in the database) with the original file in the file system and detects the files modified
in the file system. If a modified file is found, there is a conflict, and the platform gives you the option
to update the files in the project or discard the changes (and use the files from the database). See
Detecting the Project Items Modified in the File System for details.

On the page, you can perform the operations with items described in the following topics:

• To Add a Custom File to a Project

• To Update a File Item in a Project

• To Delete a Custom File From a Project

To Add a Custom File to a Project
To add a custom file to a customization project, do the following:

1. In the file system, place the file in an appropriate folder within the website folder.

For example, if you need to add an extension library file, place it in the Bin folder of the website.



 | Managing Items in a Project | 146

2. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

3. Click Files in the navigation pane to open the Custom Files page.

4. On the page toolbar, click Add New record (+).

5. In the Add Files dialog box, which opens, find the file in the table and select the check box in
the Selected column for it, as shown in the following screenshot.

:  You can select multiple custom files to add them to the project at the same time.

Figure: Adding a custom file to the project

:  For any files other than the ones placed in the Bin folder, you can click Refresh on the toolbar
of the Add Files dialog box to make the system update the list of files in the table. If you have
changed files in the Bin folder of the website, you should refresh the page in the browser by
pressing F5 on the keyboard.

6. In the dialog box, click Save to save each selected file to the customization project as a File
item.

If you modify the file added to a customization project in the file system, you have to update the
appropriate File item in the project.

To Update a File Item in a Project
If you have modified a file of a customization project in the file system and need to use the modified
version of the file in the project, you have to update the copy of the file in the database. To do this,
perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Files in the navigation pane to open the Custom Files page.

3. On the page toolbar, click Detect Modified Files, as shown in the screenshot below.



 | Managing Items in a Project | 147

4. In the Modified Files Detected dialog box, which opens, ensure that the Conflict check box is
selected for the file.

Figure: Updating files in the project

5. If multiple files in the project were changed, and you do not want to update some files at the
moment, clear the selection of these files in the Selected column.

6. On the toolbar of the dialog box, click Update Customization Project to update the selected
files.

If you click Discard All Changes, the Acumatica Customization Platform resolves the conflict by
overriding the file in the file system using the file copy in the database.

If you make changes to custom files added to a customization project in the file system, the platform
does not publish or export the project while a file in the file system differs its copy in the database. You
have to resolve all such conflicts before publication or export of the project. See Detecting the Project
Items Modified in the File System for details.

Detecting the Project Items Modified in the File System

In the website folder in the file system, the platform tracks changes that you make to the following
files:

• Files with the customization code added to the customization project as DAC items

• Files with the customization code added to the project as Code items

• Custom files added to the project

If you make changes to these files in the file system, you have to update them in the project before you
publish the project or export the deployment package of the project.

When you run the project publication process or export the project, the Acumatica Customization
Platform compares each file in the project (in the database) with the original file and detects the files
modified in the file system. If a modified file is found, there is a conflict, and the platform opens the
Modified Files Detected dialog box (see the screenshot below) to give you the option to update the
files in the project or discard the changes and use the files from the database.



 | Managing Items in a Project | 148

Figure: Viewing the Modified Files Detected dialog box

:  If you have used the File Editor of the Customization Project Editor to modify a File item in a
customization project and saved the changes in the database, the changes are not saved in the original file
in the file system. Then if you click Detect Modified Files on the toolbar of the Files page, the platform
does not detect a conflict because the file in the database is newer. The platform automatically updates the
original file during the publication of the customization project.

The Modified Files Detected dialog box lists all custom and customized files in the website folder.
The Conflict check box means that the file version in the file system differs from the file version in the
customization project. This could happen, for example, if you have modified the customization code in a
file by using MS Visual Studio and the change is not yet reflected in the customization project. You have
to resolve all conflicts in the project before you publish the project or export the deployment package of
the project.

In the dialog box, you can invoke the following actions for conflicting files:

• Update Customization Project: Updates the customization project with the file version from the
file system.

• Discard All Changes: Keeps the file version that exists in the customization project and discard
the changes in the file system.

These actions are performed on the selected files—that is, all conflicting files for which you have
selected the check box in the Selected column.

You can invoke one action for one individual file and another action for another file. For example,
you can first select the files that you want to update in the customization project and click Update
Customization Project. Then you can click Discard All Changes to cancel the changes made to all
other conflicting files.

Make sure you have updated all appropriate files before removing all remaining conflicts. If you discard
changes, after you publish the customization project, the platform updates all selected conflicting files
from the database, therefore the files will return to the original state in the file system.



 | Managing Items in a Project | 149

No conflicts will appear in the Modified Files Detected dialog box until a file included in the
customization project is modified in the file system again.

To Delete a Custom File From a Project
To delete a custom file from a customization project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Files in the navigation pane to open the Custom Files page.

3. In the page table, click the item to be deleted.

4. On the page toolbar, click Delete Row (X).

5. On the page toolbar, click Save to save the changes to the customization project.

The File item is deleted from the project. The file remains in the file system and you can add it back to
the project, if needed.

Warning:  If you either publish the customization project after the File item is deleted or unpublish all
customizations of the website, the platform deletes the original file in the file system.

Generic Inquiries
You use the Generic Inquiries page of the Customization Project Editor to manage GenericInquiryScreen
items in the customization project.

:  A GenericInquiryScreen item contains the data set of a custom or customized generic inquiry form.

The Generic Inquiries page displays the list of the generic inquiries added to the customization project.
The following screenshot shows this page displaying one generic inquiry added to the customization
project.

Figure: Viewing the generic inquiry in the project

On the page, you can perform the operations described in the following topics:

• To Add a Generic Inquiry to a Project

• To Delete a Generic Inquiry from a Project

• To Update Generic Inquiry Items in a Project

• To Redirect to the Generic Inquiry Form

To Add a Generic Inquiry to a Project
You can add to a customization project a custom or customized generic inquiry—the generic inquiry that
is saved in the database for the current company. To do this, perform the following actions:



 | Managing Items in a Project | 150

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Generic Inquiries in the navigation pane to open the Generic Inquiries page.

3. On the page toolbar, click Add New Record (+), as shown in the screenshot below.

4. In the list of generic inquiries in the Add Generic Inquiries dialog box, which opens, select the
check box for each generic inquiry form that you want to include in the project.

:  The Add Generic Inquiries dialog box displays all the custom and customized generic inquiries
that exist in your instance of Acumatica ERP. You can select multiple generic inquiries to add them
to the project simultaneously.

5. In the dialog box, click Save to add the selected generic inquiry or inquiries to the customization
project.

Figure: Adding the generic inquiry to the customization project

The system adds to the project the data for each selected generic inquiry, and you can see each
new GenericInquiryScreen item in the Project Items table of the Item XML Editor, as shown in the
following screenshot.



 | Managing Items in a Project | 151

Figure: Viewing the new GenericInquiryScreen item included in the project

:  To give users the ability to navigate to the new inquiry form in Acumatica ERP, you have to add the
appropriate site map node to the customization project. See To Add a Site Map Node to a Project for
details.

To Delete a Generic Inquiry from a Project
To remove a GenericInquiryScreen item from a project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Generic Inquiries in the navigation pane to open the Generic Inquiries page.

3. In the page table, click the item to be deleted.

4. On the page toolbar, click Delete Row (X).

5. On the page toolbar, click Save to save the changes to the customization project.

If you delete a GenericInquiryScreen item from the project, the generic inquiry remains in the system
unless you delete the inquiry by using the Generic Inquiry (SM.20.80.00) form.

If you have added a site map node for a custom inquiry form to the project and removed the inquiry
from the project, you should delete the appropriate SiteMapNode item. (See To Delete a Site Map Item
from a Project for details.)

To Update Generic Inquiry Items in a Project
If you have used the Generic Inquiry (SM.20.80.00) form to change a generic inquiry included in the
customization project, you have to update the appropriate item in the project. To do this, perform the
following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Generic Inquiries in the navigation pane to open the Generic Inquiries page.

3. On the page toolbar, click Reload From Database.



 | Managing Items in a Project | 152

The platform updates all the GenericInquiryScreen items of the project by using the appropriate data
from the database.

To Redirect to the Generic Inquiry Form
When you are working with the Customization Project Editor, you may need to open the Generic Inquiry
(SM.20.80.00) form in the browser. You can use this form, for example, to create a new generic inquiry,
to customize an existing one, or to manage existing generic inquiries in Acumatica ERP.

To open the Generic Inquiry form from the Customization Project Editor, perform the following actions:

1. Select Generic Inquiries in the navigation pane to open the Generic Inquiries page.

2. On the page toolbar, click Manage.

As soon as you save a new inquiry on the Generic Inquiry form, you can add the inquiry as a
GenericInquiryScreen item to the project.

:  You can limit the list of tables available for constructing generic inquiries on the Generic Inquiry form.
See Limiting the List of Tables Available for Generic Inquiries for details.

Limiting the List of Tables Available for Generic Inquiries

You can limit the list of database tables available for constructing generic inquiries on the Generic
Inquiry (SM.20.80.00) form in the production environment. To do this, in the development
environment, use the following approach:

1. Create the GITables.xml configuration file to specify the Allowed and Hidden collections of
masks for the full names of the database tables, as described in GITables.xml File Content.

2. Save the configuration file to the App_Data folder of the website.

3. Add the file to a customization project as a File item. (See To Add a Custom File to a Project for
details.)

The platform automatically checks whether this file exists in the App_Data folder. If the customization
project is published in the production environment, the platform applies the file content when a user
selects a table for a generic inquiry on the Generic Inquiry form.

GITables.xml File Content

The configuration file is in XML format and includes the GITables element only. This element must
include the Allowed section and can also contain the Hidden section. Each section is a collection of
Table elements.

The Allowed collection specifies the list of tables that are available for use in generic inquiries
constructed on the Generic Inquiry form. If a table isn't included in the Allowed collection, it doesn't
appear in the list for selection on the Table tab of the form. You can also add the Hidden section to the
configuration file. This section specifies the tables you want to exclude from the list.

If a table is allowed and not hidden (as illustrated by the green area in the figure below), it is included
in the list of the tables available for constructing generic inquiries on the Generic Inquiry form.
Otherwise, the table is not displayed in this list of tables.



 | Managing Items in a Project | 153

Each Table element of the Allowed and Hidden sections contains the FullName attribute, which
specifies the table name or the mask for a set of tables.

The attribute value is a string that can contain the following wildcard characters:

• An asterisk (*), which matches any number of characters (or no characters)

• A question mark (?), which matches exactly one character

The example below shows how to exclude the tables by using the PX.Objects.CR.BAccount and
PX.*Contact* masks.

<?xml version="1.0" encoding="utf-8"?>
<GITables>
 <Hidden>
  <Table FullName="PX.Objects.CR.BAccount" />
  <Table FullName="PX.*Contact*" />
 </Hidden>
 <Allowed>
  <Table FullName="*" />
 </Allowed>
</GITables>

According to the mask with Contact, users will not be able to use any tables that contain the word
Contact in the table name in their inquiries (for example, the PX.Objects.CR.Contact table).

To limit the list of database tables by using only the Allowed collection, you can empty or remove
the Hidden section. The following example shows how to include only the tables that matched the
PX.Objects.IN.* mask.

<?xml version="1.0" encoding="utf-8"?>
<GITables>
 <Allowed>
  <Table FullName="PX.Objects.IN.*" />
 </Allowed>
</GITables>

Custom Reports
You use the Custom Reports page of the Customization Project Editor to manage Report items in the
customization project.

:  A Report item contains the data set of a custom report created with Acumatica Report Designer.

The Custom Reports page displays the list of the custom reports that have been added to the
customization project. The following screenshot shows a custom report that has been constructed in
Acumatica Report Designer, saved to the database, and then added to the customization project.



 | Managing Items in a Project | 154

Figure: Viewing the Acumatica Report Designer report in the project

On the page, you can perform the operations described in the following topics:

• To Add a Custom Report to a Project

• To Delete a Custom Report from a Project

• To Update a Custom Report in a Project

To Add a Custom Report to a Project
You can add an Acumatica Report Designer custom report to a customization project. Before adding a
report to a project, you have to construct the report in Acumatica Report Designer and save the report
to the database. (For more information about reports, see Report Designer in the Acumatica Framework
documentation.)

To add a custom report to a project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Reports in the navigation pane to open the Custom Reports page.

3. On the page toolbar, click Add New Record (+), as shown in the screenshot below.

4. In Name box of the Select Report from Database dialog box, which opens, select the report
that you want to include in the project.

:  If a custom report is created in Acumatica Report Designer and saved as a file in the file system,
you cannot add the report to a customization project as a Report item.

5. In the dialog box, click OK to add the selected report to the customization project.



 | Managing Items in a Project | 155

Figure: Adding a custom report to the project

:  To give users the ability to navigate to the custom report in Acumatica ERP, you have to add the
appropriate site map node to the customization project. See To Add a Site Map Node to a Project for
details.

To Delete a Custom Report from a Project
To remove a custom report from a project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Reports in the navigation pane to open the Custom Reports page.

3. In the page table, click the item to be deleted.

4. On the page toolbar, click Delete Row (X).

5. On the page toolbar, click Save to save the changes to the customization project.

If you have added a site map node for the custom report to the project, you also have to delete the
appropriate SiteMapNode item. (See To Delete a Site Map Item from a Project for details.)

To Update a Custom Report in a Project
If you have used Acumatica Report Designer to change a custom report included in the customization
project, you have to update the appropriate item in the project. To do this, perform the following
actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Reports in the navigation pane to open the Custom Reports page.

3. On the page toolbar, click Reload From Database.

The platform updates all the Report items that are added to the customization project.



 | Managing Items in a Project | 156

Site Map
You use the Site Map page of the Customization Project Editor to manage SiteMapNode items in the
customization project.

:  A SiteMapNode item contains the data set of a custom site map node for a custom form, generic inquiry,
or report included in the customization project.

The Site Map page displays the list of the custom site map nodes that have been added to the
customization project. The following screenshot shows the Site Map page for the customization project,
which in this case contains two SiteMapNode items.

Figure: Viewing the site map nodes in the project

On the page, you can perform the operations described in the following topics:

• To Add a Site Map Node to a Project

• To Delete a Site Map Item from a Project

• To Update a Site Map Node in a Project

• To Redirect to the Site Map Form

To Add a Site Map Node to a Project
Any change to the site map that is saved in the database for the current company can be added to a
customization project as a SiteMapNode item. Therefore you can add a custom or customized site map
node to a customization project. To do this, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Site Map in the navigation pane to open the Site Map page.

3. On the page toolbar, click Add New Record (+), as shown in the screenshot below.

4. In the list of site map nodes in the Add Site Map dialog box, which opens, select the check box
for each node that you want to include in the project.

:  The Add Site Map dialog box displays all the custom site map nodes that have been created in
the site map of Acumatica ERP and the nodes that have been modified in the site map. You can
select multiple custom site map nodes to add them to the project simultaneously.

5. In the dialog box, click Save to add each selected site map node to the customization project.



 | Managing Items in a Project | 157

Figure: Adding the site map node to the customization project

The system adds to the project the data from the database for each selected site map node. You can
view each new SiteMapNode item in the Project Items table of the Item XML Editor, as shown in the
following screenshot.

Figure: Viewing the new SiteMapNode item included in the project



 | Managing Items in a Project | 158

To Delete a Site Map Item from a Project
To delete a site map node from a customization project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Site Map in the navigation pane to open the Site Map page.

3. In the page table, click the item to be deleted.

4. On the page toolbar, click Delete Row (X).

5. On the page toolbar, click Save to save the changes to the customization project.

If you delete a SiteMapNode item from the project, the node remains in the site map unless you delete
the node on the Site Map (SM.20.05.20) form.

To Update a Site Map Node in a Project
If you have used the Site Map (SM.20.05.20) form to change a site map node included in the
customization project, you should update this node in the project. To do this, perform the following
actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Select Site Map in the navigation pane to open the Site Map page.

3. On the page toolbar, click Reload From Database.

The platform updates all the SiteMapNode items of the project by using the appropriate data from the
database.

To Redirect to the Site Map Form
You might need to add to Acumatica ERP a site map node for a custom form, inquiry, or report that you
develop for a customization project. To create a custom site map node or modify an existing node, you
use the Site Map (SM.20.05.20) form of Acumatica ERP.

To open theSite Map form from the Customization Project Editor, perform the following actions:

1. Click Site Map in the navigation pane to open the Site Map page of the editor.

2. On the page toolbar, click Manage Site Map.

As soon as you save changes to an existing site map node or create a custom node on the Site Map
form, you can add the node as a SiteMapNode item to the customization project.

Database Scripts
The Acumatica Customization Platform permits the use of custom SQL scripts for the following changes
to the database in the scope of a customization project:

• Creation of custom tables

• Creation of views, indexes, and other database objects

• Insertion of data into tables

(See Changes in the Database Schema for details.)

You use the Database Scripts page of the Customization Project Editor to manage Sql items in the
customization project.

:  An Sql item contains a custom database table definition or a custom SQL script that has to be executed
while the customization project is published.



 | Managing Items in a Project | 159

The Database Scripts page displays the list of the custom SQL scripts that have been added to the
customization project. The following screenshot shows the Database Scripts page for the customization
project, which in this case contains two Sql items.

Figure: Viewing custom SQL scripts in the project

To create a custom table in the database, we recommend that you add the table schema to the
customization project, as described in To Add a Custom Table to a Project. To create other database
objects or insert data into the tables, you have to compose the corresponding SQL script and add the
script to the customization project, as described in To Add a Custom SQL Script to a Project.

On the Database Scripts page, you can perform various operations, as described in the following topics:

• To Add a Custom Table to a Project

• To Update Custom Tables in the Project

• To Add a Custom SQL Script to a Project

• To Delete an Sql Item From a Project

To Add a Custom Table to a Project
To add a custom table to a customization project, perform the following actions:

1. Create the needed table in the database by using a database administration tool, such as SQL
Server Management Studio.

:  You have to use a naming convention that provides unique names for your custom tables so that
they do not have the names of existing tables of Acumatica ERP.

2. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

3. Click DB Scripts in the navigation pane to open the Database Scripts page.

4. On the page toolbar, click Add New Record (+).

5. In the SQL Script Editor, which opens, select the custom table in the DBObject Name box.

6. In the editor, select the Import Table Schema from Database check box, as shown in the
screenshot below.

7. Click OK to make the Acumatica Customization Platform generate the table schema and add the
schema to the customization project.



 | Managing Items in a Project | 160

Figure: Adding a custom table to the project

Adding the table schema is the preferred way of adding custom tables to the project. When you publish
the customization project, the platform executes each SQL script of the project to update the database.
If an Sql item contains a custom database table definition, to update the database with the table
schema, the Acumatica Customization Platform checks whether a table with this name already exists
in the database. If the table exists, the platform generates SQL statements to alter the existing table
so that it matches the schema. The platform doesn't drop the existing table and keeps any data in it.
This makes it easier to deploy a newer version of the customization project to a system that is already
in use. If the table doesn't exist, the platform generates SQL statements to create the table. SQL
statements are generated in the SQL dialect of the database management system. Therefore, if you add
custom tables to the project by table schema, you keep the customization project independent from the
database management system that hosts the database of Acumatica ERP. Below is an example of the
table schema of the custom table Product.

 <Sql TableName="RBProduct" TableSchemaXml="#CDATA">
        <CDATA name="TableSchemaXml"><![CDATA[<table name="RBProduct">
  <col name="ProductID" type="Int" identity="true" />
  <col name="ProductCD" type="NVarChar(15)" />
  <col name="ProductName" type="NVarChar(50)" />
  <col name="Active" type="Bit" />
  <col name="StockUnit" type="NVarChar(20)" />
  <col name="UnitPrice" type="Decimal(19,6)" />
  <col name="MinAvailQty" type="Decimal(25,6)" />
  <col name="TStamp" type="Timestamp" />
  <index name="RBProduct_PK" clustered="true" primary="true" unique="true">
    <col name="ProductID" />
  </index>
</table>]]></CDATA>
    </Sql>

Alternatively, you can add custom tables by adding a custom SQL script that creates the table in the
project.

To Update Custom Tables in the Project
After you have added a custom table to the project, you might continue making changes to the table by
using a database administration tool, such as SQL Server Management Studio. We recommend that you



 | Managing Items in a Project | 161

update the table schema in the customization project before you export the deployment package of the
project or publish the project.

To update the schema of custom tables in the project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click DB Scripts in the navigation pane to open the Database Scripts page.

3. On the page toolbar, click Update From Database.

The platform regenerates the database table schema of all the custom tables added to the project with
the Import Table Schema from Database check box selected.

To Add a Custom SQL Script to a Project
:  Although we provide these instructions, we do not recommend that you add a custom SQL script to a
customization project for the following reasons:

• Because Acumatica ERP supports multi-tenancy, it is difficult to create an SQL script that correctly
creates a database object.

• It is difficult to properly specify and use the company mask in custom database objects.

• If you include in a customization project an SQL script written for MS SQL, you will need to avoid
applying the customization to a website on MySQL Server, because an SQL script created for MS SQL
Server will not work properly on MySQL Server.

Warning:  A possible result of a custom SQL script is the loss of the integrity and consistency of data.

To add a custom SQL script to a customization project, perform the following actions:

1. Prepare and debug the SQL script with a database administration tool, such as SQL Server
Management Studio. (See Creating a Custom SQL Script for details.)

2. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

3. Click DB Scripts in the navigation pane to open the Database Scripts page.

4. On the page toolbar, click Add New Record (+).

5. In the DBObject Name box of the SQL Script Editor, which opens, specify the name of the
script to be used as the object name of the customization item.

6. In the editor, enter the SQL script into the Custom Script text area.

7. In the editor, click OK to add the script to the customization project.

If a custom script causes an error, the error message will appear during the publication process when
the system executes the custom scripts.

:  We really don't want you to do this, but if you plan to add a custom SQL script to a customization project,
we recommend that you first test the custom SQL script on MS SQL and MySQL.

Creating a Custom SQL Script

To create database objects other than custom tables or to insert data into tables, you can add custom
SQL scripts to a customization project. The Acumatica Customization Platform executes custom SQL
scripts added to a project when you publish the project.

:  When you publish a customization project that contains a database script, the Acumatica Customization
Platform executes the script and tries to avoid executing the script at every publication of the project
for optimization purposes. Therefore, the platform keeps information about each script that has been
executed at least once and has not since been changed in the database, and omits the repeated execution
of these scripts. If you run the Publish with Cleanup operation, the platform cleans all the information
about previously executed scripts of the customization project and executes this scripts once more while
publishing the project. See Customization Project Editor for details.

While you write scripts, keep the following conditions in mind:



 | Managing Items in a Project | 162

• You have to use a naming convention that provides unique names for your custom objects so that
they are not the same as the names of existing database objects.

• A script can be executed multiple times. Therefore, while writing the script, you have to check
if an object already exists before you create a new one; otherwise, an error will occur when the
script runs on the database that already contains the object.

You can prepare the script directly in the dialect of the target database or prepare the script for "on-
the-fly" interpretation by Microsoft SQL Server or MySQL, depending on the target database. So you
have the following options:

• Insert the SQL script prepared for the target database, Microsoft SQL Server or MySQL:
During the publication of the project, the Acumatica Customization Platform executes the script
as is. You can use all the functionality of the SQL dialect of the target database, but this script
makes the customization project dependent on the database management system that hosts the
database of Acumatica ERP.

The screenshot below shows a MySQL script to be added to the customization project for
Acumatica ERP on MySQL.

Figure: Viewing a custom script in the dialect of the target database (MySQL)

You can use SQL Script attributes to skip the script batch execution on a database management
system. See Using the SQL Script Attributes for details.

• Insert the SQL script with support for interpretation for the target database: Prepare
the script in the Microsoft SQL Server dialect and insert the script with the --[VmSql] attribute.
During the publication of the project, the system analyzes the script, generates the corresponding
SQL statements in the dialect of the target database, and executes the statements. The
customization project that includes only these scripts remains independent from the database
management system that hosts the database of Acumatica ERP. However the interpreter
supports a relatively limited set of SQL language elements. See Writing Custom SQL Scripts for
Interpretation for details.

The screenshot below shows a Microsoft SQL Server script to be interpreted into the SQL dialect
of the target database. The script will be analyzed, interpreted, and executed on either Microsoft
SQL Server or MySQL.

In the script for interpretation, you have to place the --[VmSql] attribute before each batch of
the SQL script to be interpreted.



 | Managing Items in a Project | 163

Figure: Viewing a custom script with support for interpretation

Using the SQL Script Attributes

You can decorate a batch of an SQL script with various attributes to control the batch execution.

:  An SQL batch is a portion of an SQL script located between two GO statements.

Attributes are based on the line preceding the batch in the following format.

--[Attribute(Parameter1 = Value1, Parameter2 = Value2)]

Also, it is possible to specify that an attribute is effective only when the script is executed on a
particular platform (MySQL or MSSQL). To achieve this, add a short database platform name followed
by a colon to the beginning of the attribute name, as follows.

--[mysql: Attribute(Parameter1 = Value1, Parameter2 = Value2)]
--[mssql: Attribute(Parameter1 = Value1, Parameter2 = Value2)] 

The currently used platform names are azure, mssql, and mysql.

We recommend that you use the following attributes for batches in SQL scripts.

Attribute Description ParametersExamples

Native The script batch will be executed
against the database without
any changes or attempts to
parse and interpret it. You can
use SQL clauses specific to the
target platform.

- --[mssql: Native]

Skip A script batch can be skipped
when the upgrade is being
executed on a specific platform.

- --[mysql: Skip]

SmartExecute The whole batch will be executed
once for every company,
taking into consideration inter-
company visibility mechanisms
(CompanyMask). Write your code

- --[SmartExecute]



 | Managing Items in a Project | 164

Attribute Description ParametersExamples
in T-SQL, and it will be passed to
the interpreter.

VmSql The decorated script batch will
be interpreted as T-SQL, and
a corresponding script for the
current database engine will
be generated and executed on
the database. The number of
correctly translated clauses is a
limited subset of T-SQL.

- --[VmSql]

You can create an SQL script that is executed properly on the MySQL database platform and MSSQL
database platform, as shown in the example below. This script contains two batches and demonstrates
how to use SQL script attributes to control execution of the batches.

--[mysql: Skip]
--[mssql: Native]
IF OBJECT_ID('dbo.View1', 'V') IS NOT NULL DROP VIEW [View1];
CREATE VIEW [View1] AS (SELECT TOP 10 * FROM [AccountClass] )
GO

--[mysql: Native]
--[mssql: Skip]
DROP VIEW IF EXISTS `View1`;
CREATE VIEW `View1` AS (SELECT * FROM `AccountClass` LIMIT 10 )
GO

Writing Custom SQL Scripts for Interpretation

In custom scripts for interpretation, you can use the data types and SQL statements that are listed
below.

Data Types

The following data types of Microsoft SQL Server are supported for interpretation:

• bit

• char, nchar, varchar, and nvarchar

• smallint, int, and bigint

• date, datetime, and datetime2

• uniqueidentifier

• decimal and double

The following data types of MySQL Server are supported for interpretation:

• binary, varbinary, and longblob

• char, varchar, and longtext

• tinyint, smallint, int, and bigint

• timestamp and datetime

• decimal and double

SQL Statements

If you prepare a script for interpretation, you can use the following elements of Transact-SQL:



 | Managing Items in a Project | 165

• CREATE, ALTER, and DROP statements

• SELECT, INSERT, UPDATE, and DELETE statements with WHERE clauses

• Logical operators: NOT, AND, OR, and EXISTS

• Control-of-flow keywords: IF...ELSE and BEGIN...END

• Expressions: CASE, COALESCE, and NULLIF

• String functions: LEN, CONCAT, REPLACE, CHAR, RTRIM, LTRIM, SUBSTRING, UPPER, LOWER,
REPLICATE, and DATALENGTH

• Arithmetic operators: +, —, *, and /

• Mathematical functions: CEILING, ROUND, and FLOOR

• Date and time functions: GETDATE, DAYADD, DATEPART, and DATALENGTH

• Aggregate functions: ABS, MIN, MAX, SUM, and COUNT

• Conversion functions: CAST and CONVERT

• System functions: ISNULL and NEWID

• System variables: @@ROWCOUNT, @@IDENTITY, and @@FETCH_STATUS

• Cryptographic functions: HASHBYTES with MD5 only

• Local variables

• Cursors

• Scalar subselect

:  The EXISTS operator can be applied to sys.tables, sys.column, and sys.indexes objects. The
DATALENGTH function can be applied to a string or binary object and returns the object length in bytes.

VmSQL Variables

In the script for interpretation, you can use the @@@is_mssql, @@@is_azure, and @@@is_mysql
variables. The following table contains values of these variables for MS SQL Server, MS Azure SQL
Database, and MySQL Server.

SQL Server @@@is_mssql @@@is_azure @@@is_mysql

MS SQL Server 1 0 0

MS Azure SQL Database 1 1 0

MySQL Server 0 0 1

Error Messages

Unsupported data types cause the following error: Cannot figure out DbType for SqlDataTypeOption.

Unsupported elements can cause the following errors:

• Date interval ... not recognized: The dates are specified in an unknown format in the functions
that work with datetime formats.

• Unknown algorithm in hashbytes ... not implemented: An unknown algorithm is specified in the
HASHBYTES function. Currently, the interpreter supports MD5 only.

• Function ... not implemented: The script contains an unknown function that cannot be interpreted.



 | Managing Items in a Project | 166

To Edit a Custom SQL Script
You can edit a custom SQL script once it is added to a customization project. To do this, perform the
following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click DB Scripts in the navigation pane to open the Database Scripts page.

3. In the page table, select the item to be edited, as the screenshot below shows.

4. On the page toolbar, click Edit to open the SQL Script Editor for the selected item.

:  You can click the name of an Sql item in the Object Name column of the page table to open the
SQL Script Editor for the item.

Figure: Opening the SQL Script Editor for the selected item

To Delete an Sql Item From a Project
To delete an Sql item from a customization project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click DB Scripts in the navigation pane to open the Database Scripts page.

3. In the page table, click the item to be deleted.

4. On the page toolbar, click Delete Row (X).

5. On the page toolbar, click Save to save the changes to the customization project.

The item is removed from the customization project. The database objects that could have been created
or altered if you have published the customization project remain in the database.



 | Managing Items in a Project | 167

System Locales
You use the System Locales page of the Customization Project Editor to manage Locale items in the
customization project.

:  A Locale item contains the data set of a system locale, which is a set of parameters that defines the
language and other local preferences—such as how to display numbers, dates, and times in the user
interface—for a group of users.

The System Locales page displays the list of the system locales that have been added to the
customization project. The following screenshot shows the System Locales page for the customization
project, which in this case contains two Locale items.

Figure: Viewing system locales in the project

On the page, you can perform various operations, as described in the following topics:

• To Add a System Locale to a Project

• To Delete a System Locale from a Project

• To Update a Custom System Locale in a Project

• To Redirect to the System Locales Form

To Add a System Locale to a Project
You can add a system locale to a customization project. To do this, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click System Locales in the navigation pane to open the System Locales page.

3. On the page toolbar, click Add New Record (+), as shown in the screenshot below.

4. In the list of system locales in the Add Locale dialog box, which opens, select the check box for
each locale that you want to include in the project.

:  The Add Locale dialog box displays all the system locales that exist in your instance of
Acumatica ERP. You can select multiple system locales to add them to the project simultaneously.



 | Managing Items in a Project | 168

5. In the dialog box, click OK to add each selected locale to the page table.

6. On the page toolbar, click Save to save the changes to the customization project.

Figure: Adding the system locale to the customization project

The system adds to the project the data from the database for each selected system locale. You can
view each new Locale item in the Project Items table of the Item XML Editor, as shown in the following
screenshot.



 | Managing Items in a Project | 169

Figure: Viewing the XML code of the Locale item included in the project

To Delete a System Locale from a Project
To remove a Locale item from a project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click System Locales in the navigation pane to open the System Locales page.

3. In the page table, click the item to be deleted.

4. On the page toolbar, click Delete Row (X).

5. On the page toolbar, click Save to save the changes to the customization project.

If you delete a Locale item from the project, the system locale remains in the system unless you delete
the locale by using the System Locales (SM.20.05.50) form.

To Update a Custom System Locale in a Project
If you have used the System Locales (SM.20.05.50) form to change a system locale included in a
customization project, you have to update the appropriate item in the project. To do this, perform the
following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)



 | Managing Items in a Project | 170

2. Click System Locales in the navigation pane to open the System Locales page.

3. On the page toolbar, click Reload From Database.

The platform updates all the Locale items of the project by using the appropriate data from the
database.

To Redirect to the System Locales Form
You might need to add a system locale to Acumatica ERP during customization. To manage system
locales in Acumatica ERP, you use the System Locales (SM.20.05.50) form.

In the Customization Project Editor, to open the System Locales form, perform the following actions:

1. Click System Locales in the navigation pane to open the System Locales page of the editor.

2. On the page toolbar, click Manage Locales.

As soon as you add a system locale to the system on the System Locales form, you can add the locale
as a Locale item to the customization project. For more information about system locales, see System
Locales in the User Guide.

Import and Export Scenarios
You use the Import and Export Scenarios page of the Customization Project Editor to manage
XportScenario items in the customization project.

:  An XportScenario item contains the data set of a custom export or import scenario used to perform data
migration between a legacy application and Acumatica ERP.

The Import and Export Scenarios page displays the list of the integration scenarios that have been
added to the customization project. The following screenshot shows the Import and Export Scenarios
page for the customization project, which in this case contains three XportScenario items.

Figure: Integration scenarios in the project

On the page, you can perform a variety of operations, including the following:

• To Add an Integration Scenario to a Project

• To Delete an Integration Scenario from a Project

• To Update an Integration Scenario in a Project

• To Redirect to the Import Scenarios Form



 | Managing Items in a Project | 171

To Add an Integration Scenario to a Project
You can add a custom integration scenario to a customization project. To do this, perform the following
actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Import/Export Scenarios in the navigation pane to open the Import and Export
Scenarios page.

3. On the page toolbar, click Add New Record (+), as shown in the screenshot below.

4. In the list of integration scenarios in the Add Import or Export Scenario dialog box, which
opens, select the check box for each scenario that you want to include in the project.

:  The Add Import or Export Scenario dialog box displays all the custom integration scenarios
that exist in your instance of Acumatica ERP. You can select multiple integration scenarios to add
them to the project simultaneously.

5. In the dialog box, click OK to add each selected integration scenario to the page table.

6. On the page toolbar, click Save to save the changes to the customization project.

Figure: Adding an integration scenario to the customization project

The system adds to the project the data from the database for each selected integration scenario. You
can view each new XportScenario item in the Project Items table of the Item XML Editor, as shown in
the following screenshot.



 | Managing Items in a Project | 172

Figure: Viewing the XML code of the XportScenario item included in the project

An XportScenario item contains all the data required for the integration scenario. Therefore, the item
includes the data of the data provider.

To Delete an Integration Scenario from a Project
To remove an XportScenario item from a project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Import/Export Scenarios in the navigation pane to open the Import and Export
Scenarios page.

3. In the page table, click the item to be deleted.

4. On the page toolbar, click Delete Row (X).

5. On the page toolbar, click Save to save the changes to the customization project.

If you delete an XportScenario item from the project, the integration scenario remains in the system
unless you delete the scenario by using the Import Scenarios (SM.20.60.25) form.

To Update an Integration Scenario in a Project
If you have used the Import Scenarios (SM.20.60.25) form to change an integration scenario included
in a customization project, you have to update the appropriate item in the project. To do this, perform
the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)



 | Managing Items in a Project | 173

2. Click Import/Export Scenarios in the navigation pane to open the Import and Export
Scenarios page.

3. On the page toolbar, click Reload From Database.

The platform updates all the XportScenario items of the project by using the appropriate data from the
database.

To Redirect to the Import Scenarios Form
You might need to add an import or export scenario to Acumatica ERP during customization. To manage
import scenarios in Acumatica ERP, you use the Import Scenarios (SM.20.60.25) form.

In the Customization Project Editor, to open this form, perform the following actions:

1. Select Import/Export Scenarios in the navigation pane to open the Import and Export
Scenarios page.

2. On the page toolbar, click Manage Scenarios.

To manage export scenarios in Acumatica ERP, you use the Export Scenarios (SM.20.70.25) form.

As soon as you add an integration scenario to the system on the Import Scenarios or Export Scenarios
form, you can add the scenario as an XportScenario item to the customization project. For more
information about integration scenarios, see the Integration part of the User Guide.

Shared Filters
Users can create reusable filters, which are available on processing and inquiry forms in Acumatica
ERP, to filter the data in the table part of the form; these filters can be reused anytime after creation.
Reusable filters can be shared among all users of the system.

You use the Shared Filters page of the Customization Project Editor to manage SharedFilter items in the
customization project.

:  A SharedFilter item contains the data set of a custom reusable shared filter created on a processing or
inquiry form of Acumatica ERP.

The Shared Filters page displays the list of the custom reusable shared filters that have been added to
the customization project. The following screenshot shows the Shared Filters page for the customization
project, which in this case contains two SharedFilter items.

Figure: Viewing the custom reusable shared filters in the project

On the page, you can perform several operations, as described in the following topics:



 | Managing Items in a Project | 174

• To Add a Shared Filter to a Project

• To Delete a Shared Filter from a Project

• To Update a Shared Filter in a Project

• To Redirect to the Filters Form

To Add a Shared Filter to a Project
You can add a custom reusable shared filter to a customization project. To do this, perform the following
actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Shared Filters in the navigation pane to open the Shared Filters page.

3. On the page toolbar, click Add New Record (+), as shown in the screenshot below.

4. In the list of integration scenarios in the Add Shared Filter dialog box, which opens, select the
check box for each filter that you want to include in the project.

:  The Add Shared Filter dialog box displays all the custom shared filters that exist in your
instance of Acumatica ERP. You can select multiple shared filters to add them to the project
simultaneously.

5. In the dialog box, click OK to add the selected filter or filters to the page table.

6. On the page toolbar, click Save to save the changes to the customization project.

Figure: Adding the shared filter to the customization project

The system adds to the project the data from the database for each selected shared filter. You can view
each new SharedFilter item in the Project Items table of the Item XML Editor, as shown in the following
screenshot.



 | Managing Items in a Project | 175

Figure: Viewing the XML code of the SharedFilter item included in the project

To Delete a Shared Filter from a Project
To remove a SharedFilter item from a project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Shared Filters in the navigation pane to open the Shared Filters page.

3. In the page table, click the item to be deleted.

4. On the page toolbar, click Delete Row (X).

5. On the page toolbar, click Save to save the changes to the customization project.

If you delete a SharedFilter item from the project, the custom reusable shared filter remains in the
system unless you delete the filter by using the Filters (CS.20.90.10) form.

To Update a Shared Filter in a Project
If you have used the Filters (CS.20.90.10) form to change a shared filter included in a customization
project, you have to update the appropriate item in the project. To do this, perform the following
actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Shared Filters in the navigation pane to open the Shared Filters page.

3. On the page toolbar, click Reload From Database.



 | Managing Items in a Project | 176

The platform updates all the SharedFilter items of the project by using the appropriate data from the
database.

To Redirect to the Filters Form
You might need to add or change a reusable shared filter in Acumatica ERP during a customization. To
manage shared filters in Acumatica ERP, you use the Filters (CS.20.90.10) form.

In the Customization Project Editor, to open this form, perform the following actions:

1. Click Shared Filters in the navigation pane to open the Shared Filters page.

2. On the page toolbar, click Manage Filters.

As soon as you add a shared filter to the system on the Filters form, you can add the filter as a
SharedFilter item to the customization project. For more information about reusable filters, see
Reusable Filters in the Interface Guide.

Access Rights
In Acumatica ERP, you can control access to system objects at broad and granular levels, down to the
control of form elements, such as buttons, text boxes, and check boxes. Users are assigned to roles,
and you give these roles the appropriate levels of access rights to system objects—suites, modules,
forms, and form elements.

You use the Access Rights page of the Customization Project Editor to manage ScreenWithRights items
in the customization project.

:  A ScreenWithRights item contains the data set of custom access rights of roles to a form, down to the
control of form elements.

The Access Rights page displays the list of the custom access rights of roles that have been added to
the customization project. The following screenshot shows the Access Rights page for the customization
project, which in this case contains two ScreenWithRights items.

Figure: Viewing the custom access rights of roles in the project

On the page, you can perform several operations, as described in the following topics:

• To Add Access Rights to a Project

• To Delete Access Rights from a Project

• To Update Access Rights in a Project



 | Managing Items in a Project | 177

• To Redirect to the Access Rights by Screen Form

To Add Access Rights to a Project
When you create or change the access rights by screen, role, or user in an instance of Acumatica ERP,
these changes are saved in the database for the current company.

You can add to a customization project the access rights of roles by screen that are saved in the
database for the current company. To do this, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Access Rights in the navigation pane to open the Access Rights page.

3. On the page toolbar, click Add New Record (+), as shown in the screenshot below.

4. In the Add Access Rights for Screen dialog box, which opens, in the list of custom access
rights of roles by screen, select the check box for the access rights that you want to include in
the project.

:  The Add Access Rights for Screen dialog box displays all the custom access rights of roles that
exist in your instance of Acumatica ERP. You can select multiple access rights of roles to add them
to the project simultaneously.

5. In the dialog box, click OK to add the selected access rights of roles to the page table.

6. On the page toolbar, click Save to save the changes to the customization project.

Figure: Adding the access rights to the customization project

The system adds to the project the data from the database for the selected access rights of roles. You
can view each new ScreenWithRights item in the Project Items table of the Item XML Editor, as shown
in the following screenshot.



 | Managing Items in a Project | 178

Figure: Viewing the XML code of the ScreenWithRights item included in the project

A ScreenWithRights item contains all the data required for the access rights of roles to the screen.
Therefore, the item includes the data of all the roles applied to the screen.

To Delete Access Rights from a Project
To remove a ScreenWithRights item from a project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Access Rights in the navigation pane to open the Access Rights page.

3. In the page table, click the item to be deleted.

4. On the page toolbar, click Delete Row (X).

5. On the page toolbar, click Save to save the changes to the customization project.

If you delete a ScreenWithRights item from the project, the customization of the access rights of roles
remain in the system unless you delete the changes of access rights from the database.

To Update Access Rights in a Project
If you have used Acumatica ERP forms to change access rights included in a customization project, you
have to update the appropriate items in the project. To do this, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Access Rights in the navigation pane to open the Access Rights page.

3. On the page toolbar, click Reload From Database.

The platform updates all the ScreenWithRights items of the project by using the appropriate data from
the database.



 | Managing Items in a Project | 179

To Redirect to the Access Rights by Screen Form
You might need to change the access rights of roles in Acumatica ERP during customization. To manage
access rights of roles by screen in Acumatica ERP, you use the Access Rights by Screen (SM.20.10.20)
form.

To open this form from the Customization Project Editor, perform the following actions:

1. Click Access Rights in the navigation pane to open the Access Rights page.

2. On the page toolbar, click Manage Access Rights.

As soon as you change the access rights of roles in Acumatica ERP, the system saves the changes in
the database for your company, and you can add the access rights as a ScreenWithRights item to the
customization project. For more information about the access rights of roles, see Managing User Access
Rights in the User Guide.

Wikis
You use the Wikis page of the Customization Project Editor to manage WikiArticle items in the
customization project.

:  A WikiArticle item contains the data set of a custom wiki and all the articles created within this wiki.

The Wikis page displays the list of the custom wikis that have been added to the customization project.
The following screenshot shows the Wikis page for the customization project, which in this case
contains two WikiArticle items.

Figure: Viewing custom wikis in the project

On the page, you can perform several operations, as described in the following topics:

• To Add a Custom Wiki to a Project

• To Delete a Custom Wiki from a Project

• To Update a Custom Wiki in a Project

• To Redirect to the Wiki Form



 | Managing Items in a Project | 180

To Add a Custom Wiki to a Project
In Acumatica ERP, you can create a new wiki or modify the properties of an existing one. For example,
you can change the access rights to wiki folders and edit the list of categories available for the wiki. Any
change to wikis is saved for the appropriate wiki in the database for the current company.

You can add to a customization project the wiki that are saved in the database for the current company.
To do this, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Wikis in the navigation pane to open the Wikis page.

3. On the page toolbar, click Add New Record (+), as shown in the screenshot below.

4. In the list of custom wikis in the Add Wiki Page dialog box, which opens, select the check box
for each wiki that you want to include in the project.

:  The Add Wiki Page dialog box displays all the custom wikis that exist in your instance of
Acumatica ERP. You can select multiple wikis to add them to the project simultaneously.

5. In the dialog box, click OK to add the selected wiki to the page table.

6. On the page toolbar, click Save to save the changes to the customization project.

Figure: Adding the custom wiki to the customization project

The system adds to the project each selected wiki. You can view each new WikiArticle item in the
Project Items table of the Item XML Editor, as shown in the following screenshot.



 | Managing Items in a Project | 181

Figure: Viewing the XML code of the WikiArticle item included in the project

A WikiArticle item contains all the data required to recreate the corresponding wiki in any instance of
Acumatica ERP.

To Delete a Custom Wiki from a Project
To remove a WikiArticle item from a project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Wikis in the navigation pane to open the Wikis page.

3. In the page table, click the item to be deleted.

4. On the page toolbar, click Delete Row (X).

5. On the page toolbar, click Save to save the changes to the customization project.

If you delete a WikiArticle item from the project, the custom wiki remains in the system unless you
delete the wiki by using the Wiki (SM.20.20.05) form.

To Update a Custom Wiki in a Project
If you have changed a wiki included in a customization project by using Acumatica ERP forms, you have
to update the appropriate item in the project. To do this, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Wikis in the navigation pane to open the Wikis page.

3. On the page toolbar, click Reload From Database.

The platform updates all the WikiArticle items of the project by using the appropriate data from the
database.



 | Managing Items in a Project | 182

To Redirect to the Wiki Form
You might need to add a new wiki or edit an existing one in Acumatica ERP during customization. To
manage wikis in Acumatica ERP, you use the Wiki (SM.20.20.05) form.

To open this form from the Customization Project Editor, perform the following actions:

1. Click Wikis in the navigation pane to open the Wikis page.

2. On the page toolbar, click Manage Wikis.

As soon as you create or change a wiki in the system, the system saves this wiki in the database for
the current company, you can add the wiki as a WikiArticle item to the customization project. For more
information about wikis, see Managing Wikis in the User Guide.

Web Service Endpoints
Acumatica ERP provides web services for integration with external systems. Through the web services
of Acumatica ERP, external systems can get data records from Acumatica ERP and process these
records; new or updated records can also be saved to Acumatica ERP. You can configure contract-
based web service endpoints in an instance of Acumatica ERP and include the new configuration in a
customization project as an EntityEndpoint item.

You use the Web Service Endpoints page of the Customization Project Editor to manage EntityEndpoint
items in the customization project.

:  A EntityEndpoint item contains the data set of a custom contract-based web service endpoint.

The Web Service Endpoints page displays the list of the custom contract-based web service endpoints
that have been added to the customization project. The following screenshot shows the Web Service
Endpoints page for the customization project, which in this case contains two EntityEndpoint items.

Figure: Viewing custom contract-based web service endpoints in the project

On the page, you can perform several operations, as described in the following topics:

• To Add a Custom Web Service Endpoint to a Project

• To Delete a Custom Web Service Endpoint from a Project

• To Update a Custom Web Service Endpoint in a Project



 | Managing Items in a Project | 183

• To Redirect to the Web Service Endpoints Form

To Add a Custom Web Service Endpoint to a Project
To add a custom contract-based web service endpoint to a customization project, perform the following
actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Web Service Endpoints in the navigation pane to open the Web Service Endpoints page.

3. On the page toolbar, click Add New Record (+), as shown in the screenshot below.

4. In the list of custom contract-based web service endpoints in the Add Entity Endpoint dialog
box, which opens, select the check box for each endpoint that you want to include in the project.

:  The Add Entity Endpoint dialog box displays all the custom contract-based web service
endpoints that exist in your instance of Acumatica ERP. You can select multiple endpoints to add
them to the project simultaneously.

5. In the dialog box, click OK to add each selected endpoint to the page table.

6. On the page toolbar, click Save to save the changes to the customization project.

Figure: Adding the custom contract-based web service endpoint to the customization project

The system adds to the project the data from the database for each selected web service endpoint . You
can view each new EntityEndpoint item in the Project Items table of the Item XML Editor, as shown in
the following screenshot.



 | Managing Items in a Project | 184

Figure: Viewing the XML code of the EntityEndpoint item included in the project

To Delete a Custom Web Service Endpoint from a Project
To remove a EntityEndpoint item from a project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Web Service Endpoints in the navigation pane to open the Web Service Endpoints page.

3. In the page table, click the item to be deleted.

4. On the page toolbar, click Delete Row (X).

5. On the page toolbar, click Save to save the changes to the customization project.

If you delete a EntityEndpoint item from the project, the custom contract-based web service
endpoint remains in the system unless you delete the endpoint by using the Web Service Endpoints
(SM.20.70.60) form.

To Update a Custom Web Service Endpoint in a Project
If you have used the Web Service Endpoints (SM.20.70.60) form to change a custom contract-based
web service endpoint included in a customization project, you have to update the appropriate item in
the project. To do this, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Web Service Endpoints in the navigation pane to open the Web Service Endpoints page.

3. On the page toolbar, click Reload From Database.

The platform updates all the EntityEndpoint items of the project by using the appropriate data from the
database.

To Redirect to the Web Service Endpoints Form
You might need to configure contract-based web service endpoints in Acumatica ERP during
customization. To manage contract-based web service endpoints in Acumatica ERP, you use the Web
Service Endpoints (SM.20.70.60) form.

To open this form from the Customization Project Editor, perform the following actions:



 | Managing Items in a Project | 185

1. Click Web Service Endpoints in the navigation pane to open the Web Service Endpoints page
of the editor.

2. On the page toolbar, click Manage Endpoints.

As soon as you configure a web service endpoint on the Web Service Endpoints form, the system
saves the endpoint data in the database for the current company, and you can add the endpoint as a
EntityEndpoint item to the customization project. For more information about the contract-based web
services API, see Configuring the Contract-Based SOAP and REST API in the User Guide.

Analytical Reports
Analytical reports are used to display the consolidated and summarized data in a view defined by the
report designer at the report design stage. The analytical reports are used to provide the summarized
and aggregated values in a variety of views: the data in the analytical report can be displayed in the
monthly, yearly, and quarterly views, and the data can provide information from the point of view of
departments, selected account classes, and other dimensions.

In Acumatica ERP, you can modify defined analytical reports, create a new analytical report, and
delete existing reports. You can add the analytical reports that have been created or modified to the
customization project as ReportDefinition items.

You use the Analytical Reports page of the Customization Project Editor to manage ReportDefinition
items in the customization project.

:  A ReportDefinition item contains the data set of a custom analytical report, including the data of a
predefined sets of rows, columns, and units.

The Analytical Reports page displays the list of the custom analytical reports that have been added
to the customization project. The following screenshot shows the Analytical Reports page for the
customization project, which in this case contains two ReportDefinition items.

Figure: Viewing analytical reports in the project

On the page, you can perform a variety of operations, as described in the following topics:

• To Add a Custom Analytical Report to a Project

• To Delete a Custom Analytical Report from a Project

• To Update a Custom Analytical Report in a Project

• To Redirect to the Report Definitions Form



 | Managing Items in a Project | 186

To Add a Custom Analytical Report to a Project
You can add a custom analytical report to a customization project. To do this, perform the following
actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Analytical Reports in the navigation pane to open the Analytical Reports page.

3. On the page toolbar, click Add New Record (+), as shown in the screenshot below.

4. In the list of custom analytical reports in the Add Report Definition dialog box, which opens,
select the check box for each report that you want to include in the project.

:  The Add Report Definition dialog box displays all the custom analytical reports that exist in
your instance of Acumatica ERP. You can select multiple custom analytical reports to add them to
the project simultaneously.

5. In the dialog box, click OK to add each selected analytical report to the page table.

6. On the page toolbar, click Save to save the changes to the customization project.

Figure: Adding the custom analytical report to the customization project

The system adds to the project the data from the database for each selected custom analytical report.
You can view each new item in the Project Items table of the Item XML Editor, as shown in the following
screenshot.



 | Managing Items in a Project | 187

Figure: Viewing the XML code of the ReportDefinition item included in the project

A ReportDefinition item contains all the data required to recreate the corresponding analytical report in
any instance of Acumatica ERP.

To Delete a Custom Analytical Report from a Project
To remove a ReportDefinition item from a project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Analytical Reports in the navigation pane to open the Analytical Reports page.

3. In the page table, click the item to be deleted.

4. On the page toolbar, click Delete Row (X).

5. On the page toolbar, click Save to save the changes to the customization project.

If you delete a ReportDefinition item from the project, the analytical report remains in the system
unless you delete the report by using the Report Definitions (CS.20.60.00) form.

To Update a Custom Analytical Report in a Project
If you have used the Report Definitions (CS.20.60.00) form to change an analytical report included in a
customization project, you have to update the appropriate item in the project. To do this, perform the
following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Analytical Reports in the navigation pane to open the Analytical Reports page.

3. On the page toolbar, click Reload From Database.



 | Managing Items in a Project | 188

The platform updates all the ReportDefinition items of the project by using the appropriate data from
the database.

To Redirect to the Report Definitions Form
You might need to add an analytical report to Acumatica ERP during customization. To manage
analytical reports in Acumatica ERP, you use the Report Definitions (CS.20.60.00) form.

To open this form from the Customization Project Editor, perform the following actions:

1. Click Analytical Reports in the navigation pane to open the Analytical Reports page.

2. On the page toolbar, click Manage Report Definitions.

As soon as you add a new analytical report to the system or change an existing analytical report on
the Report Definitions form, the report is saved in the database for the current company, and you can
add the report to the customization project as a ReportDefinition item. For more information about
analytical reports, see Managing Analytical Reports in the User Guide.



 | Customizing Elements of the User Interface | 189

Customizing Elements of the User Interface

You can customize the user interface by creating a new form or by changing the content and layout of a
form that already exists in Acumatica ERP.

This part is intended to describe how to use the visual Layout Editor to develop the ASPX code of a
custom form and modify the ASPX code of an existing form.

The following table lists most of the types of ASPX objects supported in the Acumatica Customization
Platform.

Object Description

PXDataSource A data source control that connects to a graph instance on the Acumatica ERP
server, retrieves data from the graph instance, and sends data to the graph
instance; it also provides the data processing for the control containers that
are defined in the ASPX page. In Acumatica ERP, a page must contain a single
PXDataSource control.

PXFormView A data-bound UI container control that renders a single record from its associated
data source.

PXGrid A data-bound UI container control that renders a table with multiple records
from its associated data source. The object can be displayed in form view mode
for a single record and provides paging buttons that can be used to navigate
between records. To define form view mode, the PXGrid control must include the
RowTemplate element, which can contain controls for the record fields and layout
rules for these controls.

PXGridColumn In a PXGrid container, an object that defines the data field and properties of a
column in the grid.

RowTemplate In a PXGrid container, an object that defines a record field and layout for each
control to be rendered in form view mode for the grid.

PXTab A data-bound UI container control that renders tabs defined by child PXTabItem
containers.

PXTabItem In a PXTab container, a container control that renders a single record from the
data source specified for the parent PXTab container.

PXSmartPanel An UI container control that renders a dialog box.

PXLayoutRule In a container with controls for a single data record, a component that defines a
layout rule used to organize the controls within a row or column.

PXPanel In a container with controls for a single data record, a container with a caption
used to group controls. In a dialog box, it is often used as a container to display a
horizontal row of buttons with right alignment.

PXGroupBox In a container with controls for a single data record, a container with a caption
used to group controls. It is designed to be used as a radio button container to
render a drop-down field as a set of radio buttons. It contains scripts with logic to
support a nested radio button for each value of a drop-down field.

PXRadioButton In a PXGroupBox container, a radio button that is used for a single constant value
of a drop-down field.

:  In Acumatica ERP, a radio button can work properly only in a PXGroupBox
container that is used for a drop-down data field.

PXLabel In a container with controls for a single data record, an element to display text.

PXButton In a container with controls for a single data record, an element to display a
button control. In a dialog box, it is usually included in a PXPanel container.



 | Customizing Elements of the User Interface | 190

Object Description

PXJavaScript In a container with controls for a single data record, a control to keep JavaScript
code.

PXTextEdit In a container with controls for a single data record, a text box to display and
edit the value of a string field.

PXNumberEdit In a container with controls for a single data record, a box to display and edit the
value of a decimal or int field.

PXMaskEdit In a container with controls for a single data record, a text box to display and
edit the value of a string field that has the format specified in the data access
class.

PXDateTimeEdit In a container with controls for a single data record, a box to display and select
the value of a datetime field.

PXCheckBox In a container with controls for a single data record, a check box to display and
select the value of a bool field.

PXDropDown In a container with controls for a single data record, a combo box to display,
edit, and select the value of a field with a list attribute, such as PXStringList,
PXIntList, or PXDecimalList.

PXSelector In a container with controls for a single data record, a lookup control to display,
search, and select the value of a field with the PXSelector attribute.

PXSegmentMask In a container with controls for a single data record, a lookup control with a
specified segmented key value that identifies a data record and consists of one
segment or multiple segments, with a list of possible values defined for each
segment.

PXTreeSelector In a container with controls for a single data record, a lookup control to select a
value for a field with a PXTreeSelector attribute from a tree control.

When you use the Layout Editor to add a UI element to another UI element on a form, you should
understand the rules that are used for nesting objects in ASPX code for Acumatica ERP forms. The
following diagram shows which ASPX objects can be included in other ASPX objects.



 | Customizing Elements of the User Interface | 191

Figure: Nesting rules for elements of an ASPX page

In the diagram, if an arrow goes from object A to object B, it means that multiple instances of object A
can be included in a single object B. For example, PXTab can contain multiple PXTabItem objects.

:

• The PXGrid object can contain a single RowTemplate object.

• The PXSmartPanel object is used to describe the content of a dialog box.

• A control for a data field (also referred as box)—such as PXTextEdit, PXSelector, and
PXCheckBox—can be included in ASPX objects of the following types:

• PXFormView

• RowTemplate

• PXTabItem

• PXSmartPanel

In This Part

• Custom Form

• Existing Form

• Form Container (PXFormView)

• Grid Container (PXGrid)

• Tab Container (PXTab)

• Tab Item Container (PXTabItem)

• Dialog Box (PXSmartPanel)

• Box (Control for a Data Field)

• Layout Rule (PXLayoutRule)



 | Customizing Elements of the User Interface | 192

• Panel (PXPanel)

• Group Box (PXGroupBox)

• Label (PXLabel)

• Radio Button (PXRadioButton)

• Button (PXButton)

• Java Script (PXJavaScript)

• Toolbars, Action Buttons, and Menus

• Other Control Types

Custom Form
By using the Acumatica Customization Platform, you can develop a custom form from scratch and add it
to a customization project. To create a new form, you have to create the following types of code:

• ASPX page that contains a description of the UI elements of the form

• CS code that provides the business logic for the form

For each form that works with data from the database, the instance of Acumatica ERP must contain at
least the following objects (see the diagram below):

• An ASPX page: The page must contain at least the data source control and a container with
controls for data fields.

• A business logic controller (BLC, also referred to as graph): The graph must be specified in the
TypeName property of the data source control of the page. The graph must contain at least one
data view, which is specified in the PrimaryView property of the data source control and in
the DataMember property of the container. The graph instance is created on each round trip
and initializes the creation of the data view instance based on a BQL statement. The data view
provides data manipulation and data flows between the data source control of the ASPX page,
the cache object of the graph, and the corresponding table of the database. The BQL statement
contains a reference to at least one data access class that is required to map the database table
to data records in the cache object.

• A data access class (DAC): On each round trip, the DAC instance is created in the cache object
when the data view processes any operation with the corresponding data.

• A table in the database: The table is mapped to the data access class that defines the data record
type in the cache object of the graph instance.



 | Customizing Elements of the User Interface | 193

Figure: Objects required for a form that works with data from a database table

For a custom form to be enabled in an instance of Acumatica ERP, the site map of the instance must
contain information about the form.

You use the Customization Project Editor to perform operations with custom forms, as described in the
following topics:

• To Develop a Custom Form

• To Create a Custom Form Template

• To Delete a Custom Form from a Project

To Develop a Custom Form
To create and develop a custom form within a customization project, you can use the following
approach:

1. Plan the functionality, content, and user interface of the new form.

2. If the custom form requires data from a new table, create the table in the database by using a
database administration tool, such as SQL Server Management Studio. (See To Add a Custom
Table to a Project for details.)

3. Create a workable form template by using the New Screen wizard, as described in To Create a
Custom Form Template.

After you have created a custom form template and published the customization project, you
can develop the form in the same way as you customize an existing form of Acumatica ERP. (See
Existing Form for details.) Because the code templates are added to the App_RuntimeCode folder
of the Acumatica ERP website, you can develop the code in Microsoft Visual Studio.

4. C#: Create data access classes that contain the data field declarations required for the form
controls. (See To Create a Custom Data Access Class for details.)

5. C#: In the graph template, define BQL statements in data views to manage data fields declared
in data access classes. (See To Add a New Member for details.)

6. ASPX: If needed, add nested containers to the main containers of the form template. (See To
Add a Nested Container for details.)

7. C#: For each nested container, in the graph template, define the appropriate data views.

8. ASPX: For each added container, specify the name of an appropriate data view in the
DataMember property. (See To Set a Container Property for details.)



 | Customizing Elements of the User Interface | 194

9. ASPX: If required, for each added container, specify other properties. (See To Set a Container
Property for details.)

10. ASPX: Add controls for data fields to each container. (See To Add a Box for a Data Field for
details.)

11. ASPX: Specify properties for controls. (See To Set a Box Property for details.)

12. C#: Develop business logic for the form in the graph (See Customizing Business Logic for
details.)

13. ASPX: If required, add dialog boxes, as described in To Add a Dialog Box.

We recommend that you use the Layout Editor to create the content of an ASPX page and Visual Studio
to develop the business logic for a page. (See Integrating the Project Editor with Microsoft Visual Studio
for details.)

To Create a Custom Form Template
To create a workable template for a custom form by using the New Screen wizard and include the
template in a customization project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Select the Screens node in the navigation pane of the editor to open the Customized Screens
page.

3. On the page toolbar, click Add Screen > Create New Screen, as item a in the screenshot
below shows.

4. In the Create New Screen dialog box, which opens, specify values for input controls as follows
(item b in the screenshot):

a. Screen ID: Enter an ID of a custom form in the XX.**.**.** format, which consists of
the following parts:

a. Two-letter code of the module in Acumatica ERP

:  You can use a single unique two-letter code for all custom forms in a solution.
Please check the Pages folder of the website in the production environment
to ensure that the code you want to use is not already used in the instance of
Acumatica ERP.

b. Two-digit code indicating the form type:

a. 10: Setup form

b. 20: Maintenance form

c. 30: Data entry form

d. 40: Inquiry form

e. 50: Processing form

f. 60: Report form

c. Two-digit code indicating the form sequential number

d. Two-digit code indicating the subform sequential number

b. Graph Name: Enter a unique name for the new graph.

c. Graph Namespace: By default, the New Screen wizard specifies the customization
project name as the namespace ID. If you want to change the default ID, enter the ID of
an existing or a new namespace for the new graph.

d. Page Title: Enter the title to be used as the form title in Acumatica ERP.

e. Template: Select one of the following ASPX page templates for the custom form.



 | Customizing Elements of the User Interface | 195

Template Description

Form
(FormView)

A record-editing page with one PXFormView container

Grid (GridView) A record-editing page with one PXGrid container

Tab (TabView) A record-editing page with one PXTab container

FormTab A record-editing page with PXFormView and PXTab containers

FormGrid
(FormDetail)

A master-detail editing page with PXFormView and PXGrid containers

TabGrid
(TabDetail)

A master-detail page with PXTab and PXGrid containers

f. Site Map Parent: Select a parent site map node to place the form in this location in the
site map of Acumatica ERP.

5. Click OK (item c) to create the new form.

Figure: Using the New Screen wizard to create the new form

The wizard creates the form template and adds the following items to the customization project.

Item Description

File Contains the Pages\XX\XX******.aspx file with the ASPX
code template that has been selected for the new form. The
name of the file corresponds to the value that is entered in the
Screen ID box. The file is located in the Pages\XX folder of
the Acumatica ERP website, where XX is the two-letter code of
the screen ID.

File Contains the Pages\XX\XX******.aspx.cs file with the C#
code for the ASPX page.

Code Contains the code template of the business logic controller
(BLC, also referred to as graph) for the new form. This item
is saved in the database. When you publish the project, the



 | Customizing Elements of the User Interface | 196

Item Description
platform creates a copy of the code in the file with the same
name in the App_RuntimeCode folder of the Acumatica ERP
website. You can develop the code in Microsoft Visual Studio.

Page Contains the link to the new page content, which you can later
develop by using the Layout Editor.

SiteMapNode Contains the site map object of the new form.

For example, if you enter in the Create New Screen dialog box the values that are displayed in the
screenshot above, the wizard creates code templates for both the CUDetailsInq business logic controller
and the YF401000 page, which contain all the components required for the form template to work
properly (see the following diagram).

Figure: Analyzing the content of the new form template

 

 

You can publish the customization project to ensure that it is valid and the custom form can be
opened in the browser. At the moment, the form does not contain a control for a field, as the following
screenshot shows.



 | Customizing Elements of the User Interface | 197

Figure: Viewing the new form

To Delete a Custom Form from a Project
To remove a custom form from a customization project, you have to delete all the items that have been
added to the project for the form.

To do this, perform the following actions:

• Delete from the customization project the Page item that was added by the New Screen wizard.
(See To Delete a Page Item from a Project for details.)

• Delete from the project the Code item that was added by the New Screen wizard. (See To Delete
a Code Item From a Project.)

• Delete from the project the <FormID>.aspx and <FormID>.aspx.cs File items that were added by
the New Screen wizard. (For more information, see To Delete a Custom File From a Project.)

• Delete from the project the SiteMapNode item that was added by the New Screen wizard. (See To
Delete a Site Map Item from a Project for details.)

• If you added other items for the custom form, such as items for the mobile site map or custom
files, delete these items.

To delete multiple items from the customization project successively on a single page, you can use the
Edit Project Items page of the Customization Project Editor. (See To Delete Items from the Project on
the Edit Project Items Page for details.)

The system applies the changes to the file system as soon as you publish the customization project.

Existing Form
You can customize the user interface of an existing form of Acumatica ERP by using the Layout Editor.
The editor is a visual tool that you can use to perform the following changes in the ASPX code for a
form:

• Add or delete a container.

• Add or delete a button or radio button. (See Button (PXButton) and Radio Button (PXRadioButton)
for details.)

• Add or delete a layout rule. (See Layout Rule (PXLayoutRule) for details.)



 | Customizing Elements of the User Interface | 198

• Add or delete a Java script. (See Java Script (PXJavaScript) for details.)

• Create or delete a control for a data field. (See Box (Control for a Data Field) for details.)

• Change the properties of an element in the ASPX code. (See To Set a Container Property, To Set
a Box Property and To Set a Layout Rule Property for details.)

In Acumatica ERP, an ASPX page must contain a single PXDataSource control. You can add the
following types of containers immediately to the level of an ASPX page, where the PXDataSource
control is defined:

• Form Container (PXFormView)

• Grid Container (PXGrid)

• Tab Container (PXTab)

• Dialog Box (PXSmartPanel)

The order of containers in the ASPX page defines the order of appropriate areas with controls on the
form.

Detailed instructions on the customization of an existing form are provided in the following topics:

• To Start a Customization of a Form

• To Delete a Customization of a Form

• To Add a Form Container

• To Add a Tab Container

• To Add a Grid Container

• To Add a Dialog Box

• To Delete a Container

The changeset of a form is stored in the database as a Page item of a customization project. During
the publication of the project, the Acumatica Customization Platform applies the changeset to the form
to create a customized version of the .aspx file with the same name in the pages_xx subfolder of the
CstPublished folder of the website.

For example, if you customize the Customers (AR.30.30.00) form and publish the project, the platform
creates the ar303000.aspx and ar303000.aspx.cs files in the \CstPublished\pages_ar folder. If
you delete these files, Acumatica ERP uses the original files from the \Pages\AR folder to display this
form. However if you again publish the customization project, the platform recreates these files, and
Acumatica ERP uses the customized version of the form.

We recommend that you use the Layout Editor to customize the content of an ASPX page, the Data
Class Editor to modify data access classes, and MS Visual Studio to extend the business logic for a
page. (See Integrating the Project Editor with Microsoft Visual Studio for details.)

To Start a Customization of a Form
To start the customization of a form, you have to open the form in the Layout Editor. To do this, you
commonly perform the following operations:

1. Open the form in the browser.

2. On the form title bar, click Customization > Inspect Element to launch the Element
Inspector.

3. On the form, click the UI element (or area) to be customized; this opens the Element Properties
Dialog Box for the element (or area).

4. In the dialog box, click Customize.

5. If there is no currently selected customization project and the inspector opens the Select
Customization Project Dialog Box, select an existing customization project or create a new one.
(See To Select an Existing Project and To Create a New Project for details.)



 | Customizing Elements of the User Interface | 199

If the customization project does not contain a changeset for the form, the Customization Project Editor
adds a Page item for the form to the project, to keep the changeset to the ASPX code of the form in the
database. The form is opened in the Layout Editor, and you can start customization of the form.

When you click Save on the editor toolbar, the editor updates the Page item in the database.

To Delete a Customization of a Form
If a customization project contains changes to multiple objects of Acumatica ERP, and you need to
remove customization for only a single form, perform the following operations:

1. Remove from the project the Page item for the form. (See To Delete a Page Item from a Project
for details.)

2. Publish the project, as described in To Publish the Current Project.

To Add a Form Container
You can add a new PXFormView container to a form of Acumatica ERP. To do this, perform the following
actions:

1. Open the form in the Layout Editor, as described in To Add a Page Item for an Existing Form.

2. In the editor, click the Add Controls tab item.

3. From the Main Containers group, drag the Form container to the required place in the Control
Tree, as shown in the following screenshot.

Figure: Adding a form container to a form

:  The area of a form container is visible on a customized form only if it contains at least one visible
control.

4. In the Control Tree, select the form container that has been added, and specify the item
properties. as described in To Set a Container Property.

5. Click Save on the toolbar of the Layout Editor to save your changes to the customization project.

For more information about PXFormView, see Form Container (PXFormView).



 | Customizing Elements of the User Interface | 200

To Add a Grid Container
You can add a new PXGrid container to an existing form of Acumatica ERP. To do this, perform the
following actions:

1. Open the form in the Layout Editor, as described in To Add a Page Item for an Existing Form.

2. In the editor, click the Add Controls tab item.

3. From the Main Containers group, drag the Grid container to the required place in the Control
Tree, as shown in the following screenshot.

Figure: Adding a grid container to the tab

:  A grid is visible on a customized form only if it contains at least one column for a field.

4. In the Control Tree, select the grid that has been added, and specify the item properties, as
described in To Set a Container Property.

5. Click Save on the toolbar of the Layout Editor to save your changes to the customization project.

For more information about PXTab, see Tab Container (PXTab).

To Add a Tab Container
You can add a new PXTab container to an existing form of Acumatica ERP. To do this, perform the
following actions:

1. Open the form in the Layout Editor, as described in To Add a Page Item for an Existing Form.

2. In the editor, click the Add Controls tab item.

3. From the Main Containers group, drag the Tab container to the required place in the Control
Tree, as shown in the following screenshot.



 | Customizing Elements of the User Interface | 201

Figure: Adding a tab container to the tab

The PXTab container cannot exist without nested PXTabItem containers. Therefore, when you
add a PXTab container, the Layout Editor creates a nested PXTabItem container.

:  A tab container is visible on a customized form only if there is at least one control for a field in a
nested PXTabItem container.

4. In the Control Tree, select the tab that has been added, and specify the item properties, as
described in To Set a Container Property.

5. Click Save on the toolbar of the Layout Editor to save your changes to the customization project.

For more information about PXTab, see Tab Container (PXTab).

To Add a New Tab Item to a Tab

You can add a new PXTabItem container to a tab on an existing form of Acumatica ERP. To do this,
perform the following actions:

1. Open the form in the Layout Editor, as described in To Add a Page Item for an Existing Form.

2. In the editor, click the Add Controls tab item.

3. From the Main Containers group of the tab item, drag the Tab Item container above the
customized tab, as shown in the following screenshot.



 | Customizing Elements of the User Interface | 202

Figure: Adding a tab item to the tab

If the tab contains multiple tab items and you need to add a tab item to a certain position in the
tab, you should expand the tab node in the Control Tree to see the existing tab items and drag
the Tab Item container to the required position, as the following screenshot shows.

Figure: Adding a tab item to a certain position in the tab

:  A tab item is visible if it contains at least one control for a field.



 | Customizing Elements of the User Interface | 203

4. In the Control Tree, select the tab item that has been added, and specify the item properties, as
described in To Set a Container Property.

5. Click Save on the toolbar of the Layout Editor to save your changes to the customization project.

To Add a Dialog Box
You can add a custom dialog box to an Acumatica ERP form. If the dialog box must contain controls for
data fields, you should generally perform the following operations:

• Add a new PXSmartPanel container to the ASPX page, as described in this topic.

• If needed, define a custom data access class with the declaration of the data fields to be used for
controls in the dialog box. See To Create a Custom Data Access Class for details.

• If needed, in the extension for the graph that is specified in the TypeName property of the
PXDataSource control of the ASPX page, add business logic for the dialog box. (See To Customize
an Existing Business Logic Controller for details.) For example, in the graph extension, you can do
the following:

• Declare a new data view that provides data for the dialog box controls, as described in To
Add a New Member

• Add an action (with a button on the form toolbar) to open the dialog box

• Add other business logic for the dialog box

• If the smart panel container must include a box for a data field, add a data-bound container, such
as PXFormView. Then bind the new container to the data view declared in the graph or graph
extension (see Using the DataMember Property for details) whose BQL statement refers to the
data access class with the field declaration.

• If the smart panel must contain a row of buttons, add a nested PXPanel container with the
SkinID property set to Buttons (see Using the SkinID Property for details), and add the buttons to
the nested panel, as described in To Add Another Supported Control.

To add a new PXSmartPanel container to an ASPX page, perform the following actions:

1. Open the form in the Layout Editor, as described in To Add a Page Item for an Existing Form.

2. In the editor, click the Add Controls tab item.

3. From the Main Containers group of the tab item, drag the POPUP PANEL container into the
Dialogs node in the Control Tree, as shown in the following screenshot.



 | Customizing Elements of the User Interface | 204

Figure: Adding a form container to a form

:  A dialog box can be displayed if it contains at least one visible control.

4. In the Control Tree, select the new container that has been added.

5. Specify the item properties, as described in To Set a Container Property.

6. Click Save on the toolbar of the Layout Editor to save your changes to the customization project.

To Delete a Container
You can delete a container from an Acumatica ERP form. To do this, perform the following actions:

1. Open the form in the Layout Editor, as described in To Add a Page Item for an Existing Form.

2. In the Control Tree of the editor, select the container to be deleted.

3. On the toolbar of the Control Tree, click Delete, as the following screenshot shows.



 | Customizing Elements of the User Interface | 205

Figure: Deleting a container

Warning:  We recommend that you not remove the DataSource control.

4. Click Save on the toolbar of the Layout Editor to save your changes to the customization project.

Form Container (PXFormView)
PXFormView is a data-bound UI container control that renders a single record from its associated data
source.

An ASPX page can contain PXFormView as a main container. A form container, as the diagram below
shows, can be also included in the following types of containers:

• PXFormView

• PXTabItem

• PXSmartPanel



 | Customizing Elements of the User Interface | 206

Figure: Nesting rules for a PXFormView container in an ASPX page

A form container can include multiple ASPX objects of the following types:

• A data-bound UI container control: PXFormView, PXGrid, and PXTab

• A layout rule: PXLayoutRule

• A box for a data field: PXTextEdit, PXNumberEdit, PXMaskEdit, PXDateTimeEdit, PXCheckBox,
PXDropDown, PXSelector, PXSegmentMask, and PXTreeSelector

• Another control: PXPanel, PXGroupBox, PXRadioButton, PXLabel, PXButton, and PXJavaScript

A box for a data field can be added to a form container if the container is bound to a data view declared
within the graph that provides business logic for the ASPX page. If you want to bind a form container to
a data view, you must specify the properties as follows for the appropriate PXFormView object:

• The DataSourceID property value must be equal to the value of the ID property of the
PXDataSource control.

• The DataMember property must contain the name of the data view that is declared in the graph
and provides data for the controls of the form container.

To create a new form container in an ASPX page, follow the instructions described in To Add a Form
Container.

To delete a form container from an ASPX page, follow the instructions described in To Delete a
Container.

For detailed information on working with the content of a form container, see the following topics:

• To Open a Container in the Layout Editor

• To Set a Container Property

• To Add a Nested Container

• To Add a Box for a Data Field

• To Add a Layout Rule

• To Add Another Supported Control



 | Customizing Elements of the User Interface | 207

• To Reorder Child UI Elements

• To Delete a Child UI Element

To Open a Container in the Layout Editor
You perform the customization of a container by using the Layout Editor. To open a container of an
Acumatica ERP form in the editor, perform the following actions:

1. Open the form in the browser.

2. On the form title bar, click Customization > Inspect Element to launch the Element
Inspector.

3. On the form, click the area of the container to be customized, which opens the Element
Properties Dialog Box for the container.

4. In the dialog box, click Customize.

5. If there is no currently selected customization project and the inspector opens the Select
Customization Project Dialog Box, select an existing customization project or create a new one.
(See To Create a New Project and To Select an Existing Project for details.)

If the customization project does not contain a changeset for the form, the Customization Project Editor
adds to the project a Page item for the form to keep the changeset to the ASPX code of the form in
the database. The container is opened in the Layout Editor, and you can start the customization of the
container.

When you click Save on the editor toolbar, the editor updates the Page item in the database.

To Set a Container Property
To include in a customization project changes to the properties of a container, you have to modify
the properties by using the Layout Editor. To start setting the properties of a container, perform the
following actions:

1. Open the container in the Layout Editor, as described in To Open a Container in the Layout
Editor.

2. Ensure that the container node is selected in the Control Tree of the editor. Click the arrow left of
the node to expand the node if needed.

3. Click the Properties tab item to open the list of properties for the container (see the screenshot
below).

4. Specify values for the required properties.

5. Click Save to save your changes to the customization project.



 | Customizing Elements of the User Interface | 208

Figure: Setting a property of a container

For detailed information about the DataMember property, see Using the DataMember Property.

In Acumatica ERP, for the PXFormView, PXGrid, and PXPanel containers, there are predefined values for
the SkinID property. See Using the SkinID Property for details.

If you plan to use a container in the mobile site map, specify the Caption property of the container, as
described in Using the Caption Property in the Mobile Site Map.

Using the DataMember Property

If you need to find out which data view provides data for a control container on a form, perform a
search to find the DataMember string in the appropriate ASPX code. The DataMember property is used
to bind a control container of a form to a data view defined in the business logic controller (BLC, also
referred as graph) of the form. The property value is the name of the data view. Each DataMember
property value can correspond to any data view name of the BLC. Any data view except for the main
data view can be used by an unlimited number of containers. The main data view must be bound to a
single container.

A container can contain a box for a data field if it is bound to a data view declared within a BLC for the
following reasons:

• A data field is declared in a data access class (DAC).

• An instance of the DAC record can exist in the cache of a BLC that contains the declaration of a
data view with the DAC reference in the BQL statement.

• Each time a data record is selected in the container, the container creates a callback to the
PXDataSource control that is specified in the DataSourceID property of the container. The data
source control creates a remote procedure call to the application server to execute the Display
operation on the data view that is specified as the DataMember for the container. The data view
checks the existence of the record in the cache and, if the check fails, executes the BQL request
and stores the obtained record in the cache.



 | Customizing Elements of the User Interface | 209

• The data view provides all data exchange operations with the database, cache, and PXDataSource
control.

In Acumatica Framework, DataMember is used to specify a data view for the following container types:

• PXFormView

• PXGrid

• PXTab

• PXTreeView

:  The PXTreeView container is not supported by tools of the Acumatica Customization Platform.

By default, a nested container inherits the DataMember property from the parent container. If a nested
container is PXFormView, PXGrid, or PXTab, it can be bound to another data view.

If the DataMember property is available for other ASPX objects, it has a special purpose. For example,
you can specify the DataMember property for a PXSelector lookup control to define the appropriate
data view for the grid of the lookup window.

Using the Caption Property in the Mobile Site Map

If you plan to use a container in the mobile site map, we recommend that you specify a unique name
for the Caption property of the container. Then, in the mobile site map, you can refer to the container
by the specified caption in the Name attribute of the <sm:Container> tag, as the following code shows.

<sm:Container Name="ValueOfTheCaptionProperty">
...
</sm:Container>

Otherwise, in the WSDL schema, the screen-based API web service assigns to the container the name
of the first child element. If you use this name in the mobile site map, an error may occur after the
container content is reordered because the container name might be changed in the WSDL schema.

Using the SkinID Property

In the code of Acumatica ERP, predefined skins are used to assign a style and a set of toolbar buttons
to a container. The SkinID property of a container specifies which of these skins the system should
apply to the container. A skin is specific to a particular container; you cannot share a skin setting
between containers of different types. If you do not set the SkinID property, the container uses the
default skin if one is defined.

The following table lists and describes the predefined skins that are recommended to use for the
PXFormView, PXGrid, and PXPanel containers.

UI
Element

SkinID Description Example

PXFormView Transparent Is used to display a simple form container that
has no caption and cannot be collapsed.

The form container on
the Financial Details
tab item of the Bills
and Adjustments form
(AP.30.10.00)

PXGrid Attributes Is used to display a simple grid without a toolbar.
The grid contains a predefined set of rows, which
can be edited.

The Attributes grid on
the Attributes tab item
of the #unique_265
form (IN.20.20.00)

Details Is used to render a detail grid in a master-detail
data entry page. The grid has a toolbar that
hosts the default actions, such as Refresh, Add,
Remove, Fit to Screen, and Export to Excel,
and can display custom actions. The grid has no
caption and paging is allowed.

The grid on the 1099
Settings tab item of
the Accounts Payable
Preferences form
(AP.10.10.00)



 | Customizing Elements of the User Interface | 210

UI
Element

SkinID Description Example

Inquire Is used to display data without adding or
removing rows. The grid has a toolbar that
contains the Refresh, Fit to Screen, and Export
to Excel default actions and can contain custom
actions. The grid has no caption and paging is
allowed.

The grid on the
Attributes tab item
of the Customers form
(AR.30.30.00)

Primary Is used to display an editable primary grid that
does not contain its own toolbar. To work with the
grid, the user applies the action buttons of the
form toolbar. The grid has no caption and paging
is allowed.

The grid on the
Entry Types form
(CA.20.30.00)

PrimaryInquireIs used to display a primary grid without the
availability to edit data. The grid does not contain
its own toolbar. To work with the grid, the user
applies the action buttons of the form toolbar,
which does not contain the Add, Delete, and
Switch Between Grid and Form buttons. The
grid has no caption and paging and filtering are
allowed.

The grid on the Release
AP Documents form
(AP.50.10.00)

ShortList Is used to display a small grid with a few records
inside a form view. The grid has a toolbar that
contains the Refresh, Add, and Remove default
actions.

The Sales Categories
grid on the Attributes
tab item of the
#unique_265 form
(IN.20.20.00)

PXPanel Buttons Is used in dialog boxes to display a horizontal row
of buttons with the right alignment.

The group of buttons in
the Add PO Receipt
dialog box, which opens
if you click the Add
PO Receipt button
in the toolbar of the
Document Details
tab item of the Bills
and Adjustments form
(AP.30.10.00)

Transparent Is used to group controls in a form container. The
panel has no caption.

The group of controls
on the Template
Setting tab item of
the Order Types form
(SO.20.10.00)

Using the SyncPosition Property

If a form contains a grid and the form toolbar includes an action to process a single record that is
highlighted in the grid, the action delegate method must have a reference to the highlighted record in
the cache.

To use the Current property of a PXCache object to access the record highlighted in a grid, the Current
property must be synchronized with record highlighting in the grid. To force the system to provide this
synchronization, you have to set the SyncPosition property of the PXGrid container to True.

:  If you need to make an action button on the toolbar unavailable, when a grid is empty, you should set
the DependOnGrid property of the appropriate PXDSCallbackCommand object in the PXDataSource
control to the value that is specified in the ID property of the PXGrid element.



 | Customizing Elements of the User Interface | 211

To Add a Nested Container
A PXGrid container cannot include a nested container. A PXTab container can include only PXTabItem
containers. You can add any container as a nested container to a PXFormView, PXTabItem, or
PXSmartPanel container, as the following diagram shows.

Figure: Nesting rules for containers on an ASPX page

You can include the PXPanel and PXGroupBox container controls in the PXFormView, RowTemplate,
PXTabItem, and PXSmartPanel containers.

To add a nested container to a parent container, perform the following actions:

1. Open the parent container in the Layout Editor, as described in To Open a Container in the
Layout Editor.

2. Ensure that the container node is selected in the Control Tree of the editor. Click the arrow left of
the node to expand the node if needed.

3. Click the Add Controls tab item (see the screenshot below).

4. From the Main Containers or Other Controls group, drag the required type of the nested
container into the parent container in the Control Tree, as shown in the following screenshot.



 | Customizing Elements of the User Interface | 212

Figure: Adding a nested container to a parent container

:  A nested container is visible on the customized form only if it contains at least one visible control.

5. If required, specify properties for the new container, as described in To Set a Container Property.

6. Click Save to save changes in the customization project.

To Add a Box for a Data Field
The Acumatica Customization Platform supports the following types of boxes for data fields:

• PXTextEdit

• PXNumberEdit

• PXMaskEdit

• PXDateTimeEdit

• PXCheckBox

• PXDropDown

• PXSelector

• PXSegmentMask

• PXTreeSelector

(See the table in Customizing Elements of the User Interface for field type descriptions.)

You can add a box for a data field without restrictions immediately to a PXFormView or PXTabItem
element that has the DataMember property defined. Also, you can add a box for a data field to a
PXPanel or PXGroupBox container that has the DataMember property inherited from the parent
container.

Also, you can add a box for a data field to a RowTemplate element of a PXGrid container that is bound
to a data view whose BQL statement refers to the data access class that contains the field declaration.

To add a box for a data field to a container that is bound to a data view, perform the following actions:



 | Customizing Elements of the User Interface | 213

1. Open the parent container in the Layout Editor, as described in To Open a Container in the
Layout Editor.

2. Ensure that the container node is selected in the Control Tree of the editor. Click the arrow left of
the node to expand the node if needed.

3. Click the Add Data Fields tab item (see the screenshot below).

4. If you need to create a control for a data field that is not accessible through the data view
specified for the container in the DataMember property but is accessible through another data
view of the same graph, and if the Data View box is available, select the needed data view in
this box. (See Using Multiple Data Views for Boxes in a Container for details.)

5. On the tab item, click the All, Visible, or Custom filter for the fields provided by the data view
to view the appropriate field list.

:  You can create a custom field immediately on the Add Data Fields tab item by clicking the New
Field action and then using the Create New Field dialog box.

6. Find the required data field in the list, and if the field is not used (the check box in the Used
column is cleared for the field), select the check box for the field in the first (unlabeled) column,
as the following screenshot shows.

Figure: Selecting a data field for which a box to be created

:  You can select multiple data fields to create multiple boxes simultaneously.

7. On the list toolbar, click Create Controls.

The platform creates a box for the selected data field and adds a node for the box to the Control
Tree.

8. Click Save to save the changes in the customization project.



 | Customizing Elements of the User Interface | 214

You can change the location of a control in a container. See To Reorder Child UI Elements for details.

For more information about boxes, see Box (Control for a Data Field).

Using Multiple Data Views for Boxes in a Container

The Acumatica Customization Platform supports the use of multiple data views for controls in the same
container of an ASPX page.

For example, you can create a container and set the DataMember property to the name of the data view
that provides most of the fields for boxes in the container. If you also want to create a control for a
data field that cannot be accessible through that data view but accessible through another data view
of the same graph specified in the TypeName property of the PXDataSource control, you can specify the
required data view immediately in the DataField property, as follows.

<px:PXField ... DataField="DataViewName.FieldName" />

The following code snippet shows how to use the MyDataView, AnotherDataView, and
OnceMoreDataView data views declared in the same graph or in extensions for the graph to define
boxes for data fields in a PXFormView container on an Acumatica ERP form.

<px:PXFormView ... DataMember="MyDataView" ...>
  ...
    <px:PXNumberEdit ... DataField="MyField_01" />
    <px:PXSegmentMask ... DataField="MyField_02" />
    <px:PXDateTimeEdit ... DataField="AnotherDataView.FieldName" />
    <px:PXTextEdit ... DataField="MyField_05" />
    <px:PXSelector ... DataField="OnceMoreDataView.OtherFieldName" />
  ...
</px:PXFormView>

On the Add Data Fields tab item of the Layout Editor, if you change the predefined data view in the
Data View box and create a control for a data field from the field list for the selected data view, the
editor concatenates the data view name with the field name in the DataField property of the created
control.

To Add a Layout Rule
In a container with multiple controls, the PXLayoutRule component is used to provide the following UI
customization capabilities:

• Placing controls in multiple rows to uniformly distribute them on the form or tab area of a form

• Placing controls in multiple columns in a row

• Spanning controls across multiple columns in a row

• Merging controls into one row to align them horizontally

• Adjusting the widths of controls and labels in a column

• Hiding the labels of controls

• Grouping controls for users' convenience

The Layout Editor supports the following types of the PXLayoutRule component (with the respective
predefined properties noted):

• Row: A layout rule with the StartRow property, which is set to True

• Column: A layout rule with the StartColumn property, which is set to True

• Group: A layout rule with the StartGroup property, which is set to True

• Merge: A layout rule with the Merge property, which is set to True

• Empty Rule: A layout rule without predefined properties

To add a layout rule to a container, perform the following actions:



 | Customizing Elements of the User Interface | 215

1. Open the container in the Layout Editor, as described in To Open a Container in the Layout
Editor.

2. Ensure that the container node is selected in the Control Tree of the editor. Click the arrow left of
the node to expand the node if needed.

3. Click the Add Controls tab item (see the screenshot below).

4. From the Layout Rules group, drag the required type of the rule to the needed location in the
Control Tree within the container, as shown in the following screenshot.

Figure: Adding a layout rule to a container

:  A layout rule is visible on the customized form only if it contains at least one visible control.

5. If required, specify properties for the new layout rule.

:  In any rule, you can configure any properties that you need. Some properties affect only the next
control under the PXLayoutRule component, while other properties affect all controls under the
rule until the next rule is encountered. Some properties require a corresponding ending rule. See To
Set a Layout Rule Property for details.

6. Click Save to save your changes in the customization project.

If you add a layout rule beneath another layout rule, you can override the properties of the
PXLayoutRule component, which apply to the underlying controls. See Layout Rule (PXLayoutRule) for
more information about using layout rules.



 | Customizing Elements of the User Interface | 216

To Add Another Supported Control
You use the Layout Editor to add to a container a control of any of the following types, which are
supported in the Acumatica Customization Platform (listed under Other Controls on the Add Controls
tab item):

• Panel (PXPanel)

• Group Box (PXGroupBox)

• Label (PXLabel)

• Radio Button (PXRadioButton)

• Button (PXButton)

• Java Script (PXJavaScript)

We recommend that you not include a PXRadioButton control in a container that neither is bound to a
data view nor inherits the DataMember property from the parent container.

You can nest a control of the listed types in a PXPanel or PXGroupBox container. However the
PXGroupBox control type is especially designed to be used as a radio button container to render a drop-
down field as a set of radio buttons. It contains scripts with the logic to support a nested radio button
for each value of a drop-down field. So we recommend that you use PXGroupBox exclusively to include
radio buttons.

To add a control of one of the listed types to a container, perform the following actions:

1. Open the container in the Layout Editor, as described in To Open a Container in the Layout
Editor.

2. Ensure that the container node is selected in the Control Tree of the editor. Click the arrow left of
the node to expand the node if needed.

3. Click the Add Controls tab item (see the screenshot below).

4. From the Other Controls group, drag the required control type to the needed location in the
Control Tree within the container, as shown in the following screenshot.

Figure: Adding a layout rule to a container

5. If required, specify properties for the new control.



 | Customizing Elements of the User Interface | 217

6. Click Save to save your changes in the customization project.

To Reorder Child UI Elements
You can reorder UI elements in a container manually by dragging them in the Control Tree of the Layout
Editor. However before you start to move elements, note the following simple rules:

• You can move a child element anywhere within its parent container control.

• To move an element within a container, you have to drag the element to the required place.

• Any element moved within a container is automatically aligned according to the nearest
PXLayoutRule component placed above it. (See Layout Rule (PXLayoutRule) for details.)

To move an element within a container, perform the following actions:

1. Open the container in the Layout Editor, as described in To Open a Container in the Layout
Editor.

2. Ensure that the container node is selected and expanded in the Control Tree of the editor. Click
the arrow left of the node to expand the node if needed.

3. In the Control Tree, drag the element to the required position, as the following screenshot
shows.

Figure: Moving a control within a container

The Layout Editor moves the element with all its child elements to the new position in the
container, as the following screenshot shows.



 | Customizing Elements of the User Interface | 218

Figure: Noting the placement of the element and its child elements

4. Click Save to save your changes to the customization project.

To Delete a Child UI Element
You can delete a child UI element from a container. To do this, perform the following actions:

1. Open the container in the Layout Editor, as described in To Open a Container in the Layout
Editor.

2. In the Control Tree of the editor, click the arrow left of the container node to expand the node.

3. Select the UI element to be deleted.

4. On the toolbar of the Control Tree, click Delete, as the following screenshot shows.



 | Customizing Elements of the User Interface | 219

Figure: Deleting an UI element

The platform deletes all child elements of the deleted object.

Warning:  If you delete a PXLayoutRule component, all the controls under this layout rule are
deleted too.

5. Click Save on the toolbar of the Layout Editor to save your changes to the customization project.

Grid Container (PXGrid)
PXGrid is a data-bound UI container control that renders a table with multiple records from its
associated data source. For a single record, the object can be displayed in form view mode, which
provides navigation buttons to move between records. For form view mode to be defined, PXGrid must
include the RowTemplate element, which can contain controls for the record fields and layout rules for
these controls.

An ASPX page can contain PXGrid as a main container that is included immediately in the page. A grid
container, as the diagram below shows, can also be included in the following types of containers:

• PXFormView

• PXTabItem

• PXSmartPanel



 | Customizing Elements of the User Interface | 220

Figure: Nesting rules for a PXGrid container in an ASPX page

A grid container can include multiple PXGridColumn objects and a single RowTemplate element. In the
ASPX code, grid columns are included in the Columns element, whereas controls for the form view of
the grid belong to the RowTemplate element, as the following code snippet shows.

<px:PXGrid ID="grid" ... DataSourceID="ds" ...>
  ...
    <Columns>
      ...
      <px:PXGridColumn DataField="Qty" TextAlign="Right" Width="81px"
 AutoCallBack="True" />
      ...
    </Columns>
    <RowTemplate>
      ...
      <px:PXNumberEdit ID="edQty" runat="server" DataField="Qty" />
      ...
    </RowTemplate>
  ...
</px:PXGrid>

In this code, you can see descriptions of both a grid column and a box for the same Qty data field.

To create a new grid in an ASPX page, follow the instructions described in To Add a Grid Container.

To delete a grid from an ASPX page, follow the instructions described in To Delete a Container.

For detailed information on working with the content of a grid container, see the following topics in this
section:

• To Add a Column for a Data Field

• To Add a Control to the Form View of a Grid

The following topics may also be useful as you work with a grid container:

• To Open a Container in the Layout Editor

• To Set a Container Property



 | Customizing Elements of the User Interface | 221

• To Reorder Child UI Elements

• To Delete a Child UI Element

To Add a Column for a Data Field
In a grid, you can create a column for a data field if the grid container is bound to a data view declared
within the graph that provides business logic for the ASPX page. To bind a grid container to a data view,
you must specify the properties as follows for the appropriate PXGrid object:

• The DataSourceID property value must be equal to the value of the ID property of the
PXDataSource control.

• The DataMember property must contain the name of the data view that is declared in the graph
and provides data for the grid.

To add a column to a grid that is bound to a data view, perform the following actions:

1. Open the grid container in the Layout Editor, as described in To Open a Container in the Layout
Editor.

2. In the Control Tree of the editor, ensure that the grid node is selected. Click the arrow left of the
node to expand the node if needed.

3. In the editor, click the Add Data Fields tab item (see the screenshot below).

4. On the tab item, select the All, Visible (as shown below), or Custom filter for the data fields
provided by the data view, to open the appropriate field list.

:  You can create a custom field immediately on the Add Data Fields tab item by using the Create
New Field dialog box.

5. Find the required data field in the list, and if the field is not used (that is, if the check box in the
Used column is cleared for the field), select the check box in the unlabeled first column for the
field, as the following screenshot shows.



 | Customizing Elements of the User Interface | 222

Figure: Selecting a data field for which a column to be created

:

• You can select multiple data fields to create multiple columns simultaneously.

• In the Field Name column of the list, a data field of a joined data access class (DAC) has a
name that consists of the DAC name, two underscore characters, and the field name, such as
Product__Active. If you create a grid column for this field, the new PXGridColumn element
refers to the field as shown in the following ASPX code.

<px:PXGridColumn DataField="Product__Active" ... />

6. On the list toolbar, click Create Controls.

The platform creates a column for the selected data field, appends this column to the end of the
grid column list, and adds a node for the column to the appropriate position in the Control Tree.

:  If you need to locate the new column in a position after some existing column, you can select this
existing column before you click Create Controls. Then the editor inserts new grid columns after
the column that is selected in the Control Tree.

At any time, you can change the position of a column in a grid. See To Reorder Child UI
Elements for details.

7. If needed, specify the following properties of the new column:

• Type—to define a specific type of data in a column (see Using the Type Property of
PXGridColumn for details)

• CommitChanges—to enable callbacks on the column field (see Using the CommitChanges
Property for details)



 | Customizing Elements of the User Interface | 223

• DisplayMode—to define the mode of displaying a value in the column (see Using the
DisplayMode Property of PXGridColumn for details)

:  If you need to provide hyperlinks to redirect the user from a column cell to another Acumatica
ERP form, follow the recommendations described in Providing Hyperlinks for a Grid Column.

8. Click Save to save your changes to the customization project.

Using the Type Property of PXGridColumn

The Acumatica Customization Platform supports the following values for the Type property of a column
in a grid.

Value Description

NotSet The default value. An indicator that the field value is displayed in the column as a
plain string that is formed based on the field data format.

CheckBox An indicator that the field value is displayed in the column as a check box, which
is selected if the field value is True.

HyperLink An indicator that the field value is displayed in the column as a hyperlink.

DropDownList An indicator that the column cell is rendered as a drop-down list, which contains
all the values specified for the referred data field.

Icon An indicator that the field value contains an image URL and is displayed in the
column as the referred image.

For example, the following code fragment defines the grid columns on the Automation Schedules
(SM.20.50.30) form.

...
<px:PXGridColumn AllowUpdate="False" DataField="LastRunStatus" Width="40px"
 Type="Icon" TextAlign="Center" />
<px:PXGridColumn DataField="ScreenID" DisplayFormat="CC.CC.CC.CC" Label="Screen ID"
 LinkCommand="AUScheduleExt_View" />
<px:PXGridColumn DataField="Description" Label="Description" Width="200px" />
<px:PXGridColumn AllowNull="False" DataField="IsActive" Label="Active"
 TextAlign="Center" Type="CheckBox" Width="60px" />
...

In the code, the Type property for the LastRunStatus data field (the Status column on the screenshot
below) is set to Icon. Because the field value contains the image URL, the column cell displays the
referred image.

For the IsActive data field (the Active column), the Type property is set to CheckBox. As you can see in
the screenshot, the column cells are rendered as check boxes.

Figure: Viewing different types of columns on the Automation Schedules form

Using the DisplayMode Property of PXGridColumn

The Acumatica Customization Platform supports the following values for the DisplayMode property of a
column in a grid.



 | Customizing Elements of the User Interface | 224

Value Description

Value Default value. An indicator that the column cell contains the value of the field.

Text If there is a description defined for the field, an indicator that the column cell
contains the description of the field.

Hint If there is a description defined for the field, an indicator that the column cell
contains the value-description pair of the field.

:  The Type property priority is higher than the DisplayMode property priority. If the Type property is set,
for example, to CheckBox, the DisplayMode property is ignored.

Providing Hyperlinks for a Grid Column

To provide hyperlinks for an existing column in a grid, you should perform the following actions:

1. Add the PXSelector attribute for the field used to create the column.

2. For the field, create a selector control in the RowTemplate element of the PXGridLevel container
of the ASPX page, as described in To Add a Control to the Form View of a Grid.

3. Set the AllowEdit property of the selector control to True.

:  A selector control contains the value of the key field of a data record from a particular table. Therefore,
the control can be used to redirect a user to the form designed to edit the data record.

After you have completed these actions:

• The column fields contain hyperlinks to redirect the user to the data entry form for the records
defined by the fields.

• If the form view for the grid is available, the following interface elements appear on the form
view:

• The text box created for the field

• The Edit button, which provides the required redirection to the data entry form for the
record defined by the value in the text box

To Add a Control to the Form View of a Grid
If the AllowFormEdit property of a grid is set to True, the user can switch the grid to form view mode
to display the grid columns as controls on the form. This mode gives you the capability to edit a single
record selected in the grid.

Therefore, to add a box for a data field to the form view of a grid, you have to add the box to the
RowTemplate element in the ASPX code. To do this in the Layout Editor, perform the following actions:

1. Open the grid container in the Layout Editor, as described in To Open a Container in the Layout
Editor.

2. In the Control Tree of the editor, click the arrow left of the node to expand the node.

3. Click the arrow left of the Levels node to expand the node, and then expand the node that
appears, which has the same name as the grid does.

:  In the Control Tree, the Layout Editor assigns to a grid node the Grid:<DataMember> name,
where the <DataMember> is the value of the DataMember property of the grid container. To the
node that corresponds to the RowTemplate element of the grid, the editor assigns the same
<DataMember> name.

4. If the expanded node contains other expandable nodes, such as Columns nodes, expand them to
see which boxes are currently included in the form view of the grid.

:  The RowTemplate element can contain layout rules, which are used to arrange controls in the
form view of the grid. Also, you can use this element to provide specific properties of columns in
the grid.



 | Customizing Elements of the User Interface | 225

5. If you need to place the new box in a position below some existing box, select the node of this
box in the Control Tree before you add a new control. (In the screenshot below, the Mailing ID
node is currently selected in the tree.)

6. In the editor, click the Add Data Fields tab item.

7. On the tab item, click the All, Visible, or Custom filter for the data fields provided by the data
view to open the appropriate field list.

:  You can create a custom field immediately on the Add Data Fields tab item by using the Create
New Field dialog box.

8. Find the required data field in the list, and if the field is not used (that is, if the check box in the
Used column is cleared for the field), select the check box for the field in the first column, as the
following screenshot shows.

Figure: Selecting a data field to create a control on the form view of the grid

:  You can select multiple data fields to create multiple columns simultaneously.

9. On the list toolbar, click Create Controls.

The platform creates a box for the selected data field and adds a node for the box to the
appropriate position in the Control Tree. At any time, you can change the position of a column in
a grid. See To Reorder Child UI Elements for details.

10. If needed, specify properties for the new control.



 | Customizing Elements of the User Interface | 226

:  If you need to provide hyperlinks to redirect the user from a column cell to another Acumatica
ERP form, follow the recommendations described in Providing Hyperlinks for a Grid Column.

11. Click Save to save your changes to the customization project.

Tab Container (PXTab)
PXTab is a data-bound UI container control that renders tabs defined by child PXTabItem containers.

An ASPX page can contain PXTab as a main container. A tab container, as the diagram below shows, can
be also included in the following types of containers:

• PXFormView

• PXTabItem

• PXSmartPanel

Figure: Nesting rules for a PXTab container in an ASPX page

A tab container can include only PXTabItem container controls.

A box for a data field can be added immediately to a child PXTabItem container if the parent PXTab
container is bound to a data view declared within the graph that provides business logic for the
ASPX page. To bind a tab container to a data view, you must specify the properties as follows for the
appropriate PXTab object:

• The DataSourceID property value must be equal to the value of the ID property of the
PXDataSource control.

• The DataMember property must contain the name of the data view that is declared in the graph
and provides data for the controls of a child container that is not a data-bound UI container.

To create a new tab container in an ASPX page, follow the instructions described in To Add a Tab
Container.

To delete a tab container from an ASPX page, follow the instructions described in To Delete a Container.



 | Customizing Elements of the User Interface | 227

For detailed information about the PXTabItem container control, see Tab Item Container (PXTabItem).

Tab Item Container (PXTabItem)
PXTabItem is a container control that can be used to render a single record from the data source
specified for the parent PXTab container.

A tab item container, as the diagram below shows, can be included only in a PXTab container.

Figure: Nesting rules for a PXTabItem container in an ASPX page

A tab item container can include multiple ASPX objects of the following types:

• A data-bound UI container control: PXFormView, PXGrid, and PXTab

• A layout rule: PXLayoutRule

• A box for a data field: PXTextEdit, PXNumberEdit, PXMaskEdit, PXDateTimeEdit, PXCheckBox,
PXDropDown, PXSelector, PXSegmentMask, and PXTreeSelector

• Another control: PXPanel, PXGroupBox, PXRadioButton, PXLabel, PXButton, and PXJavaScript

A box for a data field can be added to a tab item container if the parent PXTab container is bound to a
data view declared within the graph that provides business logic for the ASPX page.

To create a new tab item container in a tab container in an ASPX page, follow the instructions described
in To Add a Nested Container.

To delete a tab item container from an ASPX page, follow the instructions described in To Delete a Child
UI Element.

For detailed information on working with a tab item container, see the To Conditionally Hide a Tab Item
topic in this section. You will find additional information in the following topics:

• To Open a Container in the Layout Editor

• To Set a Container Property

• To Add a Nested Container



 | Customizing Elements of the User Interface | 228

• To Add a Box for a Data Field

• To Add a Layout Rule

• To Add Another Supported Control

• To Reorder Child UI Elements

• To Delete a Child UI Element

To Conditionally Hide a Tab Item
You can use the Visible property of the PXTabItem element to set the visibility of the tab item.
However if you need to set the dependency of a tab item's visibility from a condition, you should use
the VisibleExp and BindingContext properties of the PXTabItem element.

The VisibleExp property contains a condition expression that defines a Boolean value used to set
visibility of the tab item. The expression must consist of two parts and an operator to compare these
parts. The expression can contain the values of controls that belong to the container specified in the
BindingContext property.

The BindingContext property defines the ID of the container of the controls whose values can be used
in the expression of the VisibleExp property.

For example, on a form with form and tab containers, if you need to set the visibility of a tab item to
depend on a check box of the form container, you can define the VisibleExp and BindingContext
properties of the PXTabItem element, as illustrated in the following ASPX code snippet.

<px:PXFormView ID="form" ...>
...
  px:PXCheckBox ... ID="myControlID" ... />
...
</px:PXFormView>
...
<px:PXTab ...>
...
  <px:PXTabItem ... BindingContext="form" ...
    VisibleExp="DataControls[&quot;myControlID&quot;].Value == true">
...
</px:PXTab>

In the code above, the expression uses the DataControls .NET property of the form object as a
dictionary to find the needed control by the specified ID.

Dialog Box (PXSmartPanel)
PXSmartPanel is a UI container control that renders a dialog box.

A PXSmartPanel container does not have the DataMember property; therefore, it cannot contain a UI
element for a data field. To add a box for a data field to a dialog box, in the appropriate PXSmartPanel
container, you have to include the data-bound container that can contain the required data field.

However without binding a data view, you can create, for example, a message box with the controls
that contain all required data in the ASPX code.

A PXSmartPanel container can include multiple ASPX objects of the following types (see the diagram
below):

• A data-bound UI container control: PXFormView, PXGrid, and PXTab

• A layout rule: PXLayoutRule

• Another control: PXPanel, PXGroupBox, PXLabel, PXButton, and PXJavaScript



 | Customizing Elements of the User Interface | 229

Figure: Nesting rules for a PXSmartPanel container in an ASPX page

:  A box for a data field cannot be added immediately to a dialog box because this type of container cannot
be bound to a data view.

To create a new dialog box in a form, follow the instructions described in To Add a Dialog Box.

To delete a dialog box from a form, follow the instructions described in To Delete a Container.

In Acumatica ERP, a dialog box usually contains a container for data fields and a PXPanel container
with PXButton elements to get a response from the user. See Panel (PXPanel) and To Use a Button in a
Dialog Box for details.

For detailed information on working with the content of a dialog box, see the To Open a Smart Panel in
the Layout Editor topic in this section. You will find additional information in the following topics:

• To Set a Container Property

• To Add a Nested Container

• To Add Another Supported Control

• To Reorder Child UI Elements

• To Delete a Child UI Element

To Open a Smart Panel in the Layout Editor
If you need to activate the Element Inspector for a pop-up panel, a dialog box, or another UI element
that opens in modal mode and makes the Customization Menu unavailable for selection, you can press
Control-Alt.

To open a smart panel in the Layout Editor, perform the following actions:

1. Open the form in the browser.

2. On the form, open the needed dialog box by using the appropriate action.

3. On the keyboard, press the Control-Alt combination.



 | Customizing Elements of the User Interface | 230

:  The Element Inspector is activated while you keep the Control-Alt combination pressed on the
keyboard.

4. Click anywhere inside the dialog box to open the Element Properties dialog box.

5. In the dialog box, click Customize.

6. If there is no currently selected customization project and the inspector opens the Select
Customization Project Dialog Box, select an existing customization project or create a new one
(see To Create a New Project and To Select an Existing Project for details).

If the customization project does not contain a changeset for the form, the Customization Project Editor
adds to the project a Page item for the form to keep your changes in the database. The smart panel
element is opened in the Layout Editor, and you can start to customize the dialog box.

When you click Save on the editor toolbar, the editor updates the Page item in the database.

Box (Control for a Data Field)
You can use a control for a data field, also referred as a box, to display and edit the value of the field on
a form.

The Acumatica Customization Platform supports the following types of boxes.

Object Description

PXTextEdit A text box to display and edit the value of a string field.

PXNumberEdit A box to display and edit the value of a decimal or int field.

PXMaskEdit A text box to display and edit the value of a string field that has the format
specified in the data access class.

PXDateTimeEdit A box to display and select the value of a datetime field.

PXCheckBox A check box to display and select the value of a bool field.

PXDropDown A combo box to display, edit, and select the value of a field with a list attribute,
such as PXStringList, PXIntList, or PXDecimalList.

PXSelector A lookup control to display, search for, and select the value of a field with the
PXSelector attribute.

PXSegmentMask A lookup control with a specified segmented key value that identifies a data
record and consists of one segment or multiple segments, where the list of
possible values is defined for each segment.

PXTreeSelector A lookup control to select a value for a field with a PXTreeSelector attribute
from a tree control.

A box, as the diagram below shows, can be immediately added to the following types of containers:

• PXFormView

• RowTeplate

• PXTabItem



 | Customizing Elements of the User Interface | 231

Figure: Nesting rules for a box bound to a data field

To create a box in a container, follow the instructions described in To Add a Box for a Data Field.

To delete a box from a container, follow the instructions described in To Delete a Child UI Element.

For detailed information on customizing a box, see the following topics:

• To Select a Box in the Layout Editor

• To Set a Box Property

• To Change the Type of a Box

To Select a Box in the Layout Editor
To start the customization of a box, you have to select it in the Layout Editor. To do this, perform the
following actions.

1. Open the form that contains the box to be customized so that the box is displayed on the screen.

2. On the form title bar, click Customization > Inspect Element to launch the Element
Inspector.

3. On the form, click the box to open the Element Properties Dialog Box for the box.

4. In the dialog box, click Customize.

5. If there is no currently selected customization project and the inspector opens the Select
Customization Project Dialog Box, select an existing customization project or create a new one.
(See To Select an Existing Project and To Create a New Project for details.)

If the customization project does not contain a changeset for the form, the Customization Project Editor
adds to the project a Page item for the form, to keep the changeset to ASPX code of the form in the
database. The container of the box is opened in the Layout Editor, and the box is selected in the Control
Tree of the editor. Therefore you can start customization of the box.

When you click Save on the editor toolbar, the editor updates the Page item in the database.



 | Customizing Elements of the User Interface | 232

To Set a Box Property
To include in a customization project changes to properties of a box, you have to modify the properties
by using the Layout Editor. To start setting the properties of a box, perform the following actions:

1. Select the box in the Layout Editor, as described in To Select a Box in the Layout Editor.

2. Click the Properties tab item to open the list of properties for the box.

3. Specify values for the required properties.

4. Click Save to save your changes to the customization project.

For detailed information about the CommitChanges property, see Using the CommitChanges Property.

You can assign a predefined size abbreviation (such as XXS, L or XL) for the LabelsWidth and Size
properties of a box. See Using Predefined Size Values for details.

Using the CommitChanges Property

If you need to process the value in a box every time the user changes this value, you need to set the
CommitChanges property of the box to True to enable callbacks for the box.

If callback is enabled for a box in a container on a page, the user has changed the box value, and focus
is no longer on the box on the page, the container immediately collects all the modified data and a
callback is created to pass the data to the PXDataSource control of the page (see the diagram below).

The PXDataSource control creates a remote procedure call to the application server to execute the
Update operation with the modified data on the data view that is specified as the DataMember property
for the container. The data view executes the Updating a Data Record scenario on the data in the cache
object of the business logic controller. The cache object raises the events that you can handle to process
the modified data.

Figure: Usage of the CommitChanges property to process a modified data



 | Customizing Elements of the User Interface | 233

To Change the Type of a Box
For a data field, you can create a control of any type that is supported in Acumatica ERP. However to
avoid issues with rendering controls and processing control values, you have to have an appropriate
control for each data field. Therefore, if you have changed the type of a data field, you should recreate
all the controls that exist on Acumatica ERP forms for this field.

For example, a text edit box for the MyFieldName PXDBString field can be defined in the ASPX code as
follows.

<px:PXTextEdit ... DataField="MyFieldName" />

Suppose that you have added the PXStringList attribute for the field in the data access class to use
the control for the field as a drop-down box. Then you need to redefine the control as follows.

<px:PXDropDown ... DataField="MyFieldName" />

Because this change must be saved in a customization project, you have to use the Layout Editor to
delete the old definition of the box and to add the new one.

To change the type of a box in a container on a form and to include this modification in a customization
project, perform the following actions:

1. Select the box in the Layout Editor, as described in To Select a Box in the Layout Editor.

2. On the toolbar of the Control Tree, click Delete.

3. Click the Add Data Fields tab item (see the screenshot below).

4. If you need to create a control for a data field that is not accessible through the data view
specified for the container in the DataMember property, but is accessible through another data
view of the same graph, and the Data View box gives you the availability to select a data view,
select the needed data view in this box. (See Using Multiple Data Views for Boxes in a Container
for details.)

5. On the tab item, click the All, Visible, or Custom filter for the fields provided by the data view
selected in the Data View box to view the appropriate field list.

6. Find the required data field in the Field Name column of the list and select the check box for
the field in the unlabeled first column, as the following screenshot shows.



 | Customizing Elements of the User Interface | 234

Figure: Selecting a data field for which a box is to be created

For each data field in the list, the Layout Editor presets the most appropriate control type.
However you can select another control type to be created for a field.

:  The control type must match the field type. Otherwise, the control cannot work properly with the
field data. If you create a control that does not match the data field, you have to update the data
field in the DAC (see To Customize a Field on the DAC Level for details) or in the graph. (See To
Customize a Field on the Graph Level for details.)

7. If you need to change the type of the control to be created, select the needed type in the
Control column, as shown in the following screenshot.



 | Customizing Elements of the User Interface | 235

Figure: Selecting a control type for a data field

8. On the list toolbar, click Create Controls.

The platform creates a box for the selected data field and adds to the Control Tree a node for the
box.

9. Click Save to save your changes to the customization project.

Layout Rule (PXLayoutRule)
The layout of a form is organized into a table of controls, with each control located within a certain
column and row. The columns and rows are defined by PXLayoutRule components added to the layout
of the form. The properties of the PXLayoutRule component provide the position of the underlying
controls and their size and appearance in the UI.

You can use the PXLayoutRule component to do the following to manage the layout of UI elements
within a container:

• Place controls in multiple rows and columns to uniformly distribute them on the form or tab area
of a form (see the diagram below)

• Cause controls to span multiple columns

• Merge controls into one row of the column to align them horizontally

• Adjust the widths of controls and labels

• Hide the labels of controls

• Group controls for users' convenience



 | Customizing Elements of the User Interface | 236

Figure: Layout rules to arrange controls within a container

A layout rule, as the diagram below shows, can be immediately added to the following types of
containers:

• PXFormView

• RowTeplate

• PXTabItem

• PXSmartPanel



 | Customizing Elements of the User Interface | 237

Figure: Nesting rules for a layout rule in an ASPX page

The Acumatica Customization Platform supports the following properties for a PXLayoutRule
component.

Property Description

ColumnSpan Specifies the number of columns spanned by a control placed below the target
PXLayoutRule component. This property applies to a single control that is under
the layout rule in the ASPX code. (See Using the ColumnSpan Property for
details.)

ColumnWidth Defines the width (in pixels) of a column containing controls. You can set the
property to a predefined value (see Using Predefined Size Values for details)
or to a value in pixels. The specified width is applied to the column and is
not changed when the LabelsWidth property value is specified for the same
PXLayoutRule component and when the Size, Width, or LabelWidth property
value is specified for a control contained within a column. (See Using the
ColumnWidth, ControlSize, and LabelsWidth Properties for details.)

ControlSize Defines the width for the controls placed within a column. The ControlSize
property value is assigned from the predefined list of items. (See Using
Predefined Size Values for details.) The specified size is applied to all controls
contained within the column if you do not override the size separately for
a control by specifying the Size or Width property values. (See Using the
ColumnWidth, ControlSize, and LabelsWidth Properties for details.)

GroupCaption Specifies the caption for the group of controls that is started from the control
placed under this rule in the ASPX code. Any rule that has the GroupCaption
property value set requires a rule with the EndGroup property value set to True
below the last control of the group in the code. All controls between the starting
and ending group rules are included in the group. (See Using the GroupCaption,
StartGroup, and EndGroup Properties for details.)

EndGroup Indicates that the control above the rule in the ASPX code is the last control
in the group that starts from the PXLayoutRule component with a specified



 | Customizing Elements of the User Interface | 238

Property Description
GroupCaption property value. (See Using the GroupCaption, StartGroup, and
EndGroup Properties for details.)

LabelsWidth Defines the width (in pixels) of the control labels placed within a column. You
select the LabelsWidth property value from the predefined list of items (see
Using Predefined Size Values for details) or by typing the width in pixels. The
specified size is applied to all control labels contained within the column if you
do not override the size separately for a control by specifying the LabelWidth
property value. (See Using the ColumnWidth, ControlSize, and LabelsWidth
Properties for details.)

Merge Is used to merge controls into one row and to horizontally align the controls that
are placed under this rule in the ASPX code. The first PXLayoutRule component
added under this rule in the code stops the merging, and the next control
is placed alone beneath the merged controls as the leftmost control of the
current column. To cancel merging for all controls that follow, you must add the
PXLayoutRule component without the adjusted property value. (See Using the
Merge Property for details.)

StartGroup Starts the group of controls from the control placed under this rule in the
ASPX code. If the GroupCaption property value is not set to True, the group is
displayed without a caption. Any rule that has the StartGroup property value
set requires a rule with the EndGroup property value set to True below the last
control of the group in the code. All controls between the starting and ending
group rules in the code are included in the group. (See Using the GroupCaption,
StartGroup, and EndGroup Properties for details.)

StartRow If set to True, starts a new row for the controls following this rule. (See Using the
StartRow and StartColumn Properties for details.)

SuppressLabel Hides all control labels within a column. All control labels placed within the
column are hidden if you do not override them separately for a control by
specifying a SuppressLabel property value. (See Using the SuppressLabel
Property for details.)

By specifying the values of these properties, you can make a variety of changes to the UI. Some
properties affect only the next control under the PXLayoutRule component in the ASPX code. Other
properties affect all controls under the rule until the next rule is encountered in the code. Still other
properties require a corresponding ending rule. For instance, the rule with the GroupCaption property
value specified requires that a corresponding rule be set with the EndGroup property value. All controls
in the code between the GroupCaption and EndGroup rules become part of the group.

To create a layout rule in a container, follow the instructions described in To Add a Layout Rule.

To delete a layout rule from a container, perform the actions described in To Delete a Child UI Element.

For detailed information on working with the content of a grid container, see the following topics:

• To Select a Layout Rule in the Layout Editor

• To Set a Layout Rule Property

To Select a Layout Rule in the Layout Editor
To start the customization of a layout rule, you have to select it in the Layout Editor. To do this, perform
the following actions.

1. Open the form that contains the container with the layout rule, so that the container is displayed
on the screen.

2. On the form title bar, click Customization > Inspect Element to launch the Element
Inspector.

3. On the form, click the area of the container to be customized, to open the Element Properties
Dialog Box for the container.



 | Customizing Elements of the User Interface | 239

4. In the dialog box, click Customize.

5. If there is no currently selected customization project and the inspector opens the Select
Customization Project Dialog Box, select an existing customization project or create a new one.
(See To Select an Existing Project and To Create a New Project for details.)

If the customization project does not contain a changeset for the form, the Customization Project
Editor adds to the project a Page item for the form to keep in the database the changeset to the
ASPX code of the form. The container is opened in the Layout Editor and selected in the Control
Tree of the editor.

6. If the required layout rule is not displayed in the Control Tree, expand the subnodes of the
container node to display the rule.

7. In the Control Tree, select the layout rule to start the customization.

When you click Save on the editor toolbar, the editor updates the Page item in the database.

To Set a Layout Rule Property
To include in a customization project changes to properties of a layout rule, you have to modify the
properties by using the Layout Editor. To start setting the properties of a layout rule, perform the
following actions:

1. Select the layout rule in the Layout Editor, as described in To Select a Layout Rule in the Layout
Editor.

2. Click the Properties tab item to open the list of properties for the rule. (See the following
screenshot.)

Figure: Viewing the list of layout rule properties in the Layout Editor

3. Specify values for the required properties.

4. Click Save to save changes in the customization project.

The most important properties of the PXLayoutRule component are described in the following topics:

• Using the StartRow and StartColumn Properties

• Using the ColumnWidth, ControlSize, and LabelsWidth Properties



 | Customizing Elements of the User Interface | 240

• Using Predefined Size Values

• Using the ColumnSpan Property

• Using the Merge Property

• Using the GroupCaption, StartGroup, and EndGroup Properties

• Using the SuppressLabel Property

Using the StartRow and StartColumn Properties

By default, the system places all the controls of a container into a column within the first row, as shown
in the diagram below. To do this, the system initially sets to True the StartRow property value for the
uppermost PXLayoutRule component in a container.

Figure: Viewing the default layout of controls of a container on a form

The controls are placed within a single column until you add a layout rule with the StartColumn or
Merge property value set to True.

Important:  For the proper layout, the StartRow property value must be set to True for the uppermost
PXLayoutRule component of a container.

To best use the area of a form or tab item area, you can place controls in multiple columns within a
row by adding the PXLayoutRule components with the StartColumn property value set to True. This
property creates a new column of controls within the current row, as the following diagram shows.



 | Customizing Elements of the User Interface | 241

Figure: Creating a new column by adding a single PXLayoutRule component

The first control under this rule corresponds to the highest control in the column.

Every new PXLayoutRule component that has the StartRow property value set to True initializes a new
independent placeholder of controls, which are placed in a single column by default. To place controls in
multiple columns within the new row, you should include in the placeholder a new layout rule with the
StartColumn property value set to True, as shown in the following diagram.

Figure: Creating a new row by adding a single PXLayoutRule component

Because the values of the ColumnWidth, ControlSize, and LabelsWidth properties are never inherited
from the previously declared PXLayoutRule component, you might need to define these properties
exclusively for every new row and column.

Using the ColumnWidth, ControlSize, and LabelsWidth Properties

You can use the PXLayoutRule components to define the sizes for every control (that is, its input area)
and its label within a column, group, or merged set of controls. Every PXLayoutRule component that
has the StartRow or StartColumn property value set to True must have one of the following sets of
properties defined:

• LabelsWidth and ControlSize

• LabelsWidth and ColumnWidth



 | Customizing Elements of the User Interface | 242

Figure: Using layout rule properties to define control sizes

:  You should not set both ColumnWidth and ControlSize property values for the same PXLayoutRule
component; in this case, the system will use the value of the ControlSize property.

Please note the following points about setting the sizes of controls and their labels:

1. The values of the ColumnWidth, ControlSize, and LabelsWidth properties must be defined
exclusively for every PXLayoutRule component; they are never inherited from the previously
declared one.

2. You can change the size of a single control or its label by defining values for the Size, Width,
and LabelsWidth properties of the control. Property values that are set for a control have a
higher priority than the properties of the PXLayoutRule component.

3. You can assign a predefined size abbreviation (such as XXS, L, or XL) for the ColumnWidth,
LabelsWidth, and ControlSize properties of a layout rule and the LabelsWidth and Size
properties of a control. (See Using Predefined Size Values for details.)

4. The PXDateTimeEdit and PXNumberEdit control types have a predefined Width property value,
which you cannot change by setting the ColumnWidth or ControlSize property values for the
appropriate PXLayoutRule component. To change the width of this control, set a value for the
Size or Width property of the control.

Using Predefined Size Values

You can use the following predefined values for the ColumnWidth, LabelsWidth, and ControlSize
properties of the PXLayoutRule component and the LabelsWidth and Size properties of a control.

Predefined Value ColumnWidth LabelsWidth and ControlSize
of a Layout Rule; LabelsWidth

and Size Properties of a Control

XXS 100px 40px

XS 150px 70px

S 200px 100px

SM - 150px

M 250px 200px

XM 300px 250px

L 350px 300px

XL 400px 350px

XXL 450px 400px

Note the following points about setting the predefined sizes of controls and their labels:

• For any property for which there are predefined values, you can specify a value in pixels, such as
55px. (This format is mandatory if you don't use abbreviations, because the property value can be
defined only in pixels.)



 | Customizing Elements of the User Interface | 243

• There is no predefined value for the Width property of a control. Therefore, you can specify a
value for this property by typing any value in pixels, such as 55px. Before specifying the Width
property value for a control, you must define the Size property value for the control as Empty.

:  The Width property is declared in ASP.NET. The Size property is declared in Acumatica
Framework so you can use the predefined values.

Using the ColumnSpan Property

You specify the ColumnSpan property value for a PXLayoutRule component by manually typing the
number of columns spanned by the first control placed below the rule.

For example, the form container on the Customers (AR.30.30.00) form has three columns of boxes,
and there is a layout rule with the ColumnSpan property set to 2 in the first column, as the following
screenshot shows.

Figure: Viewing the ColumnSpan property in the Layout Editor
 

 

This property forces the system to make the box spans two columns, as shown in the following
screenshot.

Figure: Viewing the box that spans two columns on the form

A PXLayoutRule component with the ColumnSpan property value specified is handled as follows:

• The LabelsWidth property value is always inherited from the previously declared PXLayoutRule
component that has the StartRow or StartColumn property value set to True.



 | Customizing Elements of the User Interface | 244

• If a value for the ColumnWidth or ControlSize property is specified for the component, the value
is ignored.

Using the Merge Property

Merging means placing controls so that they are horizontally aligned. Horizontal alignment is performed
for the controls that are placed between a layout rule with the Merge property set to True and any other
subsequent layout rule. Therefore, to cancel merging for all of the following controls, you have to add a
PXLayoutRule component, with or without the Merge property specified.

For example, the Billing Settings tab item on the Customers (AR.30.30.00) form has three pairs of
merged check boxes in the Print and Email Settings group, as the following screenshot shows.

Figure: Using the Merge property for two boxes
 

 

This property forces the system to render the boxes in one column, as shown in the following
screenshot.



 | Customizing Elements of the User Interface | 245

Figure: Viewing the boxes merged in a single column on the form

A PXLayoutRule component with the Merge property value set to True is handled as follows:

• If the ColumnWidth property value is set for the same PXLayoutRule component, the value is
ignored.

• The default values for the ControlSize and LabelsWidth properties are inherited from the
previously declared PXLayoutRule component with the StartRow or StartColumn property value
set to True. You can override these property values if necessary by specifying the ControlSize
and LabelsWidth property values from the predefined list of options. (See Using Predefined Size
Values for details.)

Using the GroupCaption, StartGroup, and EndGroup Properties

You can organize controls in a container within groups to make users' work more logical. To group
multiple controls within a column, generally you have to add two PXLayoutRule components that have
the following properties set to define the first and the last controls in the group, respectively:

• GroupCaption and EndGroup—to create a group with the caption specified in the GroupCaption
property

• StartGroup and EndGroup—to create a group without a caption

:  You can specify both the GroupCaption property and the StartGroup property for the PXLayoutRule
component that starts a group.

For example, by specifying the GroupCaption property value for the corresponding PXLayoutRule
components placed above a control, you start the group of controls and set up the header for the
group. You should also add a PXLayoutRule component with the EndGroup property value set to True
below (in the code) the last control that is included in the group.

The system works as follows for all PXLayoutRule components with the GroupCaption or StartGroup
property value specified:

• If the GroupCaption, StartGroup, or EndGroup property is set for a PXLayoutRule component,
the system ignores the ColumnWidth property value specified for the same component.

• The default values for the ControlSize and LabelsWidth properties are inherited from the
previously declared PXLayoutRule component with the StartRow or StartColumn property value
set to True. You can override these property values if necessary by specifying the ControlSize



 | Customizing Elements of the User Interface | 246

and LabelsWidth property values in the layout rule that starts a group. (See Using Predefined
Size Values for details.)

You end a group by using a PXLayoutRule component with a GroupCaption, StartGroup, or EndGroup
property specified. Therefore, if there is another group that starts immediately below a group, you can
omit the layout rule that ends the upper group, as shown in the third column of the row displayed in the
example in following diagram.

Figure: Possible use of layout rules with grouping properties

Using the SuppressLabel Property

Every control for a data field contains both a label and the input area of the control. The label is
displayed left of the input area, except with check boxes. The label of a check box is displayed right of
the input area of the check box. When you add a check box onto a form, it is automatically aligned with
other input controls within the appropriate column. As a result, the area left of a check box is empty.

To hide labels of the controls placed within a column, you should set the SuppressLabel property value
of the PXLayoutRule component of the column to True. Then within the column, all check boxes are
placed without any space to the left of the input control.

:  If needed, you can align a check box to the left of the column by setting to True the AlignLeft property
of the control. Also, you can set the SuppressLabel property value to True for any other control to hide
its label.

The SuppressLabel property affects all controls of the group that are placed under the PXLayoutRule
component with the True value of this property. The SuppressLabel property value must be defined
for every PXLayoutRule component for the controls placed beneath the component and included in the
same column; this property is never inherited from the previously declared property.

:  The SuppressLabel property value is never applied to PXLayoutRule components with the
ColumnSpan property value specified.

For example, the Parent Info group on the Billing Settings tab item on the Customers (AR.30.30.00)
form is displayed, as shown in the following screenshot.

Figure: Viewing a group of controls with labels
 



 | Customizing Elements of the User Interface | 247

 

If you set the SuppressLabel property of the group layout rule to True, the labels of all controls of the
group are hidden, as shown in the following screenshot.

Figure: Viewing the same group of controls after applying the SuppressLabel property

Panel (PXPanel)
In a container with controls for a single data record, you can use a PXPanel element as a container with
a caption to group controls. However we recommend that you use the PXLayoutRule component for
this purpose. (See Layout Rule (PXLayoutRule) for details.)

In Acumatica ERP, a panel is used as a container to display a horizontal row of buttons with right
alignment in a dialog box (see Dialog Box (PXSmartPanel) for details), as the following screenshot
shows.

Figure: Using a panel as a button container in a dialog box

If you open the dialog box displayed in the screenshot above in the Layout Editor, you can see that the
panel is located below a form container and contains two buttons.



 | Customizing Elements of the User Interface | 248

Figure: Viewing the panel content in the Layout Editor

You can add the PXPanel element to a dialog box and buttons to this element, as described in To Add
Another Supported Control and To Use a Button in a Dialog Box. In a panel, to arrange buttons in a
horizontal row with right alignment, you can specify the SkinID property of the PXPanel element, as
described in Using the SkinID Property.

Group Box (PXGroupBox)
In a container with controls for a single data record, you can use a PXGroupBox element as a container
with a caption to group controls. However we recommend that you use the PXLayoutRule component
for this purpose. (See Layout Rule (PXLayoutRule) for details.)

In Acumatica ERP, the PXGroupBox element is designed to be exclusively used as a radio button
container to render a drop-down data field as a set of radio buttons. It contains scripts with the logic to
support a nested radio button for each value of a drop-down field.

A group box for a drop-down data field can be immediately added to the following types of containers:

• PXFormView

• RowTeplate

• PXTabItem

To add a PXGroupBox element to a container, follow the instructions described in To Add Another
Supported Control.

To delete a group box from a container, follow the instructions described in To Delete a Child UI
Element.

For detailed information on customizing a group box, see the following topics:

• To Open a Group Box in the Layout Editor

• To Create a Group Box for a Drop-Down Field

• To Set a Group Box Property

To Open a Group Box in the Layout Editor
To start the customization of a group box on a form, you have to open it in the Layout Editor. To do
this, perform the following actions:

1. Open the form to display the appropriate set of radio buttons in the browser.

:  In Acumatica ERP, a radio button can work properly only in a PXGroupBox container that is used
for a drop-down data field.

2. On the form title bar, click Customization > Inspect Element to launch the Element
Inspector.



 | Customizing Elements of the User Interface | 249

:  If you need to activate the Element Inspector for a pop-up panel, a dialog box, or another UI
element that opens in modal mode and makes the Customization Menu unavailable for selection,
you can press Control-Alt.

3. On the form, click the area with radio buttons to open the Element Properties dialog box for the
group box.

4. In the dialog box, click Customize.

5. If there is no currently selected customization project and the inspector opens the Select
Customization Project Dialog Box, select an existing customization project or create a new one.
(See To Create a New Project and To Select an Existing Project for details.)

If the customization project does not contain a changeset for the form, the Customization Project Editor
adds to the project a Page item for the form, to keep the changeset to the ASPX code of the form in the
database. The group box is opened in the Layout Editor, and you can start the customization of the box
and the nested radio buttons.

When you click Save on the editor toolbar, the editor updates the Page item in the database.

To Create a Group Box for a Drop-Down Field
In Acumatica ERP, the PXDropDown box type is generally used to display on a form a field with a list
attribute, such as PXStringList, PXIntList, or PXDecimalList. However if you want to display such a
field as a set of radio buttons, where one radio button is used to display and select each single constant
value of the field, you can create a PXGroupBox element and include PXRadioButton elements in it.

To create a group box for a drop-down data field in a container, perform the following actions:

1. Open the container in the Layout Editor, as described in To Open a Container in the Layout
Editor.

2. In the container, add a group box, as described in To Add Another Supported Control.

3. For the new group box, specify the DataField property to bind the box to the data field. See To
Set a Group Box Property and Using the DataField Property for details.

4. If required, specify the Caption and RenderStyle properties of the group box, as the following
screenshot shows.



 | Customizing Elements of the User Interface | 250

Figure: Setting the properties of a group box

(See Using the Caption Property and Using the RenderStyle Property for details.)

5. For each value defined in the field list, do the following:

a. To the group box node of the Control Tree, add a radio button, as described in To Add
Another Supported Control.

b. In the C# code, find the value (usually it is an one-symbol value) in the list.

c. On the Properties tab item, enter this value in the Value property.

6. Click Save to save changes in the customization project.

For example, as the result of the described actions for the StatementType data field with the O and B
values defined in the list, you might get the following ASPX code.

<px:PXGroupBox runat="server" ID="CstGroupBox1" DataField="StatementType"
               Caption="Statement Type" RenderStyle="Fieldset">
  <Template>
    <px:PXRadioButton runat="server" ID="CstRadioButton2" Value="O" />
    <px:PXRadioButton runat="server" ID="CstRadioButton3" Value="B" />
  </Template>
</px:PXGroupBox>

To Set a Group Box Property
To include changes to the properties of a group box in a customization project, you have to modify
the properties by using the Layout Editor. To start setting the properties of a group box, perform the
following actions:

1. Select the group box in the Layout Editor, as described in To Open a Group Box in the Layout
Editor.

2. Click the Properties tab item to open the list of properties for the group box.



 | Customizing Elements of the User Interface | 251

3. Specify values for the required properties.

4. Click Save to save your changes to the customization project.

To bind a group box to a data field, you have to specify the DataField property, as described in Using
the DataField Property.

To set a caption for a group box, you use the Caption property. (See Using the Caption Property for
details.)

To define the style of the group box on the form, you have to select a value of the RenderStyle
property, see Using the RenderStyle Property for details.

Using the DataField Property

You use a group box to display a data field with a list attribute as a set of radio buttons, where one
radio button is used to display and select each single constant value of the field. To bind a group
box to a data field, you have to specify the name of the data field in the DataField property of the
PXGroupBox element in the ASPX code, as follows.

<px:PXGroupBox ... DataField="<Field Name>" ...>

Attention:  The group box must contain a radio button for each value defined in the list of the field.

In the DataField property of the PXGroupBox element, you can specify the name of a data field that is
accessible through another data view of the same graph. See Using Multiple Data Views for Boxes in a
Container for details.

Using the Caption Property

You can define a caption for a group box by using the Caption property of the PXGroupBox element in
the ASPX code as follows.

<px:PXGroupBox ... Caption="Example of Group Box Caption" ...>

If the RenderStyle property of a PXGroupBox element is set to Simple, the Caption property is
ignored. See Using the RenderStyle Property for details.

Using the RenderStyle Property

To define the style of a group box on the form, you have to select a value of the RenderStyle property
of the PXGroupBox element in the ASPX code, as follows.

<px:PXGroupBox ... RenderStyle="StyleName" ...>

The Acumatica Customization Platform supports the following RenderStyle values for the PXGroupBox
element.

Name Description Example

Fieldset Indicates that the group of radio
buttons can be displayed with a caption
in the same style as in a grouping
layout rule.

RoundBorder The default value. Indicates that the
group of radio buttons can be displayed
with a caption in a rounded border.

Simple Indicates that the group of radio
buttons can be displayed without a
caption and border.



 | Customizing Elements of the User Interface | 252

Label (PXLabel)
In a container with controls for a single data record, you can use a PXLabel element to display text. For
example, you should use a label to render on a form static text that is stored in the ASPX code.

A PXLabel element can be immediately added to the following types of containers:

• PXFormView

• RowTeplate

• PXTabItem

• PXSmartPanel

You can view the use of the PXLabel elements, for example, in the Aging Settings group on the
Statement Cycles (AR.20.28.00) form, shown in the following screenshot.

Figure: Viewing the labels on the Statement Cycles form

The use of a label can be required when a field contains a quantity, but you need to add a unit type for
the value. For example, if you need to display a field as Duration [value] Days, where Duration is the
value of the DisplayName parameter of the PXUIField attribute of the field, you have to add a PXLabel
element that contains the Days string constant. To arrange the label in the same column as the field,
you need to use the Merge layout rule, as described in To Set a Layout Rule Property and Using the
Merge Property.

You can add the PXLabel element to a container, as described in To Add Another Supported Control.

To delete a label from an ASPX page, follow the instructions described in To Delete a Child UI Element.

Radio Button (PXRadioButton)
In Acumatica ERP, a radio button can work properly only in a PXGroupBox container. (See Group Box
(PXGroupBox) for details.) A PXGroupBox element contains scripts to provide the appropriate logic to
use a nested radio button for a single constant value of a bound drop-down data field.



 | Customizing Elements of the User Interface | 253

To use a PXRadioButton element on a form, follow the instructions described in To Create a Group Box
for a Drop-Down Field.

To bind a radio button to a value from the list of a drop-down data field, follow the instructions
described in To Bind a Radio Button to a Value in the List of a Data Field.

To Bind a Radio Button to a Value in the List of a Data Field
In the parent group box, to bind a radio button to a value in the list of a drop-down data field that is
bound to this group box, perform the following actions:

1. Open the group box in the Layout Editor, as described in To Open a Group Box in the Layout
Editor.

2. In the Control Tree, select the node of the radio button.

3. Click the Properties tab item to open the list of properties for the radio button.

4. Set the Value property to an appropriate value (usually it is a one-symbol value) of the list
defined in the C# code, as the following screenshot shows.

Figure: Setting the Value property of a radio button

5. Click Save to save your changes to the customization project.

Button (PXButton)
In Acumatica ERP, the PXButton element is used for the following purposes:

• In a dialog box—to display a button that closes the dialog box and returns a predefined
DialogResult value

• In a container with controls for a single data record (including a dialog box) of a form—to display
a button that invokes a method defined in the graph, which provides the business logic for the
form

The most common use case of the PXButton element is in a dialog box.



 | Customizing Elements of the User Interface | 254

A button, as the diagram below shows, can be immediately added to the following types of containers:

• PXFormView

• RowTeplate

• PXTabItem

• PXSmartPanel

• PXPanel

Figure: Nesting rules for a button in an ASPX page

To create a button in a container, follow the instructions described in To Add Another Supported Control.

To delete a button from a container, follow the instructions described in To Delete a Child UI Element.

For detailed information about using a button, see the following topics:

• To Use a Button in a Dialog Box

• To Use a Button to Invoke a Method

To Use a Button in a Dialog Box
In a dialog box, you can create buttons of the following types:

• A standard button that invokes no method but closes the dialog box and returns a specified
predefined value, which can be processed by the method that has opened the dialog box

:  To arrange buttons in a horizontal row with right alignment in a dialog box, we recommend that
you use the PXPanel container with the SkinID property set to Buttons.

• A button that invokes a method of the graph that provides business logic for the form

To add a standard button to a PXPanel container of a dialog box, perform the following actions:

1. Add the button to a PXPanel container, as described in To Add Another Supported Control.

2. In the Control Tree of the Layout Editor, select the node of the new button.



 | Customizing Elements of the User Interface | 255

3. Click the Properties tab item to open the list of properties for the button.

4. Specify values for the following properties:

a. DialogResult: Specify the value that is returned when the button closes the dialog
box. Set the property to one of the following values defined in the WebDialogResult
enumerator.

Value Description

OK The user clicked a button with the DialogResult property set to OK.

Cancel The user clicked a button with the DialogResult property set to
Cancel.

Abort The user clicked a button with the DialogResult property set to
Abort.

Retry The user clicked a button with the DialogResult property set to
Retry.

Ignore The user clicked a button with the DialogResult property set to
Ignore.

Yes The user clicked a button with the DialogResult property set to Yes.

No The user clicked a button with the DialogResult property set to No.

When the user clicks the added button, the dialog box is closed, and the specified value is
returned to the method that has opened the dialog box.

b. Text: Specify the text to be displayed on the button.

:  In the Text property of a standard button, you can define any text, regardless of the
value of the DialogResult property.

5. Click Save to save changes in the customization project.

The following ASPX code snippet creates a panel with two standard buttons arranged a horizontal row
with right alignment.

<px:PXPanel ... SkinID="Buttons">
  <px:PXButton ... DialogResult="OK"     Text="Next" />
  <px:PXButton ... DialogResult="Cancel" Text="Return" />
</px:PXPanel>

If you need to include in the same dialog box a button that invokes a method of the graph, you can add
the button to the same PXPanel container and set the button properties as described in To Use a Button
to Invoke a Method.

To Use a Button to Invoke a Method
You can use the PXButton element on a form to invoke a method of the graph that provides business
logic for the form.

To include in a container a button that invokes a method of the graph, perform the following actions:

1. Open the container in the Layout Editor, as described in To Open a Container in the Layout
Editor.

2. Add the button to the container, as described in To Add Another Supported Control.

3. In the Control Tree of the Layout Editor, select the node of the new button.

4. Click the Properties tab item to open the list of properties for the button.

5. Specify values for the following properties:

a. CommandSourceID: Set the property to the value specified in the ID property of the
PXDataSource control.



 | Customizing Elements of the User Interface | 256

b. CommandName: In the property, specify the name of the method to be invoked when the
user clicks the button on the form.

:  The method must be defined in the graph that is specified in the TypeName property of
the PXDataSource control.

c. Text: Specify the text to be displayed on the button.

6. Click Save to save your changes to the customization project.

The following ASPX code creates a button that invokes the MethodName method referenced in the
PXDataSource control with the ID property set to ds.

<px:PXButton ... CommandName="MethodName" CommandSourceID="ds" Text="ButtonText" />

The MethodName method must be referenced in a PXDSCallbackCommand element of the PXDataSource
control as follows.

<px:PXDataSource ID="ds" ... TypeName="PX.Objects.<GraphName>" ...>
  <CallbackCommands>
  ...
  <px:PXDSCallbackCommand Name="MethodName" Visible="False" ... />
  ...
  </CallbackCommands>
</px:PXDataSource>

To add a PXDSCallbackCommand element for the button to the PXDataSource control, perform the
following actions:

1. In the Control Tree of the Layout Editor, select the node of the PXDataSource control.

2. Click the arrow left of the node to expand it.

3. Click the Add Controls tab item.

4. From the Other Controls group, drag the Button item to the needed location in the Control
Tree within the PXDataSource control, as shown in the following screenshot.

Figure: Adding a button command to the PXDataSource control

5. In the Control Tree of the Layout Editor, select the new DSCallbackCommand node.



 | Customizing Elements of the User Interface | 257

6. Click the Properties tab item to open the list of properties for the node.

7. Specify values for the following properties of the callback command for the button (see the
screenshot below):

a. Name: In the property, specify the name of the method to be invoked when the user clicks
the button on the form.

b. Visible: If you do not want to add the button to the form toolbar, set the property to
False. The default value is True.

c. DependOnGrid: If you need to make an action button unavailable on the toolbar when
the grid is empty, set the property to the value that is specified in the ID property of the
PXGrid element.

d. PopupVisible: If the form is opened as a pop-up window and you want to display the
button on the toolbar of the pop-up window, set the property to True. The default value is
False.

e. CommitChanges: If you need to update data in the cache before the application server
executes the action, set the property to True. Otherwise, the action processes the data
currently stored in the cache. The default value is False.

Figure: Setting properties for a callback command

8. Click Save to save your changes to the customization project.

Java Script (PXJavaScript)
The PXJavaScript element is designed to keep JavaScript code in an ASPX page.

A PXJavaScript control can be immediately added to the following types of containers:

• PXFormView



 | Customizing Elements of the User Interface | 258

• RowTeplate

• PXTabItem

• PXSmartPanel

• PXPanel

To create a JavaScript control in a container, follow the instructions described in To Add Another
Supported Control.

To delete a JavaScript control from a container, follow the instructions described in To Delete a Child UI
Element.

For a detailed example of using a JavaScript control, see How do I play a sound in response to a custom
action or button in Acumatica?.

Toolbars, Action Buttons, and Menus
On an Acumatica ERP form, toolbars, action buttons, and menus are the types of UI elements that are
created and processed by the graph that is specified in the TypeName property of the PXDataSource
control and provides business logic for the form. Therefore, these UI elements cannot be created or
customized by using the Layout Editor. See Customizing Business Logic for details.

The standard page toolbar buttons include data manipulation (Insert, Delete, Save, and Cancel),
navigation (Next, Previous, First, and Last), and clipboard (Copy and Paste). Every toolbar button
corresponds to an action declared in the graph. You can use explicit or implicit declaration of actions
to add standard buttons to the toolbar. To add standard toolbar buttons to the form and add selector
controls, in the graph class declaration, specify the main DAC as the second type parameter of PXGraph,
as the following code shows.

public class GraphName : PXGraph<GraphName, MainDACName>
{
public PXSelect<MainDACName> PrimaryDataViewName;
}

To add a custom action to a form toolbar, you use Code Editor to create the action declaration in the
graph extension. See To Add an Action for details.

To create a menu on a form toolbar, in the graph or graph extension, you have to declare one action as
a menu holder on the toolbar, and then declare all required actions and add these actions to the menu
holder by using the AddMenuAction method of the PXAction class.

Other Control Types
The Acumatica Customization Platform does not support some control types, such as
PXSplitContainer and PXTreeView, that are supported by the Acumatica Framework. However the
Acumatica Customization Platform gives you the ability to add a control of an unsupported type to an
Acumatica ERP form and save the change to a customization project.

To do this, perform the following actions:

1. Open the form in the Layout Editor, as described in To Start a Customization of a Form.

2. On the editor toolbar, click Actions > Edit ASPX to open the ASPX code of the form in the ASPX
Editor.

3. Modify the code in the editor.

4. Click Generate Customization Script to save to the customization project the changes to the
Page item for the form.

After you have added a new control to the customization project, you can select the control node in
the Control Tree of the Layout Editor and specify the control properties, as described in To Set a Box
Property.

http://stackoverflow.com/questions/39732117/how-do-i-play-a-sound-in-response-to-a-custom-action-or-button-in-acumatica
http://stackoverflow.com/questions/39732117/how-do-i-play-a-sound-in-response-to-a-custom-action-or-button-in-acumatica


 | Customizing Business Logic | 259

Customizing Business Logic

Business logic is implemented by overloading certain methods invoked by the system in the process
of manipulating data. For such procedures as inserting a data record or updating a data record, the
cache controllers generate series of events causing invocation of the methods called event handlers.
The application is able to interfere in the series of events on different stages. For this purpose, the
application implements methods that are executed as event handlers. Business logic can be divided
into common logic relevant to different parts of the application and the logic specific to an application
form. The common logic is implemented through event handler methods defined in attributes, while the
screen-specific logic is implemented as methods in the associated graph.

You use Customization Tools of the Acumatica Customization Platform to customize business logic for
forms of Acumatica ERP.

The customization of existing business logic is based on the extension technology, which is described in
greater detail in DAC Extensions and Graph Extensions.

This part contains detailed instructions on how to customize a data access class, data field, graph, data
view and an action of Acumatica ERP and how to include the changeset in a customization project.

In This Part

• Data Access Class

• Data Field

• Graph

• Data View

• Action

Data Access Class
A data access class (DAC) is used to represent a database table in the code of Acumatica ERP. If a DAC
is bound to the database, it must have the same class name as the database table. A data access class
is inherited from the IBqlTable class and contains data field declarations.

You can use Customization Project Editor to do the following:

• Create a new DAC

• Add a custom field to an existing DAC

• Customize the declaration of a data field of an existing DAC

For detailed information on customizing data access classes, see the following topics:

• To Start the Customization of a Data Access Class

• To Add a Custom Data Field

• To Create a New DAC

• To Create a DAC Extension

See Data Field for detailed instructions on the customization of a data field.

To Start the Customization of a Data Access Class
:  Before you start a DAC customization, we recommend that you check the possibility to use the
appropriate business entity attributes, which can be defined on the Attributes form (CS.20.50.00), instead
of custom fields. See Usage Entity Attributes Instead of Custom Fields for details.

You might need to customize an existing data access class in the following cases:



 | Customizing Business Logic | 260

• On a form, you want to create a custom data field to be used for a custom control.

• In Acumatica ERP, you want to change the business logic for a data field in the DAC.

Important:  If multiple Acumatica ERP forms contain controls for the same field, changing an
attribute of the field in the DAC modifies the behavior of these controls for the field on all forms.

If you know the name of the data access class to be customized, you can first add a DAC item for the
class on the Customized Data Classes page of the Customization Project Editor (see To Add a DAC Item
for an Existing Data Access Class to a Project for details) and then click the item to open it in the Data
Class Editor.

You usually start the customization of a data access class on a form that contains boxes used by users
to work with data of an appropriate business entity, such as a sales order invoice.

To start the customization of a DAC from a form, perform the following actions:

1. Open the form in the browser.

2. On the form title bar, click Customization > Inspect Element to launch the Element
Inspector.

:  If you need to activate the Element Inspector for a pop-up panel, a dialog box, or another UI
element that opens in modal mode and makes the Customization Menu unavailable for selection,
you can press Control-Alt.

3. On the form, click the area with the boxes that are used for the data of the business entity, to
open the Element Properties dialog box for the area.

4. In the Data Class box of the dialog box, view the name of the DAC for the element you clicked.
(See the following screenshot.) If you are not sure that this DAC is the needed one, click Cancel
and repeat Step 3.

5. Click Actions > Customize Data Fields, as the following screenshot shows.

Figure: Using the Element Properties dialog box to start the customization of the class

6. If there is no currently selected customization project and the inspector opens the Select
Customization Project Dialog Box, select an existing customization project or create a new one
(see To Create a New Project and To Select an Existing Project for details).

If the customization project does not contain a DAC item for the data access class, the Customization
Project Editor adds the item to the project to keep the changes in the database. The DAC is opened in
the Data Class Editor, and you can start the customization of the class.

When you click Save on the editor toolbar, the editor updates the DAC item in the database.



 | Customizing Business Logic | 261

Usage Entity Attributes Instead of Custom Fields

Under some circumstances, you will find it best to use entity attributes defined on the Attributes
form (CS205000; Configuration > Common Settings > Common Settings), while under other
circumstances, custom fields will help you better meet the requirements of your customization task.

You might use attributes under the following circumstances:

• You don't need a complex layout for attribute fields because they aren't used for manual input, so
you can use the easiest way of creating additional fields.

• You'd prefer an approach that helps you to localize customizations that you make to the system to
a limited number of spaces, which in turn helps you to avoid having scattered changes throughout
the system.

The use of custom fields provides more functionality than attributes do. Using attributes as columns in
a grid can present difficulties. For example, in a grid, you can display columns for either all attributes or
none of them. Also, you cannot rename a column for an attribute in a grid.

You might use custom fields under the following circumstances:

• These fields are for manual input and you need a nice-looking layout for them.

• You also have some business logic of validation based on a custom field, so you might need the
customization code for these fields.

To Add a Custom Data Field
You can add a custom data field to an existing data access class by using the Layout Editor or Data
Class Editor, as described in the following sections:

• By Using the Data Class Editor

• By Using the Layout Editor

Both of the editors opens the New Field dialog box, which you use to enter the parameters of the new
field and to launch the New Field wizard, which includes an XML declaration of the new field in the DAC
item for the modified data access class. If the DAC item for the modified data access class is absent
in the customization project, the wizard creates the appropriate item. Also, the wizard creates a Table
item with a description of the custom column added to the table for the custom field.

You can select the way a custom field will be stored in the database when you add the field to a data
access class. You can add a custom field as one of the following:

• Without mapping to the database

• As a new column to the database table by altering the table schema

• As a name-value pair to a dedicated table without altering the table schema

The detailed information is described in the following sections:

• To Add a Custom Field Without Mapping to the Database

• To Add a Custom Field as a New Column

• To Add a Custom Field as a Name-Value Pair

• To Delete a Custom Field

To be able to create a control for the new field to be displayed on a form, you have to publish the
project to make the system create the column in the database table and compile the customization
code. After the publication, you can add the control for the new field to a form by using the Layout
Editor. See To Add a Box for a Data Field or To Add a Column for a Data Field for details.

By Using the Data Class Editor

You generally use the Data Class Editor to add a custom field to a data access class (DAC) and store the
changes in the customization project as a DAC item. To do this, perform the following actions:



 | Customizing Business Logic | 262

1. Start customization of the data access class, as described in To Start the Customization of a
Data Access Class.

2. On the toolbar of the Data Class page, click Add Field > Create New Field.

3. In the New Field dialog box, which opens, specify the custom field parameters that are
described in Create New Field Dialog Box.

4. Click OK to save changes in the customization project.

By Using the Layout Editor

If you customize a form by using the Layout Editor, you may need to create a custom data field to be
used to create a new control on the form. By using the editor, you can create a new field in the main
DAC of the data view that provides data for the object selected in the Control Tree. To do this, perform
the following actions:

1. In the Control Tree of the Layout Editor, select the node of a container to which you intend to
add a new control, or a subnode within the container node.

2. Click the Add Data Fields tab item.

3. On the table toolbar of the tab item, click New Field.

4. In the New Field dialog box, which opens, specify the custom field parameters, which are
described in Create New Field Dialog Box.

5. Click OK to save your changes to the customization project.

To Add a Custom Field Without Mapping to the Database

To add a custom field without mapping to the database, perform the following actions:

1. Open Create New Field dialog box for the data access class By Using the Data Class Editor or
By Using the Layout Editor.

2. In the dialog box, specify the custom field parameters and select NonPersistedField in Storage
Type.

3. Click OK to add the field to the data access class.

The New Field wizard includes an XML declaration of the new field in the DAC item for the modified data
access class. The new field declaration contains the data type attribute that specifies an unbound field,
such as [PXString].

To Add a Custom Field as a New Column

To add a custom field as a new column that will be appended to the original table of Acumatica ERP,
perform the following actions:

1. Open the Create New Field dialog box for the data access class by using the Data Class Editor
or by using the Layout Editor.

2. In the dialog box, specify the custom field parameters and select DBTableColumn in the Storage
Type box to make the system append the column to the original table in the database.

3. Click OK to add the field to the data access class.

The New Field wizard includes an XML declaration of the new field in the DAC item for the modified data
access class. If the DAC item for the modified data access class is absent in the customization project,
the wizard creates the appropriate item. Also, the wizard creates a Table item with a description of the
custom column to be created in the database table for the custom field.



 | Customizing Business Logic | 263

To Add a Custom Field as a Name-Value Pair

To add a custom field a name-value pairs stored in a dedicated table of Acumatica ERP, perform the
following actions:

1. Open Create New Field dialog box for the data access class By Using the Data Class Editor or
By Using the Layout Editor.

2. In the dialog box, specify the custom field parameters and select NameValuePair in Storage
Type.

3. Click OK to add the field to the data access class.

The New Field wizard includes an XML declaration of the new field in the DAC item for the modified data
access class. If the DAC item for the modified data access class is absent in the customization project,
the wizard creates the appropriate item. The wizard doesn't generate any definitions to change the
database schema.

To Delete a Custom Field

To delete a custom field or custom attributes on a field from the data access class, open the data access
class in the Data Class Editor and delete the custom field from the field list. If you work in Microsoft
Visual Studio, publish the customization project to update the file with the customized data access class
in the file system. After the project has been published, the customization will be removed from the
data access class.

To Create a New DAC
You can add a new data access class (DAC) to a customization project by generating the code from the
definition of a database table.

To create a custom data access class for a custom database table and add the created item to a
customization project, you have to generate the class template on the Code page of the Customization
Project Editor.

To do this, perform the following actions:

1. Create the needed custom table in the database by using a database management tool.

2. Generate the DAC code for the customization project as follows:

a. Open the customization project in the Project Editor.

b. Click Code in the navigation pane to open the Code page.

c. Click Add New Record (+) on the page toolbar.

d. In the Create Code File dialog box, which opens, select New DAC in the File Template
box, as the screenshot below shows.

e. In the Class Name box, specify the class name that corresponds to the name of the table
created in the database.

:  If you have just created the table, restart Internet Information Services (IIS) or recycle
the application pool to make sure Acumatica ERP is aware of the new table, because it
caches the database schema once, when the domain starts.

f. Select the Generate Members from Database check box.

g. Click OK.



 | Customizing Business Logic | 264

Figure: Adding a new data access class to the customization project

The platform does the following:

• Generates the data access class with members that correspond to the table columns. The
class is added to the customization project namespace.

• Adds the class to the customization project as a Code item.

• Saves the customization project.

• Opens the created item in the Code Editor.

You can use the Code Editor to modify the generated code. After you publish the customization
project, you can work with the custom data access class in MS Visual Studio.

3. In the Code Editor, define the key fields in the DAC. To include a data field in the key, in the type
attribute of the field, you have to add the IsKey parameter, as the example below shows.

[PXDBString(15, IsKey=true)]

4. Add the table definition to the customization project by doing the following:

a. In the navigation pane of the Project Editor, select DB Scripts.

b. On the Database Scripts page, which opens, click Add New Record (+) on the toolbar.

c. In the Edit SQL Script dialog box, which opens, select the table name in the DBObject
Name selector.

d. Select the Import Table Schema from Database check box, which appears in the
dialog box once the platform has found the specified table in the database (see the
screenshot below).

e. Click OK.



 | Customizing Business Logic | 265

Figure: Adding an SQL script to the customization project

The platform does the following:

• Adds the XML definition of the table to the customization project as an Sql item

• Saves the customization project

Every time you publish the customization project, the system checks whether a table with
this SQL definition exists in the database. If the table doesn't exist, the system creates
the table. If the table exists, the system adjusts the table schema by using the definition,
if there is any difference (no data is truncated).

To Create a DAC Extension
If you know the name of the data access class to be customized, you can create a Code item with the
DAC extension template on the Code page of the Customization Project Editor by using the Create
Code File dialog box.

To do this, perform the following actions:

1. Open the customization project in the editor. (See To Open a Project for details.)

2. Click Code in the navigation pane to open the Code page.

3. Click Add New Record (+) on the page toolbar.

4. In the Create Code File dialog box, which opens, select DAC Extension in the File Template
box, as the screenshot below shows.

5. In the Base DAC box, select the name of the data access class to be customized.

6. Click OK.



 | Customizing Business Logic | 266

Figure: Adding a Code item with the DAC extension to the project

The platform creates the template of the class that is derived from the PXCacheExtension<> class,
saves the code as a Code item of the project in the database, and opens the item in the Code Editor.

Data Field
In a data access class (DAC), a data field declaration consists of the following elements:

• A public abstract class that implements the PX.Data.IBqlField interface. This abstract class
is used as a type to reference the field in the BQL statements specified in the data views and
attributes added to data field declarations.

• Attributes that provide the common business logic for the field. On a field, you use attributes
to define the data field specification, which includes multiple parameters, such as the data
type, default value, and field caption in the UI. The type attribute, such as PXDBString and
PXDBDecimal, is the only mandatory attribute of a DAC field.

• A public virtual property of a nullable data type that corresponds to the data type of this field.
This property keeps the value of the data field. The attributes are added to the property and not
to the abstract class of the data field declaration.

For a data field, you can customize only field attributes. You do this in one of the following ways:

• In the DAC (on the DAC level)

• In a graph (on the graph level)

On the DAC level, you can customize the attributes of a field by adding, deleting, replacing, or
modifying an attribute in the DAC extension by using the Data Class Editor.

On the graph level, you can define a new set of attributes for a field and apply changes by means of the
DACName_FieldPropertyName_CacheAttached() event handler in the graph extension.

The following diagram shows an example that demonstrates how the attributes of a field declared in a
data access class can be changed on the DAC and graph levels for two forms.



 | Customizing Business Logic | 267

:  In the example, as recommended in Customization of Field Attributes in DAC Extensions, the
CacheAttached() event handler is always used to merge the custom attributes of the field with the
original ones instead of replacing them on the graph level.

Figure: Example of the customization of attributes for a data field on the DAC and graph levels

On the diagram, you can see that the attribute collection for the same data field in the cache object can
be different for graphs that provide business logic for different forms.

For detailed information on customizing a data field, see the following topics:

• To Customize a Field on the DAC Level

• To Customize a Field on the Graph Level

• To Set a Default Value

• To Change the Label of a Field

• To Make a Field Mandatory

• To Customize the Table of a Selector Field

• To Add an Event Handler for a Field

• To Provide Multi-Language Support for a Field

To Customize a Field on the DAC Level
If an attribute is added to a field declaration within a data access class (DAC), the common business
logic of this attribute is applied to each data record of this type for each graph that uses this class.
Therefore, if multiple Acumatica ERP forms contain controls for the same field, a change to an attribute
of the field in the DAC modifies the behavior of these controls for the field on all forms.

You can use the Data Class Editor to customize the attributes of an existing data field in the DAC and
to store the changes in the customization project as a DAC item. Because the goal of the customization
of a field on the DAC level is to change the behavior or appearance of controls for the field on all forms,
you start the customization of a data field from any form that contains a control for the field.

To customize a data field from a form that contains a control for the field, perform the following actions:



 | Customizing Business Logic | 268

1. Open the form in the browser and make the control visible on the form.

2. On the form title bar, click Customization > Inspect Element to launch the Element
Inspector.

:  If you need to activate the Element Inspector for a pop-up panel, a dialog box, or another UI
element that opens in modal mode and makes the Customization Menu unavailable for selection,
you can press Control-Alt.

3. On the form, click the control to open the Element Properties dialog box for the control.

4. In the dialog box, click Actions > Customize Data Fields.

5. If there is no currently selected customization project and the inspector opens the Select
Customization Project Dialog Box, select an existing customization project or create a new one.
(See To Select an Existing Project and To Create a New Project for details.)

If the customization project does not contain a DAC item for the data access class, the
Customization Project Editor adds the item to the project to keep the changes in the database.
The DAC is opened in the Data Class Editor, and the needed field is added to list of customized
fields of the DAC.

6. In the list of customized fields of the DAC, click the name of the field to be customized.

Now you can start the customization of the field on the DAC level.

The Data Class editor shows the custom and original attributes of the field in the work area, and you
can use the following objects:

• The Customize Attributes text area: Use this area to define the custom attributes of the field.

• A drop-down list that is visible for only existing customized fields of the data access class: In this
list, select one of the following ways of applying the custom attributes to the field:

• Keep Original: The original attributes remain on the field until you select another option in
this box.

• Replace Original: The original attributes of the field are replaced with the custom attributes
specified in the Customize Attributes text area.

• Append to Original: The custom attributes are added to the end of the list of the original
attributes of the data field. If you use this option, make sure you do not duplicate the
attributes of the field.

• The Selector Columns toolbar action, which is available for only the fields that are selectors:
Use this action to open the Customize Selector Columns dialog box, in which you can modify the
columns in the selector table.

• The Edit Attributes toolbar action, which is unavailable for a custom field: Invoke this action to
change the values of parameters for the existing original attributes of the selected field.

When you click Save on the editor toolbar, the editor updates the DAC item in the database.

To Start the Customization of a Field from the Layout Editor

If you customize a form by using the Layout Editor, you may need to change the attributes a data
field to change the appearance or behavior of an appropriate control on the form. If the control node
is selected in the Control Tree, you can open the Data Class editor for the field immediately from the
Layout Editor. To do this, perform the following actions:

1. Click the Attributes tab item.

2. On the tab item, click Customize Attributes.

If the DAC item for the data access class that contains the field declaration is absent in the
customization project, the Acumatica Customization Platform creates an appropriate item and saves it
in the database. Then the platform opens the item in the Data Class editor, and you can customize the
attributes of the field.



 | Customizing Business Logic | 269

To Customize a Field on the Graph Level
If an attribute is added to a field declaration within a graph, the common business logic of this attribute
is applied to each data record of this type on the graph level for only this graph. Therefore, if multiple
Acumatica ERP forms contain controls for the same field, a change of an attribute of the field within
the graph modifies the behavior of a single control for the field on only the form for which the graph
provides business logic.

Because the goal of customizing a field on the graph level is to change the behavior or appearance of a
specific control for the field on a specific form, you start the customization of a data field from the form.

To customize a field on the graph level, perform the following actions:

1. Open the form in the browser and make the control visible on the form.

2. On the form title bar, click Customization > Inspect Element to launch the Element
Inspector.

:  If you need to activate the Element Inspector for a pop-up panel, a dialog box, or another UI
element that opens in modal mode and makes the Customization Menu unavailable for selection,
you can press Control-Alt.

3. On the form, click the control to open the Element Properties dialog box for the control.

4. In the dialog box, click Actions > Customize.

5. If there is no currently selected customization project and the inspector opens the Select
Customization Project Dialog Box, select an existing customization project or create a new one.
(See To Select an Existing Project or To Create a New Project for details.)

If the customization project does not contain a changeset for the form, the Customization Project
Editor adds to the project a Page item for the form, to keep the changeset to the ASPX code of
the form in the database. The container of the control is opened in the Layout Editor, and the
control is selected in the Control Tree of the editor.

6. Click the Attributes tab item, which is used to review and customize the attributes of the DAC
field that is bound to the control currently selected in the Control Tree.

7. Click Override On Screen Level to create in the graph extension the
code template, which includes the original attributes of the field and the
DACName_FieldPropertyName_CacheAttached() event handler, which replaces the attributes
within the graph.

If the customization project does not contain an extension for the graph, the Customization
Project Editor adds to the project a Code item for the graph extension, to keep the code in the
database. Then the Acumatica Customization Platform opens the Code item in the Code Editor,
and you can start the customization of the field on the graph level.

In the graph extension, you can define the field attributes as you need to. However you can use one of
the following approaches to customize the attributes of a field on the graph level:

• Define a new set of custom attributes to replace the original attributes of the field (as in the
created template).

• Use the PXCustomizeBaseAttribute, PXMergeAttributes, PXRemoveBaseAttribute, and
PXCustomizeSelectorColumns attributes to customize the original attributes of a field instead of
replacing it with custom ones.

We recommend that you use the second approach, which is described in Customization of Field
Attributes in DAC Extensions.

When you click Save on the Code editor toolbar, the editor updates the Code item in the database.

:  You can develop the customization code in the Code Editor. However we recommend that you develop the
code in Microsoft Visual Studio (as described in Integrating the Project Editor with Microsoft Visual Studio)
and use the editor for either minor code corrections or the insertion of completed portions of code.

To Set a Default Value
When a user creates a new record of a business entity through a form of Acumatica ERP, you might
need to set a default value for a data field. You use the PXDefault attribute for a data field to set a



 | Customizing Business Logic | 270

constant as the default value, or you provide a BQL query to obtain a value from the database or data
records from the cache. The default value is assigned to the field when a data record holding this field is
inserted into the cache.

:  If the default value is taken from a field that can be auto-generated by the database (such as an ID), you
should use the PXDBDefault attribute instead of the PXDefault attribute.

You can set a default value for an original or custom text field on the DAC and graph levels. The
following sections provide detailed information:

• To Set a Default Value for an Original Field on the DAC Level

• To Set a Default Value for an Original Field on the Graph Level

• To Set a Default Value for a Custom Field on the DAC Level

To Set a Default Value for an Original Field on the DAC Level

To set a default value for a field used on multiple forms, you should customize the original attributes of
the field in the data access class extension. To do this, perform the following actions:

1. Open the field in the Data Class Editor, as described in To Customize a Field on the DAC Level.

2. In the Customize Attributes box, select Append to Original.

3. In the edit area below the box, add the PXDefault attribute and define a default value for the
attribute.

4. Click Save on the editor toolbar to save your changes to the customization project.

To Set a Default Value for an Original Field on the Graph Level

To set a default value for a field used on a single form, you should customize the original attributes of
the field in the graph extension. To do this, perform the following actions:

1. Create the code template that includes the original attributes of the field and the
DACName_FieldPropertyName_CacheAttached() event handler, which replaces the attributes
within the graph, as described in To Customize a Field on the Graph Level.

2. By using the Code editor, replace the original attributes in the template, as shown in the
following code snippet.

[PXMergeAttributes(Method = MergeMethod.Append)]
[PXDefault(false, PersistingCheck = PXPersistingCheck.Nothing)]
protected void DACName_FieldPropertyName_CacheAttached(PXCache cache)
{
}

3. Click Save on the editor toolbar to save your changes to the customization project.

To Set a Default Value for a Custom Field on the DAC Level

If you need to set a default value for a custom data field on the DAC level, you add the PXDefault
attribute and define a default value for the attribute in the edit area of the Data Class editor, as shown
in the following screenshot.



 | Customizing Business Logic | 271

Figure: Setting a default value for a custom field

To Change the Label of a Field
You can change the label for an original data field on the DAC and graph levels. The following sections
provide detailed information:

• To Change the Label of a Field on the DAC Level

• To Change the Label of a Field on the Graph Level

To Change the Label of a Field on the DAC Level

To change the label of a control for a field used on multiple forms, you should customize the PXUIField
attribute of the field in the data access class extension. To do this, perform the following actions:

1. Open the field in the Data Class Editor, as described in To Customize a Field on the DAC Level.

2. In the Customize Attributes box, select Append to Original.

3. In the editor, click Edit Attributes on the page toolbar.

4. In the Attribute list of the Customize Attributes dialog box, which opens, click the PXUIField
attribute to select it.

5. In the parameter list, specify a new label for the DisplayName parameter, as the screenshot
below shows.

6. Click OK to exit the dialog box.

7. Click Save on the editor toolbar to save your changes to the customization project.



 | Customizing Business Logic | 272

Figure: Changing the display label of a field

As a result, the editor adds the following attribute for the field to the DAC extension.

[PXCustomizeBaseAttribute(typeof(PXUIFieldAttribute), "DisplayName", "NewName")]

To Change the Label of a Field on the Graph Level

To change the label of a field for a single form, you should customize the PXUIField attribute of the
field in the graph extension. To do this, perform the following actions:

1. Create the code template that includes the original attributes of the field and the
DACName_FieldPropertyName_CacheAttached() event handler, which replaces the attributes
within the graph, as described in To Customize a Field on the Graph Level.

2. By using the Code editor, replace the original attributes in the template, as shown in the
following code snippet.

[PXCustomizeBaseAttribute(typeof(PXUIFieldAttribute), "DisplayName",
 "NewName")]
protected void DACName_FieldPropertyName_CacheAttached(PXCache cache)
{
}

3. Click Save on the editor toolbar to save your changes to the customization project.

To Make a Field Mandatory
If a field is mandatory for input, the user has to specify a value for the field before saving the record
that contains the field. To make a field mandatory for input, you use the PXDefault attribute without
parameters. A mandatory field is marked by an asterisk (*) on the form to cue the reader that a value



 | Customizing Business Logic | 273

must be specified for it. To mark a control for a mandatory field with an asterisk, you set the Required
parameter of the PXUIField attribute to true.

You can make an original or custom field mandatory and mark a control for the field with an asterisk on
the DAC and graph levels. The following sections provide detailed information:

• To Make an Original Field Mandatory on the DAC Level

• To Make a Custom Field Mandatory on the DAC Level

• To Make a Field Mandatory on the Graph Level

To Make an Original Field Mandatory on the DAC Level

To make an original field mandatory and mark the control for the field with an asterisk on multiple
forms with an asterisk, you should customize the original attributes of the field in the data access class
extension. To do this, perform the following actions:

1. Open the field in the Data Class Editor, as described in To Customize a Field on the DAC Level.

2. In the Customize Attributes box, select Append to Original.

3. In the edit area below the box, add the PXDefault attribute without parameters.

4. In the editor, click Edit Attributes on the page toolbar.

5. In the Attribute list of the Customize Attributes dialog box, which opens, click the PXUIField
attribute to select it.

6. In the parameter list, set the Required parameter to True.

7. Click OK to exit the dialog box.

The edit area of the editor must contain the following code:

[PXDefault]
[PXCustomizeBaseAttribute(typeof(PXUIFieldAttribute), "Required", true)]

8. Click Save on the editor toolbar to save your changes to the customization project.

To Make a Custom Field Mandatory on the DAC Level

If you need to set a default value for a custom data field, you add the PXDefault attribute without
parameters and set the Required parameter of the PXUIField attribute to True, as in the following
code snippet.

[PXDefault]
[PXUIField(..., Required = true)]

To Make a Field Mandatory on the Graph Level

To make a field mandatory and mark the field with an asterisk for the field control used on a single
form, you should customize the field attributes in the graph extension. To do this, perform the following
actions:

1. Create the code template that includes the field attributes and the
DACName_FieldPropertyName_CacheAttached() event handler, which replaces the attributes
within the graph, as described in To Customize a Field on the Graph Level.

2. By using the Code editor, replace the original attributes in the template, as shown in the
following code snippet.

[PXDefault]
[PXCustomizeBaseAttribute(typeof(PXUIFieldAttribute), "Required", true)]
protected void DACName_FieldPropertyName_CacheAttached(PXCache cache)



 | Customizing Business Logic | 274

{
}

3. Click Save on the editor toolbar to save your changes to the customization project.

To Customize the Table of a Selector Field
For a selector field, you use the Data Class Editor to add, delete, and sort the columns of the selector
table and store the changes in the customization project as a DAC item.

You can make an original or custom field mandatory and mark a control for the field with an asterisk on
the data access class (DAC) and graph levels. The following sections provide detailed information:

• To Customize the Table of an Original Selector Field on the DAC Level

• To Customize the Table of an Original Selector Field on the Graph Level

To Customize the Table of an Original Selector Field on the DAC Level

To customize the table of an original selector field for all controls for the field, you should customize the
PXSelector attribute of the field in the data access class extension. To do this, perform the following
actions:

1. Open the field in the Data Class Editor, as described in To Customize a Field on the DAC Level.

2. In the editor, click Selector Columns on the page toolbar.

3. In the Customize Selector Columns dialog box, which opens, make the required changes.

You can use this dialog box to add new columns to the selector table and to reorder columns in
the table. (See Customize Selector Columns Dialog Box for details.)

4. Click OK to add the PXCustomizeSelectorColumns attribute for the field in the edit area of the
Data Class editor based on your changes, as shown in the following screenshot.

Figure: Viewing the PXCustomizeSelectorColumns attribute in the Data Class editor

5. Click Save on the editor toolbar to save your changes to the customization project.



 | Customizing Business Logic | 275

To Customize the Table of an Original Selector Field on the Graph Level

To customize the selector table for the selector control on a single form, you should customize the
PXSelector attribute of the appropriate field in the graph extension. To do this, perform the following
actions:

1. Create the code template that includes the field attributes and the
DACName_FieldPropertyName_CacheAttached() event handler that replaces the attributes
within the graph, as described in To Customize a Field on the Graph Level.

2. By using the Code editor, replace the original attributes in the template, as shown in the
following code snippet.

[PXCustomizeSelectorColumns(<NEW CONTENT OF THE PXSELECTOR ATTRIBUTE>)]
protected void DACName_FieldPropertyName_CacheAttached(PXCache cache)
{
}

3. Click Save on the editor toolbar to save your changes to the customization project.

To Add an Event Handler for a Field
You can add an event handler for an original or custom field on the graph and DAC levels. The following
sections provide detailed information:

• To Add an Event Handler for a Field on the Graph Level

• To Add an Event Handler for a Field on the DAC Level

To Add an Event Handler for a Field on the Graph Level

To add an event handler for a field control used on a single form, perform the following actions:

1. Open the form in the browser and make the control visible on the form.

2. On the form title bar, click Customization > Inspect Element to launch the Element
Inspector.

:  If you need to activate the Element Inspector for a pop-up panel, a dialog box, or another UI
element that opens in modal mode and makes the Customization Menu unavailable for selection,
you can press Control-Alt.

3. On the form, click the control for which you are adding an event handler to open the Element
Properties dialog box for the control.

4. In the dialog box, click Actions > Customize.

5. If there is no currently selected customization project and the inspector opens the Select
Customization Project Dialog Box, select an existing customization project or create a new one.
(See To Select an Existing Project or To Create a New Project for details.)

If the customization project does not contain a changeset for the form, the Customization Project
Editor adds a Page item for the form to the project to keep the changeset to ASPX code of the
form in the database. The container of the control is opened in the Layout Editor, and the control
is selected in the Control Tree of the editor.

6. If you need to provide additional business logic to process a control value immediately after the
value is changed, follow the instructions described in To Add an Event Handler. If you need to
override the existing business logic for the field, follow the instructions described in To Override
an Event Handler.



 | Customizing Business Logic | 276

To Add an Event Handler for a Field on the DAC Level

Typically, you develop an event handler to provide the business logic for a field on the graph level.
However if you need to add the same business logic for a field used on multiple forms, you add the
event handler on the DAC level as follow:

1. Create a custom attribute, as described in Lesson 8 of the T200 Acumatica Framework
Fundamentals course.

2. Add the needed event handler to the custom attribute.

3. Add the custom attribute to the field, as described in To Customize a Field on the DAC Level.

To Provide Multi-Language Support for a Field
Acumatica ERP 5.3 supports locale-specific settings and the translation of the strings used on the
application interface. Starting with Version 6, Acumatica ERP also provides the functionality to translate
user input to multiple languages and store translations in the database. (See Locales and Languages for
details.)

For example, if there are multiple active system locales in an instance of Acumatica ERP, and a text
field on a form is declared as a multi-language field, the field control displays the value for the current
locale. If the database does not contain a value for the current locale, the control displays the value for
the default system locale.

To declare a text field as a multi-language one, in the data access class, you should use the
PXDBLocalizableString attribute instead of PXDBString or PXDBText. The PXDBText attribute has to
be replaced with the PXDBLocalizableString one without any length specified.

:

• Please do not confuse the PXDBLocalizableString attribute with PXDBLocalString. The
PXDBLocalString attribute is deprecated and should not be used in the customization code.

• By default, starting with Acumatica ERP 6, the system supports multilingual user input for some
boxes listed in Boxes that Have Multi-Language Support. If the PXDBString attribute for a box
from the list was customized in the earlier versions, after you upgrade to Acumatica ERP 6, the box
will not have multi-language support. To resolve the issue, we recommend that you replace the
PXDBString attribute with PXDBLocalizableString in the customization code.

You can provide multi-language support for an original or custom text field. The following sections
provide detailed information:

• To Provide Multi-Language Support for an Original Field on the DAC Level

• To Provide Multi-Language Support for an Original Field on the Graph Level

• To Provide Multi-Language Support for a Custom Field

To Provide Multi-Language Support for an Original Field on the DAC Level

To provide multi-language support for a field used on multiple forms, you should customize the original
attributes of the field in the data access class extension. To do this, perform the following actions:

1. Open the field in the Data Class Editor, as described in To Customize a Field on the DAC Level.

2. In the editor, click Edit Attributes on the page toolbar.

3. In the Customize Attributes dialog box, which opens, select the PXDBString (or PXDBText)
attribute, and click Delete (Х) on the toolbar.

4. Click OK to save your changes and close the dialog box.

5. In the Customize Attributes box of the editor, select Append to Original, as shown in the
screenshot below.

6. In the work area below the box, add the PXDBLocalizableString attribute, which has the same
parameters as the deleted PXDBString (or PXDBText) attribute.

http://acumaticaopenuniversity.com/wp-content/uploads/2016/10/T200_AcumaticaFrameworkFundamentals_6_0.pdf
http://acumaticaopenuniversity.com/wp-content/uploads/2016/10/T200_AcumaticaFrameworkFundamentals_6_0.pdf


 | Customizing Business Logic | 277

7. Click Save on the editor toolbar to save your changes to the customization project.

For example, after you perform these actions for the Description field on the Sales Orders form
(SO301000; Distribution > Sales Orders > Work Area > Enter), the Customize Attributes area
of the Data Class editor contains the following code (as shown in the screenshot below).

[PXDBLocalizableString(255, IsUnicode = true)]
[PXRemoveBaseAttribute(typeof(PXDBStringAttribute))]

Figure: Providing multi-language support for the Description field of the Sales Orders form

To Provide Multi-Language Support for an Original Field on the Graph Level

To provide multi-language support for a field used on a single form, you should customize the original
attributes of the field in the graph extension. To do this, perform the following actions:

1. Create the code template, which includes the original attributes of the field and the
DACName_FieldPropertyName_CacheAttached() event handler, which replaces the attributes
within the graph, as described in To Customize a Field on the Graph Level.

2. By using the Code editor, replace the original attributes in the template, as shown in the
following code snippet.

[PXMergeAttributes(Method = MergeMethod.Merge)]
[PXDBLocalizableString(255, IsUnicode = true)]
protected void DACName_FieldPropertyName_CacheAttached(PXCache cache)
{
}

3. Click Save on the editor toolbar to save the changes to the customization project.

To Provide Multi-Language Support for a Custom Field

If you need to create a custom text box with multi-language support, first you create a custom
field with the PXDBString attribute. Then in the DAC, you replace this attribute name with
PXDBLocalizableString.



 | Customizing Business Logic | 278

Graph
A business logic controller (BLC, also referred as graph) is used to provide the business logic for an
Acumatica ERP form. A graph instance is created when a data request occurs and discarded after the
request is processed.

With Acumatica Framework, the application programmer is restricted from direct database access and
from writing SQL queries. Database specifics are hidden for the application behind data access classes,
and the SQL queries are constructed declaratively through Business Query Language (BQL). Through a
set of generic classes, the BQL library provides a rich syntax for building the equivalents of SQL queries
of any complexity. Unlike SQL statements, BQL statements operate with data access classes, rather
than database tables, and provide compatibility between different database engines. The BQL library
supports MS SQL and MySQL database engines, as well as access to the database through the ODBC
provider.

Each graph contains the Caches collection of cache objects and the Views collection of data view
objects. The framework handles these objects automatically; you don't have to initialize and control
them. A PXView data view object contains two main parts:

• The BQL command, which is defined by the type of the data view

• The optional delegate, which constructs the data set that is returned instead of the BQL
command's execution result

PXView objects, like graphs, are initialized and destructed on each round trip.

:  The order in which data views are defined in a graph is important, because it defines the order of saving
data to the database. (This order, however doesn't define the order in which data views are executed.) The
data view that you specify in the PrimaryView property should always be defined first in the graph.

If a BQL statement of a data view refers to multiple data access classes (DACs), the data view creates
the PXCache object for each DAC to keep appropriate data records, as shown in the following diagram.

Figure: Example of two data views working with the records of three DACs

If multiple data views contain a reference to the same DAC, for this DAC, the graph cache contains a
single PXCache object that is used by the data views.

On a webpage, you bind each container to a data view that provides data for the container. To bind a
container and a data view, you specify the data view name in the DataMember property of the container



 | Customizing Business Logic | 279

in the ASPX code. When a webpage requests data, the system invokes the ExecuteSelect() method
of the graph with the data view name passed as an argument to execute every data view bound to the
containers of the webpage. Note that data views that aren't bound to a container are not executed by a
request from the UI.

When a data record is modified on the page, the framework invokes the ExecuteInsert(),
ExecuteUpdate(), or ExecuteDelete() method of the graph, passing the name of the data view as an
argument. The graph gets the data view by its name and invokes the corresponding method of the data
view.

:  You shouldn't use the ExecuteSelect(), ExecuteInsert(), ExecuteUpdate(), and
ExecuteDelete() methods for purposes other than debugging.

You use the Customization Tools of the Acumatica Customization Platform to create a custom graph and
to create new members and override existing ones in an existing graph.

For detailed information on creating a custom graph and customizing an existing graph, see the
following topics:

• To Start the Customization of a Graph

• To Create a Custom Graph

• To Add a New Member

• To Add an Action

• To Add an Event Handler

• To Override an Event Handler

• To Override a Virtual Method

To Start the Customization of a Graph
You can create the class extension for an existing business logic controller (BLC) and add the Code item
with the created code to a customization project in several ways, as described in the following sections:

• To Add a Code Item by Using the Element Inspector

• To Add a Code Item by Using the Layout Editor

• To Add a Code Item on the Code page

If you need to extend the code of a BLC that has no webpage associated (such as ARReleaseProcess),
follow the instructions described in To Add a Code Item on the Code page.

As soon as you add the Code item for customization of the business logic to the project, the system
generates an extension class for it and opens the code in the Code Editor. You can work with the
extension classes in the Code Editor. After you publish the customization project, you can develop the
code in MS Visual Studio.

To Add a Code Item by Using the Element Inspector

Typically, you want to modify the business logic that is executed for a certain form of Acumatica ERP.

To add a Code item for customization of the business logic for an existing form to a customization
project by using the Element Inspector, perform the following actions:

1. Open the form in the browser.

2. On the form title bar, click Customization > Inspect Element to launch the Element Inspector.

3. On the form, select any UI element to open the Element Properties Dialog Box for the element.

The Business Logic box of the dialog box displays the name of the business logic controller that
provides business logic for the form, as shown in the screenshot below.

4. In the dialog box, click Actions > Customize Business Logic.



 | Customizing Business Logic | 280

Figure: Using the Element Properties dialog box to customize the business logic for the form

5. If there is no currently selected customization project and the inspector opens the Select
Customization Project Dialog Box, select an existing customization project or to create a new
one.

The platform creates the template of the class that is derived from the PXGraphExtension<> class,
saves the code as a Code item of the project in the database, and opens the item in the Code Editor, as
shown in the following screenshot.

Figure: Viewing the created code template in the Code Editor

To Add a Code Item by Using the Layout Editor

Often, you start a customization of an Acumatica ERP form in the Layout Editor and you later want to
modify the business logic for this form. To customize the business logic of the form, you can add a Code
item to a customization project from the Layout Editor.

To do this, perform the following action:



 | Customizing Business Logic | 281

1. On the toolbar of the Layout Editor, click Actions > Customize Business Logic, as the
following screenshot shows.

Figure: Starting the customization of the business logic from the Layout Editor

The platform creates the template of the class that is derived from the PXGraphExtension<> class,
saves the code as a Code item of the project in the database, and opens the item in the Code Editor.

To Add a Code Item on the Code page

If you know the name of the business logic controller to be customized, you can create a Code item
with the graph extension template on the Code page of the Customization Project Editor by using the
Create Code File dialog box.

To do this, perform the following actions:

1. Open the customization project in the editor. (See To Open a Project for details.)

2. Click Code in the navigation pane to open the Code page.

3. Click Add New Record (+) on the page toolbar.

4. In the Create Code File dialog box, which opens, select Graph Extension in the File Template
box, as the screenshot below shows.

5. In the Base Graph box, select the class name of the business logic controller to be customized.

6. Click OK.



 | Customizing Business Logic | 282

Figure: Adding a Code item with the graph extension to the project

The platform creates the template of the class that is derived from the PXGraphExtension<> class,
saves the code as a Code item of the project in the database, and opens the item in the Code Editor.

To Create a Custom Graph
You can add a custom business logic controller to a customization project on the Code page of the
Customization Project Editor.

To do this, perform the following actions:

1. Open the customization project in the editor. (See To Open a Project for details.)

2. Select Code in the navigation pane to open the Code page.

3. Click Add New Record (+) on the page toolbar.

4. In the Create Code File dialog box, which opens, select New Graph in the File Template box,
as the screenshot below shows.

5. In the Class Name box, specify the class name of the business logic controller to be created.

6. Click OK.

Figure: Adding a Code item for a custom graph to the project

The platform creates the code template of the class derived from the PXGraph<> class, saves the code
as a Code item of the project in the database, and opens the item in the Code Editor.

To Add a New Member
You can add a new member (such as a variable, data view, or method) to a custom graph or to an
extension for a graph in Acumatica ERP.



 | Customizing Business Logic | 283

Initially, the code of a custom graph or an extension for an existing graph is saved in the appropriate
Code item of the customization project. If the project has not been published, you can use only the
Code Editor to add a new member to the graph code.

After the customization project has been published, the code is also saved in the corresponding C# file
in the App_RuntimeCode folder of the website. (See Changes in the Application Code (C#) for details.)
You can open the file in Microsoft Visual Studio and use Visual Studio to add a new member to the
graph code. To do this, perform the following actions:

1. In Visual Studio, click File > Open > Web Site, and select your Acumatica ERP development
environment.

2. Open the App_RuntimeCode\<CodeItemName>.cs file.

3. In the code, add the needed class member.

4. Save the file.

5. In the Customization Project Editor, select the Files node in the navigation pane.

6. On the Custom Files page, which opens, click Detect Modified Files on the page toolbar.

:  The customization platform compares the content of each file added to the site with the content
of the associated item of the customization project in the database. If a difference is detected, the
platform opens the Modified Files Detected dialog box so you can resolve the detected conflicts.
You can either update the customization project in the database or discard the file changes in the
file system to resolve the conflicts.

7. In the Modified Files Detected dialog box, which opens, ensure that the modified code file is
selected.

8. Click Update Customization Project on the dialog box toolbar to update the Code item that is
saved in the database.

If the graph code is included in an extension library whose binary file is added to the customization
project as a File item, you can use Visual Studio to add a new member to the graph code in the library
solution. (See Extension Library for details.) If you make changes to the extension library file in the file
system, you have to update the appropriate File item in the customization project. See To Update a File
Item in a Project for details.

To Add an Action
To add a new action to the toolbar of an original form of Acumatica ERP, you have to add to the
appropriate graph extension the action declaration, toolbar button declaration, and action delegate
method. (See To Start the Customization of a Graph for details.)

To add a new action to the toolbar of a custom form, you have to add the action code to the appropriate
custom graph. (See To Create a Custom Form Template and To Create a Custom Graph for details.)

You can use the Code Editor to add an action template to the graph extension or custom graph that is
saved in a customization project as a Code item and currently opened in the editor. To do this, perform
the following actions:

1. Click the New Action button of the Code Editor to open the Create Action dialog box.

2. In the dialog box, specify the name of the action delegate method in the Action Name box and
the name of the action button in the Display Name box, as shown in the following screenshot.



 | Customizing Business Logic | 284

Figure: Opening the New Action dialog box

3. Click OK to create the action template and add it to the item.

The system adds to the code a template of the action declaration that includes the following class
members:

• The declaration of the action delegate method

• The declaration of the button attributes to add the button to the form toolbar with the specified
name

• The template of the action delegate method

The following example shows the template code for an action.

public PXAction<DACName> myActionDelegateMethod;

[PXButton(CommitChanges = true)]
[PXUIField(DisplayName = "MyActionButtonName")]
protected void MyActionDelegateMethod()
{
  // the body of the action delegate method
}

If the code of a graph extension or custom graph is moved to an extension library whose binary file is
added to the customization project as a File item, you should develop the action code from scratch by
using Visual Studio. If you make changes to the extension library file in the file system, you have to
update the appropriate File item in the customization project. See To Update a File Item in a Project for
details.

To Add an Event Handler
If you customize a form, you may need to provide additional business logic for processing a control
value immediately after the value is changed.

To implement business logic for data changed by the user on an original form, you should add event
handlers for data fields (or data records) to the extension of the graph that provides business logic for
the form.

To process data modification on a custom form, you should add event handlers for data fields (or data
records) to the appropriate custom graph.

You can use the Layout Editor to add to the appropriate customization code a workable template of an
event handler for a data field (or data record) that can be modified on a form. To do this, perform the
following actions:

1. Open the form in the browser and make the control for the field visible on the form.



 | Customizing Business Logic | 285

2. On the form title bar, click Customization > Inspect Element to launch the Element
Inspector.

:  If you need to activate the Element Inspector for a pop-up panel, dialog box, or another UI
element that opens in modal mode and makes the Customization Menu unavailable for selection,
you can press Control-Alt.

3. On the form, click the control to open the Element Properties dialog box for the control.

4. In the dialog box, click Actions > Customize.

5. If there is no currently selected customization project and the inspector opens the Select
Customization Project Dialog Box, select an existing customization project or create a new one.
(See To Create a New Project and To Select an Existing Project for details.)

If the customization project does not contain a changeset for the form, the Customization Project
Editor adds to the project a Page item for the form, to keep the changeset to the ASPX code of
the form in the database. The container of the control is opened in the Layout Editor, and the
control is selected in the Control Tree of the editor.

6. Select the node of the control in the Control Tree.

7. Click the Properties tab item to open the list of properties for the control.

8. In the list, set the CommitChange property to True. (See Using the CommitChanges Property for
detailed information about the property.)

9. Click Save to save your changes in the customization project.

10. Click the Events tab item to open the list of available event types for the control.

11. In the list, click the type of the event that you want to process for the field to highlight the type,
as shown in the screenshot below.

12. On the list toolbar, click Add Handler > Keep Base Method.

Figure: Adding an event handler for a data field

If there is no extension for the graph that provides business logic for the form in the customization
project, the Acumatica Customization Platform creates a template for the extension and saves it as a
Code item in the database. Then the platform adds to the graph extension a template for the event



 | Customizing Business Logic | 286

handler highlighted in the list and opens the Code item in the Code Editor, as shown in the following
screenshot.

Figure: Viewing the event handler template

In the template, the event handler has two parameters, as is defined in the base graph. As a result, the
event handler is added to the appropriate event handler collection.

When you publish the customization project, the platform saves the graph extension as a C# source
code file in the App_RuntimeCode folder of the website. You can later develop the event handler in
Microsoft Visual Studio. (See Integrating the Project Editor with Microsoft Visual Studio for details.)

To Override an Event Handler
If you customize a form, you may need to override the business logic that processes a control value
immediately after the value is changed.

To implement business logic for data changed by the user on an original form, you should add event
handlers for data fields (or data records) to the extension of the graph that provides business logic for
the form.

To process data modification on a custom form, you should add event handlers for data fields (or data
records) to the appropriate custom graph.

You can use the Layout Editor to add to the appropriate customization code a workable template of
an event handler that overrides the base event handler for a data field (or data record). To do this,
perform the following actions:

1. Open the form in the browser and make the control for the field visible on the form.

2. On the form title bar, click Customization > Inspect Element to launch the Element
Inspector.

:  If you need to activate the Element Inspector for a pop-up panel, dialog box, or other UI element
that opens in modal mode and makes the Customization Menu unavailable for selection, you can
press Control-Alt.

3. On the form, click the control to open the Element Properties dialog box for the control.

4. In the dialog box, click Actions > Customize.

5. If there is no currently selected customization project and the inspector opens the Select
Customization Project Dialog Box, elect an existing customization project or create a new one.
(See To Create a New Project and To Select an Existing Project for details.)

If the customization project does not contain a changeset for the form, the Customization Project
Editor adds a Page item for the form to the project, to keep the changeset to the ASPX code of
the form in the database. The container of the control is opened in the Layout Editor, and the
control is selected in the Control Tree of the editor.



 | Customizing Business Logic | 287

6. Select the node of the control in the Control Tree.

7. Click the Properties tab item to open the list of properties for the control.

8. In the list, ensure that the CommitChange property is set to True. (See Using the
CommitChanges Property for detailed information about the property.)

9. Click Save to save your changes in the customization project.

10. Click the Events tab item to open the list of available event types for the control.

11. In the list, click the type of the event that you want to process for the field to highlight the type,
as shown in the screenshot below.

12. On the list toolbar, click Add Handler > Override Base Method.

Figure: Adding an event handler for a data field

If there is no extension for the graph that provides business logic for the form in the customization
project, the Acumatica Customization Platform creates a template for the extension and saves it as a
Code item in the database. Then the platform adds to the graph extension a template for the event
handler highlighted in the list and opens the Code item in the Code Editor, as shown in the following
screenshot.



 | Customizing Business Logic | 288

Figure: Viewing the event handler template

In the template, the event handler has an additional parameter to replace the base event handler
collection of the graph.

When you publish the customization project, the platform saves the graph extension as a C# source
code file in the App_RuntimeCode folder of the website. You can later develop the event handler in
Microsoft Visual Studio. (See Integrating the Project Editor with Microsoft Visual Studio for details.)

To Override a Virtual Method
In a graph extension, you can override the virtual methods defined within the base graph. As with the
event handlers, you have two options:

• You can define the override method with exactly the same signature—that is, the return value,
the name of the method, and all method parameters—as the overridden base virtual method has.
As a result, the method is added to the queue of all override methods. When the system invokes
the base method, all methods in the queue are executed sequentially, from the first one to the
last one. The lower the level the BLC extension has, the earlier the system invokes the override
method.

• You can define the override method with an additional parameter, which represents the delegate
for one of the following:

• The override method with an additional parameter from the extension of the previous level,
if such a method exists

• The base virtual method, if no override methods with additional parameters declared within
lower-level extensions exist

In both cases, you should attach the PXOverride attribute to the override method declared within the
BLC extension, as described in the following sections below:

• Override Method That Is Added to the Override Method Queue

• Override Method That Replaces the Original Method

Override Method That Is Added to the Override Method Queue

By declaring an override method with exactly the same signature as the overridden base virtual method
has, you extend the base method execution. The base BLC method is replaced at run time with the
queue of methods, which starts with the base BLC method. When the system invokes the base method,
all methods in the queue are executed sequentially, from the first one to the last one. The lower the
level the BLC extension has, the earlier the system invokes the override method. If the system has
invoked the base method, you have no option to prevent the override method queue from execution.
To prevent the base method executions, see the Override Method That Replaces the Original Method
section below.

To add an override method that is added to the override method queue, perform the following actions:



 | Customizing Business Logic | 289

1. Create the graph extension, as described in To Start the Customization of a Graph.

2. In the Code Editor, click View Source to view the code of the base graph in the Source Code
Browser.

:  In an instance of Acumatica ERP, a repository with the original C# source code of the application
is kept in the \App_Data\CodeRepository folder of the website.

3. In the browser, select and copy the code of the method.

4. In the Code Editor, paste the method code in the graph extension.

5. In the graph extension, insert the PXOverride attribute immediately before the method
signature.

6. Clear the method body.

7. Develop the code of the method.

8. Click Save in Code Editor to save your changes.

Override Method That Replaces the Original Method

The override method with an additional parameter replaces the base BLC virtual method. When the
virtual method is invoked, the system invokes the override method with an additional parameter of
the highest-level BLC extension. The system passes a link to the override method with an additional
parameter from the extension of the previous level, if such a method exists, or to the base virtual
method.

You use a delegate as an additional parameter to encapsulate the method with exactly the same
signature as the base virtual method. If the base virtual method contains a list of parameters, then
you should not use the same list of parameters when you declare the override method with an
additional parameter. To declare a MyMethod override method with an additional parameter within a BLC
extension, you can use the following example.

public class BaseBLCExt : PXGraphExtension<BaseBLC>
{
  public delegate ReturnType MyMethodDelegate([List of Parameters]); 
  [PXOverride]
  public ReturnType MyMethod([List of Parameters,] MyMethodDelegate baseMethod)
  {
    return baseMethod(adapter);
  }
}

You can decide whether to call the method pointed to by the delegate. By invoking the base method,
you also start the execution of the override method queue.

To add an override method that replaces the base BLC virtual method, perform the following actions:

1. Create the graph extension, as described in To Start the Customization of a Graph.

2. In the Code Editor, click Override Method, as shown in the screenshot below.

3. In the Selected column of the Select Methods to Override dialog box, which opens, select the
method to be overridden.

4. Click Save to add the code template for the override method to the graph extension.



 | Customizing Business Logic | 290

Figure: Selecting a method to be overridden

Once the override method template has been created (see the following screenshot), you can
implement the needed code within the template.



 | Customizing Business Logic | 291

Figure: Viewing the override method template in the Code Editor

When you publish the customization project, the platform saves the graph extension as a C# source
code file in the App_RuntimeCode folder of the website. You can later develop the event handler in
Microsoft Visual Studio. (See Integrating the Project Editor with Microsoft Visual Studio for details.)

Data View
In a business logic controller (BLC, also referred to as graph), a data view is a PXView object that is
used to access and manipulate data. In an ASPX page, to obtain data for controls, each container has to
be bound to a data view of the BLC that is bound to the PXDataSource control of the page.

A data view object contains two main parts:

• The BQL command, which is defined by the type of the data view

• The optional delegate, which constructs the data set that is returned instead of the result of the
execution of the BQL command

In a graph extension, you can include the following member types:

• Declaration of a custom data view

• Redefinition for an existing data view

• Declaration of the delegate for an existing data view

• An override method for an existing data view delegate

To declare a custom data view in a graph extension, you can follow the instructions described in To Add
a New Member.

For detailed information on customizing a data view, see the following topics:



 | Customizing Business Logic | 292

• To Override a Data View

• To Add a Data View Delegate

• To Override a Data View Delegate

To Override a Data View
To modify a data view, you have to redefine the data view in the graph extension class. The data view
redefined within a BLC extension completely replaces the base data view within the Views collection of
a graph instance, including all attributes attached to the data view declared within the base graph. You
can either attach the same set of attributes to the data view or completely redeclare the attributes. For
details, see Graph Extensions. The data view must have exactly the same identifier, which is referred to
in the appropriate container in the ASPX page.

To redefine a data view in the graph extension, perform the following actions:

1. Create the graph extension, as described in To Start the Customization of a Graph, if required.

2. In the Code Editor, click View Source to view the code of the base graph in the Source Code
Browser.

:  In an instance of Acumatica ERP, a repository with the original C# source code of the application
is kept in the \App_Data\CodeRepository folder of the website.

3. In the browser, select and copy the data view declaration.

4. In the Code Editor, paste the data view declaration in the graph extension.

5. In the graph extension, redefine the data view declaration as required.

6. Click Save in the Code Editor to save your changes.

To Add a Data View Delegate
By default, when a data view object is requested by the UI or you invoke the Select() method on the
object, the system executes the query specified in the data view declaration. However you can define
a dynamic query, which is an optional graph method (called the data view delegate) that is executed
when the data view is requested. If no dynamic query is defined in the graph, Acumatica Framework
executes the BQL statement from the data view declaration.

You can use the data view delegate in the following cases:

• If you construct the query dynamically at run time by adding Where<> and Join<> clauses
depending on some condition, typically a filter

• If the query retrieves data fields that cannot be calculated declaratively by attributes—for
instance, if you retrieve values aggregated by calculated data fields

• If the result set has data records that aren't retrieved from the database and are composed
dynamically in code

In a graph extension, to define the delegate for a data view, you should redeclare the data view and
add a method that has the same name as the data view but uses a different case of the first letter (for
example, if the data view name is MyDataView, the name of the delegate must be myDataView). The
delegate returns an IEnumerable object, as shown in the code below.

// The delegate for the MyDataView data view
protected virtual IEnumerable myDataView()
{
  // The code to be used to construct the query dynamically at run time, execute
  // the query, and return the list of retrieved records
}

:  When you declare or alter a data view delegate within a graph extension, the new delegate is attached to
the corresponding data view. To query a data view declared within the base graph or lower-level extension
from the data view delegate, you should redeclare the data view within the graph extension. You do not
need to redeclare a generic PXSelect<Table> data member in the graph extension when it will not be
used from the data view delegate. For details, see Graph Extensions.



 | Customizing Business Logic | 293

You can add a data view delegate to a custom graph or to an extension for an existing graph, which is
saved in the appropriate Code item of the customization project. See To Create a Custom Graph and To
Start the Customization of a Graph for details.

If the project has not been published, you can use only the Code Editor to add a new member to the
graph code.

After the customization project has been published, the code is also saved in the corresponding C# file
in the App_RuntimeCode folder of the website. (See Changes in the Application Code (C#) for details.)
You can open the file in Microsoft Visual Studio and use Visual Studio to add a data view delegate to the
graph code. To do this, perform the following actions:

1. In Visual Studio, click File > Open > Web Site, and select your Acumatica ERP development
environment.

2. Open the App_RuntimeCode\<CodeItemName>.cs file.

3. In the code, develop the delegate for the data view.

:  An example of implementation of a data view delegate for a custom graph is described in Step
11.7 of the T300 Acumatica Customization Platform course. See Declaring or Altering a BLC Data
View Delegate for an example of a data view delegate for a graph extension.

4. Debug the code by using Visual Studio, as described in To Debug the Customization Code.

5. Save the file.

6. In the Customization Project Editor, select the Files node in the navigation pane.

7. On the Custom Files page, which opens, click Detect Modified Files on the page toolbar.

:  The customization platform compares the content of each file added to the site with the content
of the associated item of the customization project in the database. If a difference is detected, the
platform opens the Modified Files Detected dialog box so you can resolve the detected conflicts.
You can either update the customization project in the database or discard the file changes in the
file system to resolve the conflicts.

8. In the Modified Files Detected dialog box, which opens, ensure that the modified code file is
selected.

9. Click Update Customization Project on the dialog box toolbar to update the Code item that is
saved in the database.

To Override a Data View Delegate
You can modify the data view delegate—that is, the method that is invoked when the records are
retrieved through the data view. To do this, perform the following actions:

1. Create the graph extension, as described in To Start the Customization of a Graph, if required.

2. In the Code Editor, click View Source to view the code of the base graph in the Source Code
Browser.

:  In an instance of Acumatica ERP, a repository with the original C# source code of the application
is kept in the \App_Data\CodeRepository folder of the website.

3. In the browser, select and copy the data view declaration and the data view delegate.

:  The override data view delegate must have exactly the same signature—the return value, the
name of the method, and any method parameters—as the base data view delegate.

4. In the Code Editor, paste the code in the graph extension.

:  When you declare or alter a data view delegate within a graph extension, the new delegate is
attached to the corresponding data view. To query a data view declared within the base graph or
a lower-level extension from the data view delegate, you should redeclare the data view within
the graph extension. You do not need to redeclare a generic PXSelect<Table> data member in
the graph extension when it will not be used from the data view delegate. For details, see Graph
Extensions.

5. In the graph extension, rewrite the data view delegate code as you need to.

http://acumaticaopenuniversity.com/wp-content/uploads/2016/10/T300-Acumatica-Customization-Platform-6.0.pdf


 | Customizing Business Logic | 294

6. Click Save in the Code Editor to save your changes.

Action
An action is a graph member of the PXAction type. An action always has the delegate defined. Every
action is represented by the PXAction object and placed in the Actions collection of the appropriate
graph. To construct an instance of the PXAction class, you use a graph member of the PXAction type
and a delegate from the highest-level extension discovered.

To modify the business logic of an action that is defined within a graph, you should override the action
delegate.

To rename, disable, or hide an action button, you should override the action attributes.

The redefined action delegate must have exactly the same signature—that is, the return value, the
name of the method, and any method parameters—as the base action delegate has. You always have
to redefine the action delegate to alter either its delegate or the attributes attached to the action. To
use the action declared within the base graph or a lower-level extension from the action delegate,
you should redefine the generic PXAction<TNode> data member within the graph extension. You do
not need to redefine the data member when it is not meant to be used from the action delegate. For
details, see Graph Extensions. When you redefine an action delegate, you have to repeat the attributes
attached to the action. Every action delegate must have PXButtonAttribute (or the derived attribute)
and PXUIFieldAttribute attached.

For detailed information on customizing an action, see the following topics:

• To Start the Customization of an Action

• To Override an Action Delegate Method

• To Rename an Action Button

• To Disable or Enable an Action

• To Hide or Show an Action

To Start the Customization of an Action
If you need to customize an action represented by a button on a form, perform the following actions:

1. To find the declaration of the action, do the following:

a. Open the form in the browser, and make the button visible on the form (if it isn't when
the form is brought up).

b. On the form title bar, click Customization > Inspect Element to launch the Element
Inspector.

c. On the form, click the button to open the Element Properties dialog box for the button.

:  If the action command is a part of an action menu, open the menu to display the
command and use the keyboard shortcut Ctrl+Alt+Click to inspect the action item in the
menu, as shown in the following screenshot.



 | Customizing Business Logic | 295

Figure: Displaying the action name in the Element Properties dialog box

d. In the dialog box, click Actions > View Business Logic Source to open the source code
of the graph whose name is displayed in the Business Logic box of the Element Properties
dialog box.

:  In an instance of Acumatica ERP, the repository with the original C# source code of the
application is kept in the \App_Data\CodeRepository folder of the website.

e. In the Methods list of the Source Code browser, which opens for the graph, search for
and click the action name to display the action delegate method in the work area of the
browser, as the following screenshot shows.

Figure: Viewing the action delegate method in the Source Code browser



 | Customizing Business Logic | 296

f. If the search fails, try to find the action declaration in the base class of the graph.

:  If the button has an unique name, you can also find the action declaration in the Source Code
Browser, as described in To Find Source Code by a Fragment, by using the button name as a code
fragment.

2. Explore the action declaration in the source code of the original graph.

3. Select and copy the action declaration.

4. Create an extension for the graph, as described in To Start the Customization of a Graph, if
needed.

5. In the graph extension, paste the action declaration and develop the needed code to change the
behavior and appearance of the action.

To Override an Action Delegate Method
With the technology based on extension models, an action from base graph is always completely
replaced by the identically named action declared within a graph extension.

To override an action delegate method in a graph extension, you should declare both the graph member
of the PXAction type and the delegate. You should attach a new set of attributes to the action delegate
declared within the graph extension. Also, you need to invoke the Press() method on the base graph
action. Because you have redeclared the member of PXAction, you have prevented the action delegate
execution from infinite loops.

:  If you have a customization that replaces an original action declaration statically, after you upgrade
Acumatica ERP to a new version, new functionality of the action may became unavailable.

Do the following to override an action delegate method:

1. Explore the original action declaration and copy the declaration to the graph extension, as
described in To Start the Customization of an Action.

Attention:  We recommend that you not remove or change any attributes of the action.

2. In the action declaration, replace the action delegate with the following code template.

public virtual IEnumerable myAction(PXAdapter adapter)
{
  return Base.MyAction.Press(adapter);;
}
#endregion

3. In the code template, replace myAction and MyAction with the appropriate names.

4. In the template, redefine the action delegate arguments and return type based on the signature
of the base action delegate.

5. Implement the needed code in the override action delegate.

6. Click Save in the Code Editor to save your changes.

To Rename an Action Button
To rename an action button, you should redefine the DisplayName parameter of the PXUIField
attribute for the button.

You can change attributes of an action button in one of the following ways:

• Dynamically at run time, in the Initialize() method of the graph extension

• Statically, by overriding the action attributes in the graph extension



 | Customizing Business Logic | 297

To Rename an Action Button Dynamically at Run Time

1. Explore the original action declaration, as described in To Start the Customization of an Action
but without copying the declaration to the graph extension.

2. In the graph extension, add the following code.

#region Extended initialization

public override void Initialize()
{
  base.Initialize();
  Base.MyAction.SetCaption("NEW NAME");
}
#endregion

3. In the added code, replace MyAction with the action name and specify the needed button
name.

4. Click Save in Code Editor to save the changes.

To Rename an Action Button Statically

To override action attributes in a graph extension statically, you should declare both the graph member
of the PXAction type and the delegate. You should attach a new set of attributes to the action delegate,
declared within the graph extension. Also, you need to invoke the Press() method on the base graph
action. Because you have redeclared the member of PXAction, you have prevented the action delegate
execution from infinite loops.

:  If you have a customization that replaces an original action declaration statically, after you upgrade
Acumatica ERP to a new version, the new functionality of the action may became unavailable.

To rename an action button statically, perform the following actions:

1. Explore the original action declaration, and copy the declaration to the graph extension, as
described in To Start the Customization of an Action.

2. In the action declaration, specify the required name for the action button in the PXUIField
attribute, as the following code snippet shows.

...
[PXUIField(DisplayName = "NEW NAME", ...)]
...

Attention:  We recommend that you not remove or change other attributes of the action.

3. Replace the action delegate with the following code template.

public virtual IEnumerable myAction(PXAdapter adapter)
{
  return Base.MyAction.Press(adapter);;
}
#endregion

4. In the code template, replace myAction and MyAction with the appropriate names.

5. In the template, redefine the action delegate arguments and return type based on the signature
of the base action delegate.

6. Click Save in the Code Editor to save your changes.



 | Customizing Business Logic | 298

To Disable or Enable an Action
To disable or enable an action button, you can redefine the Enabled parameter of the PXUIField
attribute for the button. However we recommend that you change the attribute dynamically at run time
in the Initialize() method of the graph extension.

:  If you have a customization that replaces an original action declaration statically, after you upgrade
Acumatica ERP to a new version, any new functionality of the action may became unavailable.

To disable or enable an action button, do the following:

1. Explore the original action declaration, as described in To Start the Customization of an Action
but without copying the declaration to the graph extension.

2. In the graph extension, add the following code.

#region Extended initialization

public override void Initialize()
{
  base.Initialize();
  Base.MyAction.SetEnabled(false);
}
#endregion

:  To enable the action button, use true instead of false for the SetEnabled method call.

3. In the added code, replace MyAction with the action name.

4. Click Save in the Code Editor to save your changes.

To Hide or Show an Action
To hide or show an action button, you should redefine the Visible parameter of the PXUIField
attribute for the button.

You can change attributes of an action button by using one of the following approaches:

• Dynamically at run time, in the Initialize() method of the graph extension

• Statically, by overriding the action attributes in the graph extension

• Statically, by changing visibility of the button in the ASPX code

To Hide or Show an Action Button at Run Time

1. Explore the original action declaration, as described in To Start the Customization of an Action
but without copying the declaration to the graph extension.

2. In the graph extension, add the following code.

#region Extended initialization

public override void Initialize()
{
  base.Initialize();
  Base.MyAction.SetVisible(false);
}
#endregion

:  To show the action button, use true instead of false for the SetVisible method call.

3. In the added code, replace MyAction with the action name.

4. Click Save in the Code Editor to save your changes.



 | Customizing Business Logic | 299

To Hide or Show an Action Button Statically

To override action attributes in a graph extension statically, you should declare both the graph member
of the PXAction type and the delegate. You should attach a new set of attributes to the action delegate
declared within the graph extension. Also, you need to invoke the Press() method on the base graph
action. Because you have redeclared the member of PXAction, you prevent the action delegate
execution from infinite loops.

:  If you have a customization that replaces an original action declaration statically, after you upgrade
Acumatica ERP to a new version, any new functionality of the action may became unavailable.

To hide or show the action button, perform the following actions:

1. Explore the original action declaration and copy the declaration to the graph extension, as
described in To Start the Customization of an Action.

2. In the action declaration, set the Visible parameter of the PXUIField attribute to false, as the
following code snippet shows.

:  To show the action button, set the Visible parameter to true.

...
[PXUIField(…, Visible = false)]
...

Attention:  We recommend that you not remove or change other attributes of the action.

3. Replace the action delegate with the following code template.

public virtual IEnumerable myAction(PXAdapter adapter)
{
  return Base.MyAction.Press(adapter);
}

4. In the code template, replace myAction and MyAction with the appropriate names.

5. In the template, redefine the action delegate arguments and return type based on the signature
of the base action delegate.

6. Click Save in the Code Editor to save your changes.

To Hide or Show an Action Button in the ASPX Code

If a callback command for the button is declared in the PXDataSource control, you can hide the button
by customizing the ASPX code. To do this, perform the following actions:

1. Open the form in the browser and make the button visible on the form.

2. On the form title bar, click Customization > Inspect Element to launch the Element
Inspector.

3. On the form, click the button to open the Element Properties dialog box for the button.

:  If the button is a part of an action menu, inspect the menu button instead of the button.

4. In the dialog box, click Customize.

5. If there is no currently selected customization project and the inspector opens the Select
Customization Project Dialog Box, select an existing customization project or create a new one.



 | Customizing Business Logic | 300

If there is no a Page item for the form in the customization project, the Acumatica Customization
Platform creates such item, adds the item to the project, and opens the form in the Layout
Editor.

:  For users' convenience, when the Layout Editor is opened, the Control Tree displays only the node

of the object selected with the Element Inspector. You can click Show/Hide All Controls ( ) on
the tree toolbar to view all the controls of the form in the tree.

6. In the Control Tree of the editor, click the arrow left of the PXDataSource node to expand it.

7. Select the PXDSCallbackCommand element with the button name.

8. Click the Properties tab item to open the list of properties for the callback.

9. Set the Visible property of the element to False to hide the button.

:  To show the button, set Visible property to True.

10. Click Save to save your changes to the customization project.



 | Customizing the Database Schema | 301

Customizing the Database Schema

You can use the platform to customize the database of an Acumatica ERP instance. The database
customization can include changes in both the data and the schema of the database.

To change the database schema, you can add to a customization project the following scripts:

• A script to create a custom table

• A script to create a custom column in an existing table

• A script to create an extension table for an existing table

• A custom script

When you publish a customization project with a database script, which changes the database schema,
the script is executed. Changes to the database schema aren't deleted when you unpublish the project
or delete the script and publish the project once more. You have to remove the changes to the database
schema manually.

For detailed information on creating custom database scripts and adding the scripts to a customization
project, see the following topics:

• To Create a Custom Table

• To Create a Custom Column in an Existing Table

• To Create an Extension Table

• To Add a Custom SQL Script to a Customization Project

To Create a Custom Table
To add a custom table to a customization project, perform the following actions:

1. Create the needed table in the database by using a database administration tool, such as SQL
Server Management Studio.

:  You have to use a naming convention that provides unique names for your custom tables so that
they do not have the names of existing tables of Acumatica ERP.

2. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

3. Click DB Scripts in the navigation pane to open the Database Scripts page.

4. On the page toolbar, click Add New Record (+).

5. In the SQL Script Editor, which opens, select the custom table in the DBObject Name box.

6. In the editor, select the Import Table Schema from Database check box, as shown in the
screenshot below.

7. Click OK to make the Acumatica Customization Platform generate the table schema and add the
schema to the customization project.



 | Customizing the Database Schema | 302

Figure: Adding a custom table to the project

Adding the table schema is the preferred way of adding custom tables to the project. When you publish
the customization project, the platform executes each SQL script of the project to update the database.
If an Sql item contains a custom database table definition, to update the database with the table
schema, the Acumatica Customization Platform checks whether a table with this name already exists
in the database. If the table exists, the platform generates SQL statements to alter the existing table
so that it matches the schema. The platform doesn't drop the existing table and keeps any data in it.
This makes it easier to deploy a newer version of the customization project to a system that is already
in use. If the table doesn't exist, the platform generates SQL statements to create the table. SQL
statements are generated in the SQL dialect of the database management system. Therefore, if you add
custom tables to the project by table schema, you keep the customization project independent from the
database management system that hosts the database of Acumatica ERP. Below is an example of the
table schema of the custom table Product.

 <Sql TableName="RBProduct" TableSchemaXml="#CDATA">
        <CDATA name="TableSchemaXml"><![CDATA[<table name="RBProduct">
  <col name="ProductID" type="Int" identity="true" />
  <col name="ProductCD" type="NVarChar(15)" />
  <col name="ProductName" type="NVarChar(50)" />
  <col name="Active" type="Bit" />
  <col name="StockUnit" type="NVarChar(20)" />
  <col name="UnitPrice" type="Decimal(19,6)" />
  <col name="MinAvailQty" type="Decimal(25,6)" />
  <col name="TStamp" type="Timestamp" />
  <index name="RBProduct_PK" clustered="true" primary="true" unique="true">
    <col name="ProductID" />
  </index>
</table>]]></CDATA>
    </Sql>

Alternatively, you can add custom tables by adding a custom SQL script that creates the table in the
project.



 | Customizing the Database Schema | 303

To Create a Custom Column in an Existing Table
Because you can need a new column in an existing database table only for a bound data field, the
Acumatica Customization Platform automatically creates a custom column when you create a custom
bound data field by using the New Field wizard.

To add a custom field as a new column that will be appended to the original table of Acumatica ERP,
perform the following actions:

1. Open the Create New Field dialog box for the data access class by using the Data Class Editor
or by using the Layout Editor.

2. In the dialog box, specify the custom field parameters and select DBTableColumn in the Storage
Type box to make the system append the column to the original table in the database.

3. Click OK to add the field to the data access class.

The New Field wizard includes an XML declaration of the new field in the DAC item for the modified data
access class. If the DAC item for the modified data access class is absent in the customization project,
the wizard creates the appropriate item. Also, the wizard creates a Table item with a description of the
custom column to be created in the database table for the custom field.

After you publish the customization project at least once, the database schema is changed. Changes to
the database schema aren't deleted when you unpublish the project or delete the DAC and Table items
and publish the project once more. You have to remove the changes manually.

To Create an Extension Table
The Acumatica Customization Platform provides the following options to create a custom column in a
table of the database:

• Add the column to the original table

• Create a separate table that is an extension of the original table, and add the column to the
extension table

In some cases, you may need to store new field values in a separate table or use this table
independently from the original database table. You can use the Acumatica Customization Platform to
create a separate extension database table. This table must include all main key fields from the original
database table and your new fields. You should create a DAC extension that holds the new fields and is
mapped to the extension table. The platform will automatically synchronize the extension table with the
original database table by expanding every create, retrieve, update, and delete operation on the base
(original) DAC to each discovered DAC extension that is mapped to an extension table.

To declare a DAC extension that is mapped to an extension table, perform the following actions:

1. Create an extension table in the database according to the requirements described in
Requirements for an Extension Table Schema.

2. Declare a DAC extension mapped to the created table, as described in DAC Extension Mapped to
an Extension Table.

By using the PXTable attribute, you specify that the DAC extension is mapped to the extension
table with the same name.

Requirements for an Extension Table Schema
You should ensure that the following requirements are met when you create an extension table:

• The extension table should have the same set of main key columns as the original database table
has.

• The extension table must include the following columns if they are declared within the original
database table:

• [CompanyID][int] NOT NULL



 | Customizing the Database Schema | 304

• [DeletedDatabaseRecord][bit] NOT NULL

• For an extension table that can be used separately, you should also declare the following audit
columns:

• [tstamp][timestamp] NULL

• [CreatedByID][uniqueidentifier] NOT NULL

• [CreatedByScreenID][char] ( 8 ) NOT NULL

• [CreatedDateTime][datetime] NOT NULL

• [LastModifiedByID][uniqueidentifier] NOT NULL

• [LastModifiedByScreenID][char] ( 8 ) NOT NULL

• [LastModifiedDateTime][datetime] NOT NULL

The example below shows the declaration of the InventoryItemTableExtension extension table.
Notice that this table will not be used independently from the original database table.

CREATE TABLE [dbo].[InventoryItemTableExtension]
(
    [CompanyID] [int] NOT NULL,
    [InventoryID] [int] NOT NULL,
    [DeletedDatabaseRecord] [bit] NOT NULL,
    [ExtTableDescr] [nvarchar](256) NULL
    CONSTRAINT [InventoryItemTableExtension_PK] PRIMARY KEY CLUSTERED 
    (
        [CompanyID] ASC,
        [InventoryID] ASC
    )
    WITH (PAD_INDEX  = OFF, 
          STATISTICS_NORECOMPUTE  = OFF, 
          IGNORE_DUP_KEY = OFF, 
          ALLOW_ROW_LOCKS  = ON, 
          ALLOW_PAGE_LOCKS  = ON) 
    ON [PRIMARY]
) ON [PRIMARY]
ALTER TABLE [dbo].[InventoryItemTableExtension] ADD  DEFAULT ((0))
    FOR [DeletedDatabaseRecord]
GO

DAC Extension Mapped to an Extension Table
You can define a DAC extension mapped to an extension table by using either the default Inner Join
way or the optional Left Outer Join way. To specify which way is used, you need to set the value for the
IsOptional parameter of the PXTable attribute. By default, the system sets this parameter value to
false. You need to specify the IsOptional parameter value only if you need to set its value to true.

[PXTable(IsOptional = value)]
public class TableExtension : PXCacheExtension<BaseDAC>
{ ... }

If the DAC contains surrogate and natural keys, then the PXTable attribute attached to the DAC
extension should reference the surrogate key as well as other database key fields (but not the natural
key). If the DAC doesn't have surrogate and natural keys, no key fields should be specified in the
PXTable attribute. See the following code example of the declaration of the PXTable attribute with key
references.

[PXTable(typeof(BaseDAC.surrogateKey),
         typeof(BaseDAC.otherDBKeyField),
         IsOptional = value)]
public class TableExtension : PXCacheExtension<BaseDAC>



 | Customizing the Database Schema | 305

{ ... }

:  The natural key is a user-friendly value that is not used as a key in the database. The surrogate key,
which is the internal value corresponding to the natural key, is not shown to the user and is assigned by the
system. When you use a natural key, the DAC field that serves as a surrogate key is bound to the database
key column, but is not marked as key within its attributes.

In the sample code shown below, the Location database table contains both the surrogate LocationID
key and the natural LocationCD key. The Location database table main key contains the BAccountID
and LocationID columns. Because LocationCD is a natural key, we need to specify the corresponding
surrogate key, LocationID, as well as the other database key field, BAccountID, in the PXTable
attribute.

[PXTable(typeof(Location.locationID),
         typeof(Location.bAccountID))]
public class LocationTableExtension : PXCacheExtension<Location>
{ ... }

The Left Outer Join Way

The following example shows the declaration of a DAC extension mapped to an extension table with the
Left Outer Join way. Notice that the IsOptional parameter of the PXTable attribute is set to true.

[PXTable(IsOptional = true)]
class LeftJoinTableExtension : PXCacheExtension<BaseDAC>
{
}

The Left Outer Join way covers the common steps required to add an extension tables to a
customization project. For details on populating an extension table with records, see SQL Script Editor.

The Left Outer Join way:

• Can be used when the original and extension database tables are not necessarily synchronized.

• Causes an extension table record to be created when the appropriate original table record is
created or updated.

• Never excludes an original database table record from the result set.

• Calculates the default field values if no extension table record is found.

• Can be used as a standalone DAC.

The following example shows the declaration of the InventoryItemTableExtension DAC extension
mapped to the extension table with the Left Outer Join way.

[PXTable(typeof(InventoryItem.inventoryID), IsOptional = true)]
public class InventoryItemTableExtension : PXCacheExtension<InventoryItem>
{
    #region ExtTableDescr
    public abstract class extTableDescr : PX.Data.IBqlField
    {
    }
    [PXDBString(255)]
    [PXDefault("Additional description")]
    [PXUIField(DisplayName = "Ext_Table Description")]
    public string ExtTableDescr { get; set; }
    #endregion
}

Suppose that you have added the corresponding Ext_Table Description control to the header area of
the Stock Items (IN.20.25.00) form. If you open the form, by clicking navigation buttons on the form



 | Customizing the Database Schema | 306

toolbar, you can ensure that all the stock items are visible, while the Ext_Table Description control
has the default Additional description value set, as the screenshot below illustrates.

Figure: Exploring the behavior of the customized Stock Items form

If you update a data record (by changing the value of any control, including Ext_Table Description),
a new database record is added to the extension table, as the following two screenshots illustrate.

Figure: Entering and saving the description in the new control



 | Customizing the Database Schema | 307

Figure: Analyzing the record added to the new database table

When you use the Left Outer Join way, data records within the original and extension tables are not
necessarily synchronized (as the figure below illustrates); data record synchronization works as follows:

• If an appropriate data record does not exist within an extension table when the system queries
the original table, the system automatically generates and assigns default values to every field of
the DAC extension that is mapped to the extension table; otherwise, DAC extension field values
are read from the database.

• When a new record is inserted into the original table, the system automatically inserts a new
record into the extension table.

• If a data record does not exist within an extension table when the system updates the original
table, the system automatically inserts a data record into the extension table. Otherwise, if there
are no modified fields of the DAC extension that is mapped to the extension table, the system
does not update the extension table data record.

• When the system deletes the data record in the original table, it automatically deletes the
appropriate data record from the extension table, if such a record exists.

:

To use an extension table independently from the original database table, you should declare a data view
by using a DAC extension that is mapped to an extension table as the main DAC, as shown below.

public class BaseBLCExt : PXGraphExtension<BaseBLC>
{
    public PXSelect<TableExtension> Objects;
}

In the example of the data view declaration above, extension table data records have no reference to the
original database table records. You can work with these data records just as you would work with any
other DAC instance.



 | Customizing the Database Schema | 308

Figure: Exploring data record synchronization when the Left Outer Join way is used

The Inner Join Way

The Inner Join is the default way.

The following example shows the declaration of a DAC extension mapped to an extension table with the
default Inner Join way.

[PXTable]
class InnerJoinTableExtension : PXCacheExtension<BaseDAC>
{
}

The Inner Join way:

• Can be used only when the original table and extension table are always synchronized.

• Causes an extension table record to be automatically created only when the appropriate original
database table record is created.

• Requires the main key column values to be copied from the original table to each extension table.

• Excludes an original database table record from the result set when no corresponding extension
table record is found.

• Can be used as a standalone DAC.

The sample code below shows the declaration of the InventoryItemTableExtension DAC extension,
which is mapped to the extension table by using the default Inner Join way.

[PXTable(typeof(InventoryItem.inventoryID))]
 public class InventoryItemTableExtension : PXCacheExtension<InventoryItem>



 | Customizing the Database Schema | 309

{
    #region ExtTableDescr
    public abstract class extTableDescr : PX.Data.IBqlField
    {
    }
    [PXDBString(255)]
    [PXDefault("Additional description")]
    [PXUIField(DisplayName = "Ext_Table Description")]
    public string ExtTableDescr { get; set; }
    #endregion
}

If you again open the Stock Items (IN.20.25.00) form, by clicking navigation buttons on the form
toolbar of the Stock Items form, you will see that only one stock item is visible, and it has the modified
Ext_Table Description.

To have access to the other database table records, you need to populate the extension table with the
appropriate records. You can do this by using the following script.

INSERT INTO [dbo].[InventoryItemTableExtension]
SELECT 
    CompanyID, 
    InventoryID, 
    0, 
    N'Additional description'
FROM [dbo].[InventoryItem]
WHERE NOT EXISTS
(
    SELECT * FROM [dbo].[InventoryItemTableExtension] AS t 
    WHERE t.CompanyID = [dbo].[InventoryItem].CompanyID 
        AND t.InventoryID = [dbo].[InventoryItem].InventoryID
)
GO

After you copy data records from the InventoryItem database table to the
InventoryItemTableExtension user extension table, you will notice that all stock items are visible
again.

When you use the Inner Join way, the data records within the base and extended tables must always be
synchronized (see the screenshot below). With this way, data record synchronization works as follows:

• If an appropriate data record does not exist within an extension table when the system queries
the original table, the system excludes the original table record from the result set.

• When a new record is inserted into the original table, the system automatically inserts a new
record into the extension table.

• When the system updates the data record in the original table, it does not update the extension
table if there are no modified fields of the DAC extension that is mapped to the extension table.

• When it deletes the original table data record, the system automatically deletes the appropriate
data record from the extension table, if such a record exists.

:  To use the extension table independently from the original database table, you should declare a data
view by using a DAC extension, which is mapped to an extension table, as the main DAC (for details, see
the The Left Outer Join Way section).



 | Customizing the Database Schema | 310

Figure: Exploring data record synchronization when you use the Inner Join way

To Add a Custom SQL Script to a Customization Project
:  Although we provide these instructions, we do not recommend that you add a custom SQL script to a
customization project for the following reasons:

• Because Acumatica ERP supports multi-tenancy, it is difficult to create an SQL script that correctly
creates a database object.

• It is difficult to properly specify and use the company mask in custom database objects.

• If you include in a customization project an SQL script written for MS SQL, you will need to avoid
applying the customization to a website on MySQL Server, because an SQL script created for MS SQL
Server will not work properly on MySQL Server.

Warning:  A possible result of a custom SQL script is the loss of the integrity and consistency of data.

To add a custom SQL script to a customization project, perform the following actions:

1. Prepare and debug the SQL script with a database administration tool, such as SQL Server
Management Studio. (See Creating a Custom SQL Script for details.)

2. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

3. Click DB Scripts in the navigation pane to open the Database Scripts page.

4. On the page toolbar, click Add New Record (+).

5. In the DBObject Name box of the SQL Script Editor, which opens, specify the name of the
script to be used as the object name of the customization item.

6. In the editor, enter the SQL script into the Custom Script text area.



 | Customizing the Database Schema | 311

7. In the editor, click OK to add the script to the customization project.

If a custom script causes an error, the error message will appear during the publication process when
the system executes the custom scripts.

:  We really don't want you to do this, but if you plan to add a custom SQL script to a customization project,
we recommend that you first test the custom SQL script on MS SQL and MySQL.



 | Integrating the Project Editor with Microsoft Visual Studio | 312

Integrating the Project Editor with Microsoft
Visual Studio

You do not need to install MS Visual Studio to customize the Acumatica ERP UI or to develop a simple
changes of business logic, because the platform includes the Customization Tools, which are designed
for these purposes and available in your web browser. However you can use Visual Studio to develop
the customization code.

If you plan to use Visual Studio on the server that hosts the website of Acumatica ERP 6.1, the
environment where you install and use Acumatica Framework or Acumatica ERP should meet particular
requirements, which are described in System Requirements for Acumatica Framework 6.1.

To use Visual Studio while customizing Acumatica ERP, you can select one of the following approaches:

• Create an Extension Library, develop the customization code in Visual Studio, compile the DLL
binary file within the Bin folder of the website, and add this custom file to the customization
project

• Develop and debug the customization code of a customization project on the fly by using Visual
Studio

This part of the guide describes the second approach, because the first one is obvious and does not
require any integration between the Customization Project Editor and Visual Studio.

To use the second approach, you should perform the following steps each time you want to use Visual
Studio to develop and debug the customization code on the fly:

1. In Data Class Editor, create extensions for existing data access classes if required, as described
in To Create a DAC Extension.

2. In Code Editor, for business logic controllers, create new classes or class extensions that
contain required code templates, as described in To Create a Custom Graph and To Start the
Customization of a Graph.

3. Publish the customization project to obtain the corresponding C# files within the
App_RuntimeCode website folder. (See Performing the Publication Process for details.).\

4. By using Visual Studio, develop, modify, and debug the customization code in these files on the
fly. (See To Debug the Customization Code for details.)

5. In the Customization Project Editor, update the code in the customization project, as described
in To Synchronize Code Changes with the Customization Project.

In This Chapter

• To Work with a Code Item

• To Work with Data Access Classes

• To Debug the Customization Code

• To Synchronize Code Changes with the Customization Project

To Work with a Code Item
The Code Editor does not provide facilities you can use in Microsoft Visual Studio to develop and debug
any source code in customization projects. To start working with a Code item in Visual Studio, perform
the following instructions:

1. Publish the customization project, as described in Publishing Customization Projects.

After you have published the customization project, the <CodeItemName>.cs file with the item
code is placed in the App_RuntimeCode folder of the website.



 | Integrating the Project Editor with Microsoft Visual Studio | 313

2. Launch Visual Studio.

3. To open the <CodeItemName>.cs file in Visual Studio, on the main menu, click File > Open >
File, and select the file in the Open File dialog box, which opens.

:  If you need to debug the customization code, you have to open the website instead of the file.
See To Debug the Customization Code for details.

4. After you have finished editing the source code of the item, click Save to save your changes in
the file.

Because the App_RuntimeCode folder contains the customization code that is published, the
changes in the file are immediately applied to the application instance.

5. Open or refresh the form that uses the code, to make sure that the business logic has been
changed for the form.

:  If an error exists in the changed file, the website might be corrupted. You can recover the
website, for example, in one of the following ways:

• Debug the code

• Undo the changes

• Publish the customization project again to update the files in the App_RuntimeCode folder

• Delete the file from the App_RuntimeCode folder

6. To update the Code item in the customization project, follow the instructions described in To
Synchronize Code Changes with the Customization Project.

To Work with Data Access Classes
You can use Microsoft Visual Studio to work with a data access class (DAC) that has been added to a
customization project.

A customization project can contain code for a DAC in the following item types (see Supported DAC
Extension Formats for details):

• As a DAC item with XML data for an existing DAC

• As a Code item with the code of an existing DAC extension

• As a Code item with the code of a custom DAC

• In a File item that keeps a .dll file of the extension library that contains the binary code of a DAC
extension or custom DAC

Once a customization project is published, you can use Visual Studio to develop, modify, and debug the
customization code of a Code item on the fly. However you cannot use this approach for a DAC item.

If you need to work in Visual Studio with the code of the DAC whose changeset is added to a
customization project as a DAC item in XML format, perform the following actions:

1. Follow the instructions described in To Convert a DAC Item to a Code Item to convert the item to
the Code item.

2. Follow the instructions described in To Work with a Code Item to change the code of the DAC
extension.

To Debug the Customization Code
The Code Editor does not provide facilities you can use to debug a code item of a customization
project. We recommend that you use Microsoft Visual Studio to develop and debug any source code in
customization projects. To start debugging an existing Code item in Visual Studio, perform the following
instructions:

1. Publish the customization project, as described in Publishing Customization Projects.



 | Integrating the Project Editor with Microsoft Visual Studio | 314

2. In the file system, open in a text editor the web.config file located in the website folder.

3. In <system.web> tag of the file, locate the <compilation> element.

4. Set to true the debug attribute of the element, as follows.

<compilation debug="true" ...>

:  See Debug Mode in ASP.NET Applications for details.

5. In a browser, launch your instance of Acumatica ERP to have a running process in the system.

6. Launch Visual Studio.

7. To open the website of your instance of Acumatica ERP in Visual Studio, on the main menu,
click File > Open > Web Site, and select the website folder in the Open Web Site dialog box,
which opens.

8. In the Solution Explorer of Visual Studio, expand the App_RuntimeCode website folder, and
double-click the file of the Code item to open it.

9. In the item source code, which opens, set a breakpoint on the line of the code where you need
to stop the process for debugging.

10. On the main menu, click Debug > Attach to Process, and in the Attach to Process dialog
box, which opens, select the w3wp.exe process in the list of Available Processes.

:  In the dialog box, ensure that the Show processes from all users check box is selected. If the
check box is cleared, the list will not display the w3wp.exe process record.

11. In the browser, open the form of Acumatica ERP whose business logic code you want to debug.

12. In the browser, run an operation that invokes the fragment of the code that contains the
breakpoint.

The process will be stopped at the breakpoint, and you can debug the code in Visual Studio.

To Synchronize Code Changes with the Customization Project
When you create a Code item in a customization project, Acumatica Customization Platform performs
the following actions:

• Saves the item content in the database as a Code item

• Adds the item ID to the customization project

When you publish the project, the platform creates the <CodeItemName>.cs file in the
App_RuntimeCode website folder of the current instance of Acumatica ERP.

If you use the Code Editor to modify a Code item and click Save on the page toolbar, the platform
saves the changes only in the database. To update files in the App_RuntimeCode folder, you have to
publish the project again.

If you have modified the item code in Microsoft Visual Studio, you have to synchronize the changes with
the item in the database. To do that, do the following:

• Follow the instructions described in To Update a File Item in a Project to update files in the
customization project.

For more information about the synchronization mechanism provided by the Acumatica Customization
Platform, see Detecting the Project Items Modified in the File System.

https://msdn.microsoft.com/en-us/library/e8z01xdh(vs.71).aspx


 | Integrating the Project Editor with a Version Control System | 315

Integrating the Project Editor with a Version
Control System

If a customization task is large or complex or it is implemented by a group of developers, you might
need to use a version control system for the customization project. The platform supports the
integration of the Customization Project Editor with a version control system.

The Customization Project Editor includes the Source Control menu, which contains the following
commands to integrate the editor with a version control system (see the screenshot below):

• Save Project to Folder: Saves the customization project as a set of files to a local folder that
is used for integration with a source control system. When you invoke this action, the system
opens the Saves Project to Folder dialog box so that you can select the name and location of
the folder inside a repository.

• Open Project from Folder: Loads the customization project from the repository.

• Setup Source Control: Opens the Source Control Setup dialog box, which you can use to
specify a configuration string for connection to a version control system, if required. For example,
to control versions, you would set up the configuration string for the Team Foundation Server
(TFS), as described in To Integrate the Customization Project Editor with TFS, but it is not needed
for Git (see To Integrate the Customization Project Editor with Git for details).

Figure: Viewing the commands for integration with a version control system

For detailed information on integrating the editor with a version control system, see the following
topics:

• To Save a Project to a Local Folder

• To Update the Content of a Project from a Local Folder

• To Configure a Connection String

• To Integrate the Customization Project Editor with TFS

• To Integrate the Customization Project Editor with Git



 | Integrating the Project Editor with a Version Control System | 316

To Save a Project to a Local Folder
You can save a customization project as set of files to a local folder that can be used for integration with
a source control system. To do this, perform the following actions:

1. Open the project in the Customization Project Editor.

2. Click Source Control > Saves Project to Folder, as the screenshot below shows.

3. In the Saves Project to Folder dialog box, which opens, do the following:

a. In the Parent Folder selector, select the parent folder.

b. In the Project Name box, specify the name of the new folder to be used as the project
storage.

4. Click OK.

Figure: Saving the project to a local folder

Within the selected parent folder, the platform creates the folder with the project name that you have
specified. This folder includes at least the _project subfolder that contains an XML file for each item of
the project, as the following screenshot shows.



 | Integrating the Project Editor with a Version Control System | 317

Figure: Viewing the content of the .project folder

If the customization project contains custom files, the platform keeps the paths to these files.
Therefore, the project folder includes the corresponding folders for these custom files, as shown in the
following screenshot.



 | Integrating the Project Editor with a Version Control System | 318

Figure: Viewing the folders inside the project folder

To Update the Content of a Project from a Local Folder
If you have saved a customization project to a local folder by invoking the Source Control > Saves
Project to Folder command of the Customization Project Editor, you can update the content of the
project that is currently opened in the editor with the data from the folder.

To do this, perform the following actions:

1. On the editor menu, click Source Control > Open Project from Folder, as shown in the
screenshot below.

2. In the Containing Folder box of the Open Project from Folder dialog box, which opens,
select the local folder that contains the files of the needed customization project.

Attention:  If the folder is empty, the content of the project in the database is cleared.

3. Click OK.



 | Integrating the Project Editor with a Version Control System | 319

Figure: Loading the customization project from the repository folder

To Configure a Connection String
To use a self-made or third-party plug-in to integrate with a version control system, you can specify
the configuration string required to connect the Customization Project Editor with the version control
system through the plug-in. To do this, perform the following actions:

1. Open the customization project in the Customization Project Editor.

2. Click Source Control > Setup Source Control, as the screenshot below shows.

3. In Config box of the Source Control Setup dialog box, which opens, specify the plug-in to be
used and the data required by the plug-in to connect to the version control system.

4. Click OK.



 | Integrating the Project Editor with a Version Control System | 320

Figure: Setting a configuration string for a version control system

The editor tries to connect with the version control system by using the specified configuration
string. If the connection fails, the editor displays an error message with the issue description, as
the following screenshot shows.

Figure: Viewing the box with a connection error message

:  You can develop a plug-in such as TFSUtils.dll, which has been created by Acumatica for TFS. If
needed, you can decompile this plug-in or ask for the source code to use it as a sample.

To Integrate the Customization Project Editor with TFS
You can use the TFSUtils plug-in by Acumatica to integrate the Customization Project Editor with
Team Foundation Server (TFS). The TFSUtils.dll plug-in file is located in the \Customization
\SourceControl folder of the website, as shown in the following screenshot.



 | Integrating the Project Editor with a Version Control System | 321

Figure: Viewing the TFSUtils.dll plug-in

:  For the configuration string, the platform provides a template that is located in the \Customization
\SourceControl\ConfigTemplate.xml file.

To set up the configuration string for TFS, perform the following actions:

1. In the Customization Project Editor, click Source Control > Setup Source Control.

2. In the Source Control Setup dialog box, which opens, specify the configuration string that
contains the following information:

• Plugin: The file name of the plug-in that has to be used by the platform for TFS

• TypeName: The type of the plug-in

• workspace: A set of working folder mappings, which represent the location of your client-
side folders on your local disk and the corresponding repository folders

• user: Your user account in Windows

• server: The URL of TFS

• psw: The password for your user account in Windows

3. Click OK to force the editor to connect with TFS by using the specified configuration string.

To Integrate the Customization Project Editor with Git
To start tracking changes in a customization project by using Git, perform the following actions:

1. Create a remote Git repository to be used as the central repository for your projects.

2. Copy a version of the repository to your development environment.

3. Save the customization project to a folder within the local copy of the repository.

4. Commit the changes that are made in the local storage to the central repository.

Before starting the project development, a customizer has to do the following each time:

1. Pull the content of the central repository to his or her local storage to update the customization
project content.

2. Load the project from the local storage, as described in To Update the Content of a Project from
a Local Folder.

After the project is modified, the customizer has to do the following:

1. Update the project in the local storage, as described in To Save a Project to a Local Folder.

2. Commit the changes to the central repository.



 | Troubleshooting Customization | 322

Troubleshooting Customization

This part is intended to describe how to solve issues that occur while you are developing or applying a
customization. It will be under ongoing development to cover all the approaches and ways required to
solve each typical issue that is result of an error in customization or a misunderstanding of the platform
features.

In This Part

• To Discover the Method That Has Thrown an Exception

• To Write to the Trace Log from the Code

• To Log All Exceptions to a File

• To Debug the Customization Code

• To Validate a BQL Statement

• To Measure the Execution Time of a BQL Statement

• To Discover the Cause of Performance Degradation

• To Force the Platform to Execute Database Scripts

• To Resolve Issues While Upgrading a Customized Website

To Discover the Method That Has Thrown an Exception
If an exception has occurred at run time and a message box with an error or a warning has been
displayed on the form, you can easily discover the method that has thrown the exception. To do this,
perform the following actions:

1. Read the message, and close the message box.

2. On a form of Acumatica ERP, click Help > Trace, as shown in the following screenshot.

Figure: Opening the Acumatica Trace page

3. On the Acumatica Trace page, which opens to display the trace log, find the appropriate error
message, and click the arrow left of the Details label for the message to show the detailed
information on the error.

In the list of the method calls that were on the stack at the moment of the error, the upper
method is the one that threw the exception.



 | Troubleshooting Customization | 323

:  By default, the trace log is stored on the Acumatica ERP server for the current user session.
If the user opens two Acumatica ERP forms simultaneously in two tabs or windows of a browser,
the Acumatica ERP server creates a subsession for each opened form and stores the trace logs
separately for each subsession. After a session or subsession of the user is completed (due to the
user logging off or being timed out), the server clears the appropriate log.

To save the trace logs of all subsessions of all users in a single file on the server, a user with the
Administrator role has to change the web.config file of the Acumatica ERP instance to configure
the appropriate trace provider. See the Trace section of Using Logs for details.

For example, if you open the Customers (AR.30.30.00) form of an Acumatica ERP instance in which the
YogiFon customization project is published (see the T300 Acumatica Customization Platform training
course for details) and click Verify Credit Record on the form toolbar, the system shows an error
message, as the following screenshot shows.

Figure: Viewing a message box with an error

On the Acumatica Trace page, as the following screenshot shows, you can find the error message.
After you expand the error details, you can see that the exception has been thrown by the
CustomerMaint_Extension.VerifyCreditRecord() method.

http://acumaticaopenuniversity.com/wp-content/uploads/2016/10/T300-Acumatica-Customization-Platform-6.0.pdf


 | Troubleshooting Customization | 324

Figure: Viewing the needed method in the list of method calls

To Write to the Trace Log from the Code
When you are debugging the customization code, you may need to know that a method or code
fragment has been executed (for example, during an action or event). You can write information to
the trace log directly from your code by using one of the following static methods of the PXTrace static
class:

• public static void WriteError(string message)

• public static void WriteError(Exception e)

• public static void WriteWarning(string message)

• public static void WriteWarning(Exception e)

• public static void WriteInformation(string message)

• public static void WriteInformation(Exception e)

• public static void WriteEvent(Event item)

You would generally use these methods temporarily, for debugging purposes. Thus, to avoid changes in
the customization project, you can add this method to the customization code that is already applied to
the application instance. To do this, perform the following actions:

1. Make sure that the customization project that contains the code you are debugging is published.
If the project is unpublished, publish it, as described in Publishing Customization Projects.

2. Launch Microsoft Visual Studio.

3. In Visual Studio, open the file with the code, which is currently saved in the App_RuntimeCode
website folder.

4. Add a call of one of the methods listed above to the appropriate code fragment.

5. Save your changes to the file.

6. In the browser, open or refresh the form that you are troubleshooting.

7. On the form, perform the sequence of actions that invokes the changed code.

8. Click Help > Trace to open the Acumatica Trace page.



 | Troubleshooting Customization | 325

9. On the page, explore the trace log to make sure that the changed code fragment has been
executed.

:  When you publish or export the project, the Acumatica Customization Platform compares the code
in the App_RuntimeCode website folder with the appropriate code in the database and discovers the
files changed in the file system. If a modified file is found, there is a conflict, and the platform opens the
Modified Files Detected dialog box to give you the option to update the files in the project or discard the
changes. See Detecting the Project Items Modified in the File System for details.

For example, suppose that you open in Visual Studio the SOOrderEntry.cs
file of the YogiFon customization project, which is published (see the T300
Acumatica Customization Platform training course for details) and add the
PXTrace.WriteInformation("SOOrder_CustomerID_FieldUpdated") method call to the
SOOrder_CustomerID_FieldUpdated() event handler of the SOOrderEntry_Extension class, as
shown in the following screenshot. In this case, the specified text string is written to the trace log every
time the CustomerID field is updated on the Sales Orders (SO.30.10.00) form.

Figure: Adding the WriteInformation method call to the code

If you were to refresh the form in the browser, change the customer ID in the Customer box, and click
Help > Trace to open the Acumatica Trace page, the trace log would contain a record with the text
specified in the WriteInformation method call, as the following screenshot shows.

Figure: Viewing the information record in the trace log

:  By default, the trace log is stored on the Acumatica ERP server for the current user session. If the user
opens two Acumatica ERP forms simultaneously in two tabs or windows of a browser, the Acumatica ERP
server creates a subsession for each opened form and stores the trace logs separately for each subsession.

http://acumaticaopenuniversity.com/wp-content/uploads/2016/10/T300-Acumatica-Customization-Platform-6.0.pdf
http://acumaticaopenuniversity.com/wp-content/uploads/2016/10/T300-Acumatica-Customization-Platform-6.0.pdf


 | Troubleshooting Customization | 326

After a session or subsession of the user is completed (due to the user logging off or being timed out), the
server clears the appropriate log.

To save the trace logs of all subsessions of all users in a single file on the server, a user with the
Administrator role has to change the web.config file of the Acumatica ERP instance to configure the
appropriate trace provider. See the Trace section of Using Logs for details.

To Log All Exceptions to a File
Acumatica ERP provides a mechanism you can use for catching and logging all exceptions in the
system. (See the First-Chance Exception Log section of Using Logs for details.) If you have been
assigned the Administrator role, you can activate this mechanism and specify the name of the log file.
To do this, perform the following actions:

1. In the file system, open in a text editor the web.config file located in the website folder.

2. Within the <appSettings> tag of the file, turn on the EnableFirstChanceExceptionsLogging
key, as follows.

<add key="EnableFirstChanceExceptionsLogging" value="True" />

3. If you need to change the log file name, which is firstchanceexceptions.log by default, you
can specify the needed name in the FirstChanceExceptionsLogFileName key, as follows.

<add key="FirstChanceExceptionsLogFileName" value="MyLog.log" />

:  By default, the first-chance exception log file is saved in the App_Data folder of the website.

You can open the log file in a text editor to view the content of the first-change exception log, as the
following screenshot shows.

Figure: Viewing the first-chance exception log

To Debug the Customization Code
The Code Editor does not provide facilities you can use to debug a code item of a customization
project. We recommend that you use Microsoft Visual Studio to develop and debug any source code in



 | Troubleshooting Customization | 327

customization projects. To start debugging an existing Code item in Visual Studio, perform the following
instructions:

1. Publish the customization project, as described in Publishing Customization Projects.

2. In the file system, open in a text editor the web.config file located in the website folder.

3. In <system.web> tag of the file, locate the <compilation> element.

4. Set to true the debug attribute of the element, as follows.

<compilation debug="true" ...>

:  See Debug Mode in ASP.NET Applications for details.

5. In a browser, launch your instance of Acumatica ERP to have a running process in the system.

6. Launch Visual Studio.

7. To open the website of your instance of Acumatica ERP in Visual Studio, on the main menu,
click File > Open > Web Site, and select the website folder in the Open Web Site dialog box,
which opens.

8. In the Solution Explorer of Visual Studio, expand the App_RuntimeCode website folder, and
double-click the file of the Code item to open it.

9. In the item source code, which opens, set a breakpoint on the line of the code where you need
to stop the process for debugging.

10. On the main menu, click Debug > Attach to Process, and in the Attach to Process dialog
box, which opens, select the w3wp.exe process in the list of Available Processes.

:  In the dialog box, ensure that the Show processes from all users check box is selected. If the
check box is cleared, the list will not display the w3wp.exe process record.

11. In the browser, open the form of Acumatica ERP whose business logic code you want to debug.

12. In the browser, run an operation that invokes the fragment of the code that contains the
breakpoint.

The process will be stopped at the breakpoint, and you can debug the code in Visual Studio.

To Validate a BQL Statement
Suppose that you have a BQL statement in the customization code that does not work properly or you
want to make sure that a BQL statement is correctly converted into an SQL query. To validate the BQL
statement, you can use the Request Profiler.

To do this, perform the following actions:

1. Open the Request Profiler form (SM.20.50.70) in the browser.

2. In the Profiler Options section, select the Log SQL Requests check box, which indicates that
the SQL request data should be stored in the database.

3. On the form toolbar, click Start, as shown in the following screenshot.

https://msdn.microsoft.com/en-us/library/e8z01xdh(vs.71).aspx


 | Troubleshooting Customization | 328

Figure: Launching the SQL Profiler

4. In the browser, open the form that uses the customization code with the BQL statement.

5. On this form, perform the action that executes the BQL statement.

6. Open the Request Profiler form (SM.20.50.70).

7. On the form toolbar, click Refresh Results to refresh the log table.

8. In the Command Name column of the log table, find the URL request that is related to the
needed BQL statement.

9. Select the needed URL request, as shown in the screenshot below.

10. On the table toolbar, click SQL to open the SQL Profiler pop-up panel.

Figure: Opening the SQL Profiler pop-up panel for the selected URL request



 | Troubleshooting Customization | 329

11. On the panel, in the list of SQL requests for the currently selected URL request, find and click the
SQL request that corresponds to the BQL statement.

12.
On the panel toolbar, click Switch Between Grid and Form ( ), as shown in the following
screenshot, to view the SQL statement of the selected request.

Figure: Switching the panel to display the content of the selected SQL request

:  Because you know the name of the table that you use in the BQL statement, we recommend that
you specify the name as a filter in the Tables column of the SQL profiler table, as the following
screenshot shows.

Figure: Setting a filter for the SQL request list

If the BQL statement contains a parameter, you can also use the parameter to filter the list.

If a filter is specified for a column of the table of the SQL Profiler pop-up panel, the filter icon is
displayed in the column caption, as shown in the following screenshot.



 | Troubleshooting Customization | 330

Figure: Viewing the filter icon on the panel

A filter is applied to the list for every URL request until you clear the filter.

13. In the SQL area of the panel, shown in the following screenshot, view the SQL statement to
validate the BQL statement used in the customization code.

Figure: Viewing the SQL statement

14. On the form toolbar of the Request Profiler form (SM.20.50.70), click Stop to stop the Request
Profiler.

:  We recommend that you activate the Log SQL Requests mode for only a limited period because it
can degrade system performance.

15. On the form toolbar, click Clear Log to delete the SQL request data from the database.

To Measure the Execution Time of a BQL Statement
Suppose that in the customization code you have a BQL statement that can affect system performance.
To measure the execution time of the BQL statement, you can use the Request Profiler.

To do this, perform the following actions:

1. Open the Request Profiler form (SM.20.50.70) in the browser.

2. In the Profiler Options area of the form, select the Log SQL Requests check box, that
indicates that the SQL request data should be stored in the database.

3. On the form toolbar, click Start, as shown in the following screenshot.



 | Troubleshooting Customization | 331

Figure: Launching the SQL Profiler

4. In the browser, open the form that uses the customization code with the BQL statement.

5. On the form, perform the action that executes the BQL statement.

6. Open the Request Profiler form (SM.20.50.70).

7. On the form toolbar, click Refresh Results to refresh the log table.

8. In the Command Name column of the log table, find the URL request that is related to the
needed BQL statement.

9. Click the needed URL request, as shown in the screenshot below.

10. On table toolbar, click SQL to open the SQL Profiler pop-up panel.



 | Troubleshooting Customization | 332

Figure: Opening the SQL Profiler pop-up panel for the selected URL request

11. On the panel, in the table, specify filters for one or both of the Tables and Parameters columns
to shorten the list, as follows:

a. Click the column caption to open a simple filter for the column, as the following
screenshot shows.

b. Enter the name of the needed table (for the Tables column) or parameter (for the
Parameters column) that is used in the BQL statement you are referring to.

c. Click OK to save the filter.



 | Troubleshooting Customization | 333

Figure: Setting a filter for the SQL request list

:  If a filter is specified for a column of the table of the SQL Profiler pop-up panel, the filter icon is
displayed in the column caption, as shown in the following screenshot.

Figure: Viewing the filter icon on the panel

The filter is applied to the list for every URL request until you clear the filter.

12. In the filtered list of SQL requests for the currently selected URL request, find the SQL request
that corresponds to the BQL statement.

Figure: Viewing the duration of the selected SQL request

The execution time of the SQL request is displayed in the TimeMs column.



 | Troubleshooting Customization | 334

13. On the form toolbar of the Request Profiler form (SM.20.50.70), click Stop to stop the Request
Profiler.

:  We recommend that you activate the Log SQL Requests mode for only a limited period because it
can degrade system performance.

14. On the form toolbar, click Clear Log to delete the SQL request data from the database.

To Discover the Cause of Performance Degradation
Suppose that after publishing a customization project, you notice that the Acumatica ERP performance
on a customized form is degraded. To check whether the content of the customization project is the
cause of the performance degradation and to find the code fragment that affects system performance,
you can use the Request Profiler.

The following sections provide detailed information:

• To Check Whether a Customization Project Affects System Performance

• To Find the Code Fragment That Is Affecting System Performance

To Check Whether a Customization Project Affects System Performance

To check whether a customization project degrades the Acumatica ERP performance, perform the
following actions:

1. Unpublish all customization projects, as described in To Unpublish a Customization.

2. Open the Request Profiler form (SM.20.50.70) in the browser.

3. In the Profiler Options section, select the Log SQL Requests check box, which indicates that
the SQL request data should be stored in the database.

4. On the form toolbar, click Start, as shown in the following screenshot.

Figure: Launching the SQL Profiler

5. In the browser, open the form that you suspect has experienced performance issues since the
customization project was published.

6. Reload the page by using the browser toolbar button.

7. On the form, sequentially perform multiple actions available on the form toolbar, such as
Refresh or Save. Be sure to execute each action that is customized on the form.



 | Troubleshooting Customization | 335

8. On the form toolbar of the Request Profiler form (SM.20.50.70), click Refresh Results to
refresh the log table.

9.
On the table toolbar, click Export to Excel ( ) to save the log data to a Microsoft Excel file.

10. Publish the customization project, as described in To Publish a Single Project.

11. Return to the Request Profiler form, and on the form toolbar, click Clear Log to clear the table.

12. In the browser, open the form that you use for the performance test.

13. Perform the same sequence of actions that you did in Step 6 and Step 7.

14. Return to the Request Profiler form, and on the form toolbar, click Refresh Results to refresh
the log table.

15.
On the table toolbar, click Export to Excel ( ) to save the log data to a Microsoft Excel file.

16. In Microsoft Excel, open the Microsoft Excel files you have saved to compare the duration values
for the same actions.

Customization of the business logic for a form can degrade the system performance, however
the duration of an action can increase by no more than 10 percent. If the duration of an action
on the customized form is more than 10 percent longer than the duration of the same action
before customization, then the customization code must be reworked. To do this, follow the
instructions described in To Find the Code Fragment That Is Affecting System Performance.

17. On the form toolbar of the Request Profiler form (SM.20.50.70), click Stop to stop the Request
Profiler.

:  We recommend that you activate the Log SQL Requests mode for only a limited period because it
can degrade system performance.

18. On the form toolbar, click Clear Log to delete the SQL request data from the database.

To Find the Code Fragment That Is Affecting System Performance

If you have confirmed that the system performance is degraded on a customized form, you can use the
Request Profiler to discover the code fragment that is causing the performance degradation. To do this,
perform the following actions:

1. Open the Request Profiler form (SM.20.50.70) in the browser.

2. In the Profiler Options section, select the Log SQL Requests check box, which indicates that
the SQL request data should be stored in the database.

3. Select the Log SQL Requests Stack Trace check box, which indicates that the SQL request
stack trace data should be stored in the database.

4. On the form toolbar, click Start.

5. In the browser, open the customized form that you have confirmed as experiencing performance
degradation.

6. On the form, sequentially perform the actions that you identified as executing too slowly.

7. On the form toolbar of the Request Profiler form (SM.20.50.70), click Refresh Results to
refresh the log table.

8. In the log table, rearrange the log records in descending order to find the URL requests with the
highest values in each of the columns described below.



 | Troubleshooting Customization | 336

Column Description

Server Time,
ms

The aggregate duration of the URL request execution on the server (in
milliseconds).

SQL Time, ms The aggregate duration of execution of all the SQL requests in the URL
request (in milliseconds).

Server CPU, ms The aggregate duration of CPU usage during the URL request (in
milliseconds).

SQL Count The count of the SQL requests to the database in the URL request. This
count is the difference between the total number of the SQL requests in the
URL request and the number of requests to the cache.

9. Select a record that has an unusually large value in any column listed in the previous step, and
then click SQL on table toolbar, as shown in the following screenshot, to open the SQL Profiler
pop-up panel.

Figure: Opening the SQL Profiler pop-up panel for the selected URL request

10. In the panel, use the standard table navigation buttons to explore the list of SQL requests, which
are initially ordered by start time (see the following screenshot).



 | Troubleshooting Customization | 337

Figure: Viewing navigation buttons on the SQL Profiler pop-up panel

11. If needed, in the SQL profiler table, rearrange records by the value in the TimeMs column in
descending order to find the SQL requests with the longest duration.

12. To view the SQL statement and the stack trace for an SQL request, select the request in

the table and then click Switch Between Grid and Form ( ), as shown in the following
screenshot.

Figure: Switching the panel to display the SQL statement and the stack trace of the selected SQL request

13. In the stack trace, find the method that is causing the performance degradation.

14. Launch Microsoft Visual Studio.

15. In Visual Studio, open the file with the method; the file is currently saved in the
App_RuntimeCode website folder.

16. Analyze the method body to find the code snippet that is causing the issue.

17. On the form toolbar of the Request Profiler form (SM.20.50.70), click Stop to stop the Request
Profiler.



 | Troubleshooting Customization | 338

:  We recommend that you activate the Log SQL Requests mode for only a limited period because it
can degrade system performance.

18. On the form toolbar, click Clear Log to delete the SQL request data from the database.

To Force the Platform to Execute Database Scripts
You can discover that the database scripts that are included in a customization project have not been
executed by the Acumatica Customization Platform when you publish the project. This issue arises when
you have first published the project and then changed the scripts.

When you publish the project, the platform executes all the scripts included in the project. For
optimization purposes, to avoid the execution of database scripts during every publication of the
project, the platform saves information about each script that has been executed at least once and has
not yet been changed in the database, and omits the repeated execution of such scripts.

To force the platform to clean up all such information about previously executed scripts of a
customization project and execute the scripts again while publishing the project, follow the instructions
described in To Publish the Current Project with a Cleanup Operation.

To Resolve Issues While Upgrading a Customized Website
If you have a customization project that works properly for the current version of Acumatica ERP and
you need to upgrade an application instance to a newer version, the customization project might not
work properly or might even prevent the website from starting after the upgrade. This happens because
the code of Acumatica ERP is continuously developed to implement new features or enhance existing
functionality, so the code of an updated instance of Acumatica ERP can become inconsistent with the
code in a customization project. For example, if the signature of a method that is overridden in the
customization code is changed in the original code, a run-time error may occur in the graph extension.
As another example, modified or deleted database columns and tables might cause the functionality of
a data access class extension to fail.

To prevent these issues between the customization and the current version of Acumatica ERP, before
you upgrade a customized instance of Acumatica ERP to a new version, the Acumatica Customization
Platform validates the compatibility of the code included in all currently published customization
projects with the application code of the update version. This validation process executes the following
checks in the code of the published customization to detect the breaking changes in the code of
Acumatica ERP:

• In graph extensions:

• Checking the signature for each method that is overridden by using the PXOverride
attribute.

• Checking the existence of each base graph.

• In data access class extensions, if a field attribute is overridden:

• Checking the field existence.

• Checking that the field type is not changed. (If the customization code uses the field value
as decimal and the field type is changed, for example, from PXDBDecimal to PXDBString
that is currently binding this field to a database column of the string type, an exception will
occur on a request to the database.)

• In binary DLL files:

• Checking all the referenced methods, properties, fields, return types, and signatures.

:  In some specific cases, a binary file can be updated automatically with a new signature. For
example, in a referenced graph, the process updates the BQL statement that is changed for
a data view. If a changed signature is detected and cannot be fixed automatically, an error is
reported, and the validation fails.



 | Troubleshooting Customization | 339

This validation protects a customized website from an update that contains breaking changes and might
make the website unworkable.

You can upgrade an instance of Acumatica ERP in one of the following ways:

• On the Application Maintenance page of the Acumatica ERP Configuration Wizard. (See Updating
Acumatica ERP by Using the Configuration Wizard for details.)

• On the Apply Updates form (SM203510; System > Management > Process). (See Updating
Acumatica ERP by Using the Web Interface for details.)

When you start upgrading a customized instance of Acumatica ERP to a newer version, the platform
launches the validation process, to check the published customization compatibility with the new
version code to detect breaking changes. If the validation fails, the platform cancels the upgrade
process and shows an appropriate error message. (See Messages for Validation Errors for details.)

To upgrade a customized instance of Acumatica ERP, follow the instructions presented in the following
topics:

• To Validate the Compatibility of the Published Customization with a New Version Before an
Upgrade

• To Resolve an Issue Discovered During the Validation

• To Use the Technical Release Notes to Find the Breaking Changes

• To Use an Ignore List for the Validation Errors

To Validate the Compatibility of the Published Customization with a New
Version Before an Upgrade

You can validate the compatibility of the currently published customization with an updated version
before you start the upgrade process.

To do this, perform the following actions:

1. Navigate to the Apply Updates form (SM203510; System > Management > Process).

2. On the Updates tab of the form, in the table of available updates, click the product version to
which you want to upgrade your Acumatica ERP instance, as shown in the screenshot below.

3. On the table toolbar, click Download Package.

When the download is complete, the Ready to Install check box is automatically selected.

4. In the table toolbar, click Validate Customization to start the process of validating the
compatibility of the currently published customization code with the code of the selected product
version.



 | Troubleshooting Customization | 340

Figure: Validating the product version

If the validation succeeds, you know that you can upgrade your Acumatica ERP instance to the selected
version without an issue occurring.

If the validation fails, the Validation Failed window opens to display the list of the executed checks
and discovered errors, as the following screenshot shows.

Figure: Viewing an error message in the Validation Failed window

To resolve any discovered issues, we recommend that you use the approach described in To Resolve an
Issue Discovered During the Validation.



 | Troubleshooting Customization | 341

To Resolve an Issue Discovered During the Validation
If you need to upgrade an Acumatica ERP instance in the production environment, if the validation of
the compatibility of the code included in all currently published customization projects with the code of
the new product version fails, do the following:

• If the customization was developed by a third-party, please contact their support department
directly.

• If you are a developer of this customization:

1. Learn what the error message means. (See Messages for Validation Errors for details.)

2. Find the customization code fragment related to the error, and try to resolve the issue you
have discovered yourself by using the error description.

3. Check the technical release notes for the selected product version to ensure that the
reason of the error is a change in the product code, and find the recommendation to solve
the issue. (See To Use the Technical Release Notes to Find the Breaking Changes for
details.)

4. In your development environment:

a. Install the needed version of Acumatica ERP and deploy the new application
instance. (See Installing Acumatica ERP Locally for details.)

b. Import all customization projects. (See To Import a Project for details.)

c. Validate and fix the customization code in each project.

:  If you are unable to resolve an issue yourself, please contact Acumatica support.
You can create a support case for the issue on the Support page of the Acumatica
Partner Portal.

If you are sure that a discovered error is not really an error, you can force the
validation process to ignore the error. See To Use an Ignore List for the Validation
Errors for details.

5. In the production environment:

a. Unpublish all customization projects. (See To Unpublish a Customization for details.)

b. Upgrade the Acumatica ERP instance. (See Updating Acumatica ERP by Using the
Web Interface for details.)

c. Update the customization projects. (See To Replace the Content of a Project from a
Package for details.)

d. Publish the fixed customization projects. (See Publishing Customization Projects for
details.)

:  The validation that detects breaking changes is by default turned on in an instance of Acumatica ERP. If
you need to temporarily omit this validation, you can turn off the CheckCustomizationCompatibility
key by including the following string in the <appSettings> section of the web.config file located in the
website folder:

<add key="CheckCustomizationCompatibility" value="False" />

We do not recommend that you turn off the validation permanently.

Messages for Validation Errors

This topic, which is intended to be used by developers, describes the messages that may occur during
the validation of the customization code compatibility with the code of Acumatica ERP.

Failed to resolve method reference

This error occurs if the validation process finds in a custom DLL a reference to a method that is absent
with the same signature in the code of Acumatica ERP.

https://portal.acumatica.com/support/
https://portal.acumatica.com/
https://portal.acumatica.com/


 | Troubleshooting Customization | 342

The following example of the error message informs you that the AM.Objects.dll file contains a
reference to the System.Void PX.Data.PXLineNbrAttribute::.ctor(System.Type)
method, which has not been declared or has another signature in the PX.Data assembly.

AM.Objects.dll
Failed to resolve method reference:
System.Void PX.Data.PXLineNbrAttribute::.ctor(System.Type)
declared in
PX.Data, Version=1.0.0.0, Culture=neutral, PublicKeyToken=3b136cac2f602b8e

Because the customization code is consistent with the previous version of Acumatica ERP, this error
occurs because the method overridden in the customization code has been removed or its signature has
been changed in the update. To ensure that this change is implemented in the code of the new version
of Acumatica ERP, see the technical release notes for this version, as described in To Use the Technical
Release Notes to Find the Breaking Changes.

To fix the error, in the code of the specified extension library, you should refer to an appropriate method
declared in the assembly.

Failed to resolve type reference

This error occurs if the validation process finds in a custom DLL a reference to a type whose declaration
is absent in the code of Acumatica ERP.

The following example of the error message informs you that the FETempFix.dll file contains the
reference to the PX.Data.PXGraphWithActionsBase`2 type that is not declared in the PX.Data
assembly.

FETempFix.dll
Failed to resolve type reference:
PX.Data.PXGraphWithActionsBase`2
declared in
PX.Data, Version=1.0.0.0, Culture=neutral, PublicKeyToken=3b136cac2f602b8e

To fix the error, in the code of the specified extension library, you have to refer to an appropriate type
declared in the assembly.

Could not resolve

This error occurs if the validation process finds a reference to a custom DLL that cannot be found.

The following example of the error message informs you that the FullRegen.dll file contains the
ADODB reference, which cannot be resolved.

FullRegen.dll
Could not resolve:
ADODB, Version=7.0.3300.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a

To fix the error, in the code of the specified extension library, you have to refer to a DLL file located in
the Bin folder of the website.

Declaring Type missing

This error occurs if the validation process finds, in the customization code located in the
App_RuntimeCode folder of the website, a reference to a type whose declaration is absent in the code of
Acumatica ERP.



 | Troubleshooting Customization | 343

The following example of the error message informs you that the
PX.Objects.EP.CRBaseActivityMaint`1<PX.Objects.CR.CRTaskMaint> class contains a
reference to the BaseBAccount type, which is undeclared.

Declaring Type missing:
BaseBAccount
from
PX.Objects.EP.CRBaseActivityMaint`1<PX.Objects.CR.CRTaskMaint>

To fix the error, in the corresponding Code or DAC item of the customization project, you have to refer
to the appropriate type.

Referenced Field missing

This error occurs if the validation process finds, in the customization code located in the
App_RuntimeCode folder of the website, a reference to a field that is undeclared in the data access class
(DAC).

The following example of the error message informs you that the PX.Objects.CS.CSAnswers data
access class does not contain the _EntityID field.

Referenced Field missing:
_EntityID
from
PX.Objects.CS.CSAnswers

To fix the error, in the corresponding Code or DAC item of the customization project, you have to refer
to the appropriate field.

Base property is missing or IBqlField is not defined

This error can occur if the validation process finds a data access class extension that contains a
reference of a field with both of the following implementation features:

• The field name does not contain the Usr prefix.

• The DAC extension does not contain the IBqlField declaration.

For such cases, the validation determines that the DAC extension overrides a field existing in the code
of Acumatica ERP. If this field cannot be found in the code of Acumatica ERP, the validation reports
about the error.

The following example of the error message informs you that the Age field is referenced in the 
CQHRIS.ContactExtension extension of the CQHRIS.Contact data access class; however the
code of Acumatica ERP does not contain the field declaration.

Base property is missing or IBqlField is not defined:
Age
in extension
CQHRIS.ContactExtension

If the field is custom, to fix the error, you have to add the IBqlField declaration in the DAC extension.
If the code refers to a field that was removed from the code of Acumatica ERP, you should alter the
DAC extension to make it consistent with the base class.

To Use the Technical Release Notes to Find the Breaking Changes
If you need to know all the changes that have been performed in some version of Acumatica ERP and
may affect reports, customizations, and integration built in a prior version, see the list of changes in the
Technical Release Notes document for the new version.



 | Troubleshooting Customization | 344

The Technical Release Notes documents contain the following lists of breaking changes:

• Removed screens

• Removed tables

• Removed fields

• Modified field types

• Removed data access classes

• Removed graphs

• Removed constants

• Other removed classes

• Modified interfaces and abstract classes

• Other breaking changes

• Other breaking fields

To download a Technical Release Notes document for the needed version of Acumatica ERP, perform the
following actions:

1. In the browser, open Acumatica Partner Portal.

2. In the Product Links list of the webpage, click Download Acumatica.

3. In the Links list at right side of the webpage, which opens, click Release Notes.

4. On the Release Notes webpage, which opens, select the tab for the needed version of Acumatica
ERP, and then click the link for the Technical Release Notes document for this version, as the
following screenshot shows.

Figure: Downloading the Technical Release Notes on the Partner Portal

After you have downloaded the document, you can use it to search for the object that is specified in the
error message that occurred during the validation process.

:  The Technical Release Notes document contains information about the changes in the selected version of
Acumatica ERP. If you upgrade an instance of Acumatica ERP, for example, from Version 5.2 to Version 6.0,
you should explore the technical release notes for Versions 5.3 and 6.0.

https://portal.acumatica.com/


 | Troubleshooting Customization | 345

If the object is found, and the document contains information about how to fix the issue, use the
information. Otherwise, on the Support page of the portal, click New Support Case to create a support
case for the issue.

To Use an Ignore List for the Validation Errors
If validation of the compatibility of the published customization with the new version fails, the platform
cancels the upgrade process and shows an appropriate error message. However for some cases when
you are sure that a discovered error is not really an error, you can force the validation process to ignore
the error, so you can continue the process of upgrading of the customized instance of Acumatica ERP.
Also, you may need to ignore, for example, an error in a third-party DLL file.

To force the validation process to ignore an error, perform the following actions:

1. In the App_Data folder of the website, create a .txt file whose name has
the CstValidationIgnore prefix, such as CstValidationIgnore.txt or
CstValidationIgnore_ProjectName.txt.

:  You can create multiple CstValidationIgnore*.txt files with ignore lists for an instance of
Acumatica ERP.

2. In the tool used for the upgrade, which may be the Acumatica ERP Configuration Wizard or
the Apply Updates form (SM203510; System > Management > Process), select the error
message and copy it to the clipboard.

3. In the file, paste the error message from the clipboard.

:  You can add multiple error messages to each of multiple files with ignore lists.

4. Save the file.

5. Determine which the customization project has the code that provokes the error message.

6. Add the file with the ignore list to the project (see To Add a Custom File to a Project for details)
so it will ignore the error when you publish the project in the production environment.

:  While it validates a customization project before the project publication, the
Acumatica Customization Platform ignores all the errors that are specified in the
CstValidationIgnore*.txt files with the CstValidationIgnore prefix in the file name if these
files are located in the App_Data folder of the website.

As a result, if you publish the customization project or upgrade an Acumatica ERP instance where the
project is published, the validation process omits the error that is specified in the file.

https://portal.acumatica.com/support/


 | Examples | 346

Examples

This part of the guide is intended to describe examples of how you can customize the user interface and
business logic of Acumatica ERP forms.

In This Part

• Examples of User Interface Customization

• Examples of Functional Customization

Examples of User Interface Customization
UI customization includes changing the look and behavior of forms, tweaking form design, and
manually editing the .aspx code. UI customization is always related to the .aspx code of the
corresponding forms and represents aspx changesets that are added to the existing .aspx code.

For customization to the layout of existing forms, you can use the Layout Editor that you open from the
Customization Project Editor.

For the layout design of new forms, you should use the Layout Editor that you open from Microsoft
Visual Studio.

The next topics describe the rules for user interface customization and give examples of typical UI
customization tasks:

• Dragging, Moving, and Deleting UI Controls and Grid Columns

• Adding Input Controls

• Adding Advanced Controls

• Adding Columns to a Grid

• Modifying Columns in a Selector

• Adding PXLayoutRule Components

Dragging, Moving, and Deleting UI Controls and Grid Columns
This topic describes in detail how to change the placement of UI controls by dragging them and how to
use the facilities of the Layout Editor to delete or move UI controls and grid columns.

Dragging and Dropping UI Controls

Before you start to manually move UI controls by dragging them in the Control Tree of the Layout
Editor, note the following simple rules:

• You can move a UI control anywhere within its container control.

• To move a UI control within a container, you have to drag the element to the required place.

• Any UI control moved within a form is automatically aligned according to the nearest
PXLayoutRule component placed above it. (See Layout Rule (PXLayoutRule) for details.)

On the Stock Items form, suppose that you want to move up the Is a Kit check box, to make it the first
control in the first column of the General Settings tab area, as the screenshot below illustrates.



 | Examples | 347

Figure: Viewing the form before dragging the UI control

To move the check box:

1. Click the Customization menu on the form and choose the Inspect Element command.

2. Click the Is a Kit check box.

3. Click the Customize button on the Element Properties dialog box.

The customization item is added to the current project if you have selected one by using the
Customization > Select Project command, or you will be asked to select the customization
project to add the item to it.



 | Examples | 348

Figure: Selecting the UI control for customization

4. In the Control Tree of the Layout Editor, drag the Is a Kit check box to the position above the
Item Class control.

5. Save the changes to the customization project.

Figure: Moving the UI control to the required position



 | Examples | 349

Once the project is published, the check box appears at the new position (see the following screenshot).

Figure: Noticing the new placement of the check box

Moving and Deleting UI Controls and Grid Columns

You use the Layout Editor to implement advanced customization of a form—for instance, if you need to
shift a column within a grid, to delete a UI control or table column from a form area, or to change the
position of a UI control on a form while having the capability to change its original container.

:  After changing containers, you should perform functional changes concerning the code of appropriate
main data access classes (DACs) or data views of business logic controllers (BLCs, also referred to as
graphs). For details, see Customizing DAC Attributes.

Suppose that you have to customize the General Settings and Warehouse Details tabs of the Stock
Items form as follows:

1. Delete the Auto-Incremental Value input control. (See the first screenshot below.)

2. Move down the Tax Category control so that it is placed under the Lot/Serial Class control, as
the first screenshot also illustrates.

:  The Lot/Serial Class field is visible if the Lot and Serial Tracking feature is enabled on the
Enable/Disable Features (CS.10.00.00) form.

3. Move to the left the Status column of the details table so that it is placed at the right of the
Default column, as shown in the second screenshot below



 | Examples | 350

Figure: Viewing the General Settings tab before changes

Figure: Viewing the details table of the Warehouse Details tab before changes

To open the Layout Editor, open the StockItems form, click the Customization menu, choose the
Inspect Element command, select the Auto-Incremental Value control on the form, and click the
Customize button on the Element Properties dialog box.

The Control Tree of the editor displays content of the General Settings tab item, to which the Auto-
Incremental Value control belongs. This control is currently selected and highlighted in bold.

:  To view all controls and containers of the customized form on the tree, click the filter button of the tree
toolbar.

To delete the selected control, click the Delete button of the tree toolbar.



 | Examples | 351

Figure: Removing the selected UI control

Now you should move down the Tax Category UI control, to place it under the Lot/Serial Class
control. Select the Tax Category UI control on the tree, drag it and drop to the required position, as
the screenshot below illustrates.

Figure: Moving the control on the Control Tree

Thus, to change the placement of a UI control, you select it on the Control Tree of the Layout Editor,
drag it and drop to place this control appropriately in relation to other UI controls.

Click Save on the toolbar of the Layout Editor to save changes to the current customization project.

To begin moving the Status column, you can:



 | Examples | 352

• Open the StockItems form and use the Element Inspector for the Status column on the form

• Open the Layout Editor for the form and find the column in the tree of controls in the editor

To use the first approach: on the StockItems form, choose the Warehouse Details tab, click the
Customization menu, choose the Inspect Element command, select the Status column on the grid,
and click Customize on the Element Properties dialog box.

Drag and drop the Status control to the required position in the tree, as the screenshot below
illustrates.

Figure: Moving the grid column to the left

Thus, to change the placement of a grid column, you find the column in the Control Tree of the Layout
Editor and drag it to the desired position.

Click Save on the toolbar of the Layout Editor to save changes to the current customization project.

After you publish the project, you will see the modified General Settings tab on the Stock Items form,
as the following screenshot illustrates.



 | Examples | 353

Figure: Viewing the modified General Settings tab of the form

If you open the Warehouse Details tab of this form, you will see that the column of the details table
has been moved to the left, as shown in the screenshot below.

Figure: Viewing the moved column on the Warehouse Details tab

If you need to analyze the added content (changeset) of the customization project, open the project
in the Project Editor, choose the Edit Project Items command on the File menu item and select the
Object Name field of the customized object (see the screenshot below).



 | Examples | 354

Figure: Analyzing the added content of the customization project

Adding Input Controls
If you need to add a control onto a form, you use the Layout Editor.

The screenshot below illustrates the original Journal Transactions form. Suppose that you want to add
a text field (for instance, the CreatedByID selector of the GL Batch DAC) to the second column of the
form below the Auto Reversing check box.

Figure: Viewing the original form



 | Examples | 355

To open the Layout Editor, open the Journal Transactions form, click the Customization menu, choose
the Inspect Element command, select the Auto Reversing control, and click the Customize button
on the Element Properties dialog box.

The editor is opened with the Auto Reversing control selected and highlighted in bold in the tree of
controls.

To create a control below the selected item in the tree:

1. Click on the Add Data Field tab.

2. Select the CreatedByID field in the list on the tab.

3. Click the Create Controls button on the tab toolbar.

Figure: Creating a control below the selected one in the tree of controls

If you need to change the placement of a UI control, select the control on the Control Tree of the Layout
Editor, and drag and drop it to the needed place.



 | Examples | 356

Figure: Viewing the Layout Editor with the created control

Click Save on the toolbar of the Layout Editor to save changes to the current customization project.

After publishing the customization project, you will see the added field on the Journal Transactions
form, as the screenshot below illustrates.

Figure: Viewing the customized form

To view the fragment of the .aspx code that represents the customization result, open the form in the
Layout Editor and select the View ASPX tab. The customized fragment is highlighted in yellow, as the
screenshot below illustrates.



 | Examples | 357

Figure: Analyzing the changeset of the .aspx code

To view the changes to the layout of the form introduced by the new control, open the project in the
Project Editor, choose the Edit Project Items command on the File menu item and select the Object
Name field of the customized object (see the screenshot below). You can see the new Page item that
contains the .aspx code changeset.

Figure: Analyzing the added content of the customization project

:  As a rule, if you add a new data field, you need to perform some additional actions related to the
functional customization. For an example of the creation of a new data field, see Adding Data Fields.



 | Examples | 358

Adding Advanced Controls
Suppose that you need to customize the Stock Items form and you have divided the customization task
into the following steps:

• Adding a new tab item onto the form.

• Adding a panel onto the tab item.

• Adding an UI control onto the new panel.

:  This step is needed to make the added tab and its content visible at run time; otherwise, empty
container controls aren't displayed.

To view the original form, navigate to Distribution > Inventory > Manage > Stock Items (see the
screenshot below).

Figure: Viewing the Stock Items form before changes

Adding a New Tab Item

Suppose that you need to add the Relative Positioning Layout tab item to the Stock Items form and set
its position as the leftmost one.

To do this, perform the following actions:

1. On the Stock Items form, click the Customization menu, choose Inspect Element, select the
tab control, and click Customize on the Element Properties dialog box.

2. In the Layout Editor that appears, click the Tab: ItemSettings node in the tree of controls to
view all items of the tab.

3. Open the Add Controls tab of the Layout Editor.

4. Drag and drop the Tab Item (PXTabItem) container above the General Settings node in the
tree, as shown in the screenshot below.



 | Examples | 359

Figure: Adding a tab item to the left position on the tab area of the Stock Items form

5. Select the TabItem node that has been added.

6. Select the Properties tab of the Layout Editor.

7. Select the Text property and enter Relative Positioning Layout to specify the name of the
new tab, as shown in the screenshot below.

8. Click Save on the toolbar of the Layout Editor to save changes to the current customization
project.

Figure: Defining the name of the added tab item

Thus, to add a new tab item to a tab, you have to expand the tab node in the Control Tree of the Layout
Editor, select the Add Controls tab in the editor, drag and drop the Tab Item container to place this
control appropriately in relation to other items in the tab.



 | Examples | 360

A container is visible on the form if the container contains a visible field control. So at the moment you
cannot view the Relative Positioning Layout tab item on the Stock Items form after the customization
project is published or on the form preview that can be opened by clicking Preview Page in the editor.

Adding a Panel onto the PXTabItem Container Control

Now you have to add a panel (PXPanel control) onto the created PXTabItem control (that is, onto the
new tab item), which is empty at the moment.

Complete the following steps:

1. Open the Add Controls tab of the Layout Editor.

2. On the opened tab item, find and drag the Panel (PXPanel) control.

3. Drop it into the Relative Positioning Layout tab item in the tree of controls, as shown in the
screenshot below.

Figure: Adding a panel onto the created PXTabItem container control

4. Select the Panel: CstPanel1 node that has been added.

5. Select the Properties tab of the Layout Editor.

6. Select the Caption property and enter Audit to specify the name of the new panel.



 | Examples | 361

Figure: Defining the name of the added PXPanel control

7. Click Save on the toolbar of the Layout Editor to save changes to the current customization
project.

Thus, to add a new control to a container, you have to open the Layout Editor, find the container in the
Control Tree, select the Add Controls tab in the editor, find the required type of the control, and drag
and drop the needed control onto the container. Then you can specify the properties of the created
control.

Adding a UI Control onto the PXPanel Control

The panel is still not visible on the tab because it doesn't contain any visible controls. Add a control to
the panel, as described below:

1. Select the Panel: Audit node in the tree of controls.

2. Open the Add Data Fields tab of the Layout Editor.

3. Select the CreatedByID field in the list that at the moment displays the visible fields of the
Inventory Item data access class.

4. Click Create Controls on the tab toolbar (see the screenshot below).



 | Examples | 362

Figure: Adding a UI control to the PXPanel container control

5. Click the Panel: Audit node to expand and view the created control in the tree of controls.

6. Open the Add Controls tab of the Layout Editor.

7. Drag the Empty Rule (PXLayoutRule) control and drop it above the Created By control in the
tree, as shown in the screenshot below.

Figure: Adding the PXLayoutRule onto the panel

8. In the Control Tree, select the Layout Rule node that has been added.

9. Select the Properties tab of the Layout Editor.

10. Type SM as the ControlSize property value and S as the LabelWidth property value.

11. Set the StartRow property to True, as shown in the screenshot below.



 | Examples | 363

Figure: Setting property values for the added PXLayoutRule object

12. Click Save on the toolbar of the Layout Editor to save changes to the customization project.

Thus, to apply a layout rule to controls, you have to place the layout rule above the controls. Then you
can specify the properties of the created layout rule.

To view the changes, click Preview Page on the toolbar or publish the project and review the changes
on the Stock Items form after the customization has been applied.

The control is displayed on the panel on the Relative Positioning Layout tab (see the screenshot below)
that has been added in Adding a New Tab Item.

Figure: Viewing the added UI control at run time



 | Examples | 364

To view the fragment of the .aspx code that represents the customization result, open the form in the
Layout Editor and select the View ASPX tab. The customized fragment is highlighted in yellow, as the
screenshot below illustrates.

Figure: Viewing the changes to the layout of the form

If you need to analyze the added content (changeset) of the customization project, open the project
in the Project Editor, choose the Edit Project Items command on the File menu item and select the
Object Name field of the customized object (see the screenshot below). The Page item represents the
changes to the .aspx code.

Figure: Analyzing the added content of the customization project



 | Examples | 365

Adding Columns to a Grid
Suppose that you need to add a column to the details table (grid) of the Journal Transactions form
shown in the screenshot below.

Figure: Viewing the original form

For instance, suppose that you need to add the column for the CreateDateTime data field to the position
after the Ref. Number column.

To do this, perform the following actions:

1. On the Journal Transactions form, click the Customization menu, choose Inspect Element,
select the Ref. Number column header, and click Customize on the Element Properties
dialog box.

:  The Layout Editor appears with only the grid node displayed in the Control Tree. All other
containers are hided by the filter of the editor. The inspected Ref. Number node is already selected
and highlighted in bold.

2. In the Layout Editor, open the Add Data Fields tab, as shown in the screenshot below.

3. Apply the All filter to the list of the fields.

4. Select the CreateDateTime field in the list.

5. Click Create Controls in the tab toolbar.

:  New columns are added to the grid in the position after the item selected in the Control Tree of
the Layout Editor. If you need to change the placement of a UI control, select the control on the
tree, drag and drop it to the needed place.



 | Examples | 366

Figure: Adding the column to the grid

6. Click Save on the toolbar of the Layout Editor to save changes to the current customization
project.

Thus, to add new columns to a grid, you have to open the grid node on the Control Tree of the Layout
Editor, select the Add Data Fields tab in the editor, select needed fields in the list on the tab, click
Create Controls, and then drag and drop new columns to desired positions inside the grid. You can
add a column for any field that belongs to any data access class (DAC) of any data view of the business
logic controller bound to the form. To select a DAC to view its fields in the list, use the Data View drop-
down list on the Add Data Fields tab.

Figure: Viewing the Layout Editor with the created column



 | Examples | 367

To view the changes on the form, click Preview Page on the toolbar or publish the project and review
the changes on the Journal Transactions form after the customization has been applied.

Figure: Viewing the customized form

To view the fragment of the .aspx code that represents the customization result, open the form in the
Layout Editor and select the View ASPX tab. The customized fragment is highlighted in yellow, as the
screenshot below illustrates.

Figure: Analyzing the changeset of the .aspx code

To analyze the changes to the layout of the form introduced by the new column, open the project in the
Project Editor, choose the Edit Project Items command on the File menu item and select the Object
Name field of the customized object (see the screenshot below). You can see the new Page item that
contains the .aspx code changeset.



 | Examples | 368

Figure: Analyzing the added content of the customization project

Modifying Columns in a Selector
If you add columns to a selector, you give the user the capability to see more information about each
item in the lookup window, so the user can select the appropriate data record.

The screenshot below illustrates the original view of the Batch Number lookup window (also referred
to as selector). The Batch Number is a control on the form of the Journal Transactions form. The
lookup window of this control includes eight columns, as shown in the screenshot below.

Figure: Viewing the current structure and content of the lookup window



 | Examples | 369

Suppose the UI customization task for the Batch Number selector includes the following steps (see the
screenshot above):

1. Deleting an existing column, such as the Ledger column.

2. Adding a column for the Orig. Batch Number field to the place after the Currency column.

3. Changing the order of the selector columns, so the Status column moves to the position
between the Credit Total and Currency columns.

To do this, perform the following actions:

1. On the Journal Transactions form (see the screenshot below), click the Customization menu
(a), choose Inspect Element (b), select the Batch Number control (c), click Actions on the
Element Properties dialog box (d) and select the Customize Data Fields command (e).

Figure: Selecting the control for the selector customization

The Data Class Editor appears with only the BatchNbr field in the list of the customized fields
of the class. The field is already selected in the field; therefore the work area of the editor holds
information about the field.

:  The selected field type is selector, so the Selector Columns button is enabled in the editor
toolbar.

2. To open the Customize Selector Column dialog box, click Selector Columns, as shown in the
screenshot below.

3. In the table of the Customize Selector Column dialog box, select the row with the Ledger
column.

4. Click Delete Row to delete the selected Ledger column from the selector.



 | Examples | 370

Figure: Deleting the selected column from the selector

5. To open the Add Columns to Selector dialog box, click Add Columns on the toolbar of the
Customize Selector Column dialog box.

6. In the Add Columns to Selector dialog box, select the All tab to view all fields of the
customized data access class (DAC) in the table.

7. In the table, select the row with the Orig. Batch Number column name.

8. Click OK to add the selected field to the table of the Customize Selector Column dialog box.

Figure: Adding the column for the field to the table of the Customize Selector Column Dialog

:  New columns are added to the position after the last existing column of the selector.



 | Examples | 371

The Orig. Batch Number column is created in the table of the Customize Selector Column
dialog box (see the screenshot below) at the rightmost position. Therefore, you do not need to
move this column inside the selector. But you still have to move the Status column to position
between the Credit Total and Currency columns.

9. Select the row with the Status column.

10. Click Down twice to move the selected row to the required position, as shown in the screenshot
below.

11. Click OK on the Customize Selector Column dialog box to apply the changes to the selector.

Figure: Moving the column to the needed position

12. Click Save on the toolbar of the Data Class Editor to save the changes to the current
customization project.

After you click OK in the Customize Selector Columns dialog box, the system applies the
modifications to the selector table. As a result, the PXCustomizeSelectorColumns attribute is added
to the selector field and you can view the attribute in the Customize Attributes text area of the Data
Class Editor (see the screenshot below). This attribute defines the new set and order of the columns in
the selector.



 | Examples | 372

Figure: Viewing the changes in the Customize Attributes text area

After publishing the project, open the Journal Transactions form, click the Magnifier icon of the Batch
Number control, and view the lookup window. Notice the absence of the deleted column, the position
of the moved Status column, and the presence of the Orig. Batch Number column, as shown in the
screenshot below.

Figure: Viewing the modified structure and content of the lookup window

If you need to analyze the added content (changeset) of the customization project, open the project
in the Project Editor, choose the Edit Project Items command on the File menu item, and select the
Object Name field of the customized object (see the screenshot below). The DAC object represents the
changes to the data access class code.



 | Examples | 373

Figure: Analyzing the added content of the customization project

Adding PXLayoutRule Components
This topic describes in detail the use of the PXLayoutRule component, which facilitates a relative
positioning layout.

The PXLayoutRule component, which you access from the Layout Editor, provides the following UI
customization capabilities:

• Placing controls in multiple columns to uniformly distribute them on the form or tab area of a form

• Spanning controls across multiple columns

• Merging controls into one row to align them horizontally

• Adjusting the widths of controls and labels

• Hiding the labels of controls

• Grouping controls for users' convenience

This topic describes the most important properties of the PXLayoutRule component, which are visible
when the Properties tab on the Layout Editor is selected (see the screenshot below).



 | Examples | 374

Figure: Viewing the PXLayoutRule component and its most important properties

The nodes of some levels and the subnodes of the lowest level of the Control Tree of the Layout Editor
represent the container controls and the simple controls of the selected area of the form. In this
example, the Relative Positioning Layout, General Settings, and other low-level nodes of the
PXTabItem type correspond to the tabitem controls, while the FirstName and Last Name subnodes
of the PXTextEdit type correspond to the UsrSprFirstName and UsrSprLastName data fields and
are placed under the Relative Positioning Layout node. The Control Tree also contains two high-
level nodes. The highest ones represent placeholders, while the nodes beneath them correspond to the
container controls, such as PXFormView, PXTab, and PXGrid. Nodes of the PXTab include PXTabItem
nodes, while PXTabItem nodes include the subnode that corresponds to the controls. To see the
subnode, you should extract appropriate nodes. The PXLayoutRule component can be added only on
the subnode level.

Suppose that you have performed the following customization actions:

• Appending the new tab to the Stock Items form and naming it Relative Positioning Layout.
(See Adding a New Tab Item.)

• Adding user fields to both the InventoryItem database table and the InventoryItem data access
class (DAC).

• Adding several controls for new and already-existing InventoryItem DAC fields onto the created
Relative Positioning Layout tab.

• Adding the PXLayoutRule component with the StartRow property value set to True as the
uppermost subnode of the Relative Positioning Layout tab.

The following screenshot illustrates the initial layout of the Relative Positioning Layout tab on the
form.



 | Examples | 375

Figure: Viewing the initial layout of the added tab on the Stock Items form

:  You must always set the StartRow property value to True for the uppermost PXLayoutRule subnode to
provide the proper layout; we assume that you have taken this action already. The StartRow property is
described in the next section.

The following sections describe the most important properties of the PXLayoutRule component in the
order that corresponds to the order of actions within the typical complex customization task, which
must be resolved step by step. All the customization actions are described with the assumption that you
have already opened the Layout Editor, and the first instruction starts when you begin to work with the
editor.

:  You should not actually complete the actions described below. You should only analyze the instructions
and results of performing them.

In this section:

• StartRow and StartColumn Properties

• ColumnSpan Property

• Merge Property

• GroupCaption and EndGroup Properties

• SupressLabel Property

• Nested Container Controls

• The Results of UI Customization that Uses the PXLayoutRule Component

StartRow and StartColumn Properties

By default, the system places all controls into a column. You need to initially set to True the StartRow
property value for the uppermost PXLayoutRule subnode to optimize the layout. Controls are placed
within a single column, until you add the PXLayoutRule component with the StartColumn or Merge
property value set to True.

To best use the area of a placeholder, you can place controls in multiple columns within a row of a form
or tab area by setting the StartColumn property value of the PXLayoutRule subnode to True. This



 | Examples | 376

property creates a new column of controls within the current row. The first subnode under this rule
corresponds to the highest control in the column.

Every PXLayoutRule component that has the StartRow property value set to True initializes a new
independent set of columns. By setting the StartRow property value to True, you create a new
independent set of controls that are placed by default into a column. To place controls in multiple
columns within the new row, you should add the PXLayoutRule subnode with the StartColumn
property value set to True.

Every PXLayoutRule component that has the StartRow or StartColumn property value set to True
must have one of the following sets of properties defined:

• LabelsWidth and ControlSize

• LabelsWidth and ColumnWidth

You may not set both ColumnWidth and ControlSize property values for the same PXLayoutRule
component; in this case, the system will use the value of the ControlSize property.

For all PXLayoutRule components with the StartRow or StartColumn property value set to True:

• You can assign the ColumnWidth and LabelsWidth property values from the predefined list of
options. (See Using Predefined Size Values for details.)

• The values of the ColumnWidth, ControlSize and LabelsWidth properties must be defined
exclusively for every PXLayoutRule component; they are never inherited from the previously
declared one.

You may assign the StartRow property only for the uppermost subnode, but this is not an optimal
layout for a complex form. Therefore, for this task, you should thrice drag and drop the Row layout rule
(PXLayoutRule with the predefined StartRow property value to True) to the positions above each of
the Extra Ship Fee, Active, and Title subnodes, as shown in the screenshot below.

Figure: Adding the Row PXLayoutRule components to the tab item

Because the values of the ColumnWidth, ControlSize and LabelsWidth properties for the rows and
columns never inherited from the previously declared PXLayoutRule component, you have to define
these properties exclusively for every new row, as shown in the screenshot below.



 | Examples | 377

Figure: Specifying the properties for the new PXLayoutRule components

In this example, you should make the Last Cost control the highest one in the second column.
However you need two controls placed under this control to keep their positions in first column. To
resolve this part of the customization task, you should perform the following actions (see also the
screenshot below):

1. Drag and drop the Last Cost subnode to the last position in the first row.

Figure: Moving the subnode in the tree of controls

2. Select the Add Controls tab of the Layout Editor.

3. Drag and drop the Column layout rule (PXLayoutRule with the predefined StartColumn
property) above the Last Cost node in the tree, as shown in the screenshot below.



 | Examples | 378

Figure: Adding the Column PXLayoutRule component

4. Select the Properties tab of the Layout Editor and specify the values for the ControlSize (SM)
and LabelWidth (S) properties for the new column.

5. Click Save on the toolbar of the Layout Editor to save changes to the customization project.

You can see the changes of the form by clicking Preview Page on the toolbar of the Layout Editor.
As the screenshot below illustrates, the Last Cost control is now placed on the second column of
the Relative Positioning Layout tab, while the Description (long) and Search Keywords input
controls still keep their positions in the first column.

Figure: Viewing the control that was placed on the new column

ColumnSpan Property

Next, you need to widen the Description (long) and Search Keywords controls so that they span
two columns. To do this, you use the ColumnSpan property.



 | Examples | 379

You specify the ColumnSpan property value for a PXLayoutRule subnode by manually typing the
number of columns spanned by the control that is the first one placed below the rule. Hence, you
should specify this property value twice for each subnode that corresponds to the Description (long)
and Search Keywords controls. Each of these controls (or another type of control) spans the specified
number of columns, starting from the column to which it originally belongs.

For all PXLayoutRule components with the ColumnSpan property value specified:

• The LabelsWidth property value is always inherited from the previously declared PXLayoutRule
component that has the StartRow or StartColumn property value set to True.

• The values for the ColumnWidth and ControlSize properties are never applied to these
PXLayoutRule components.

To adjust the ColumnSpan property of the controls, you should perform the following actions:

1. Select the Add Controls tab of the Layout Editor.

2. Twice drag and drop the Empty Rule layout rule (PXLayoutRule without any predefined
property) — above each of the Description (long) and Search Keywords nodes in the tree, as
shown in the screenshot below.

Figure: Adding the Empty Rule PXLayoutRule components

3. Select the Properties tab of the Layout Editor.

4. Select the Layout Rule subnode, which corresponds to the Description (long) control.

5. Type 2 as the ColumnSpan property value.

6. Select the Layout Rule subnode, which corresponds to the Search Keywords control.

7. Type 2 as the ColumnSpan property value.

8. Click Save on the toolbar of the Layout Editor to save changes to the customization project.

As the screenshot below illustrates, the Description (long) and Search Keywords controls now span
two columns.



 | Examples | 380

Figure: Viewing the widened controls

Merge Property

Merging means placing controls so that they are horizontally aligned.

You should align controls horizontally by merging the Extra Ship Fee input control with the Use On
Entry check box, and the Default Postal Code input control with the View On Map button.

To do this, you set the Merge property value to True for the corresponding PXLayoutRule components
placed above the Extra Ship Fee and Use On Entry subnodes.

:  Horizontal alignment is performed for the controls that are placed between this and any other subsequent
PXLayoutRule component; the first PXLayoutRule component discovered breaks the merging. To cancel
merging for all of the following controls, you must add the PXLayoutRule component without the adjusted
property value

For all PXLayoutRule components that have the Merge property value set to True:

• The ColumnWidth property value is never applied to the controls if the Merge property is set to
True for the same PSLayoutRule component.

• The values for the ControlSize and LabelsWidth properties are inherited by default from the
previously declared PXLayoutRule component with the StartRow or StartColumn property
values set to True. You can override these property values if necessary by specifying the
ControlSize and LabelsWidth property values from the predefined list of options. (See Using
Predefined Size Values for details.)

To merge controls, you should perform the following actions (see also the screenshot below):

1. Select the Row node that contains the controls.

2. Select the Properties tab of the Layout Editor.

3. Set the Merge property value to True, as shown in the screenshot below.



 | Examples | 381

Figure: Seting the Merge property for the PXLayoutRule component

4. Select the Add Controls tab of the Layout Editor.

5. Drag and drop the Merge layout rule (PXLayoutRule with the predefined Merge property)
above the Default Postal Code nodes in the tree, as shown in the screenshot below.

Figure: Adding the Merge PXLayoutRule component

6. Click Save on the toolbar of the Layout Editor to save changes to the customization project.

:  Because of the previously added PXLayoutRule component (with the StartRow property value
set to True) above the Active subnode, you do not need to add a PXLayoutRule component
below the last merged controls.

As the screenshot below illustrates, the two pairs of controls are horizontally aligned now.



 | Examples | 382

Figure: Viewing the horizontally aligned controls

GroupCaption and EndGroup Properties

Now you will create a group with a caption and include the Active and Featured check boxes in this
group. Organizing controls on a form within groups makes users' work more logical.

By specifying the GroupCaption property value for the corresponding PXLayoutRule components
placed above the first subnode, you create the group of controls and set up the header for the group.
You should also add a PXLayoutRule component with the EndGroup property value set to True below
the last control that is included in the group.

For all PXLayoutRule components with the GroupCaption property value specified:

• The ColumnWidth property value is never applied to the controls if the GroupCaption or
EndGroup property is set to True for the same PSLayoutRule component.

• The values for the ControlSize and LabelsWidth properties are inherited by default from the
previously declared PXLayoutRule component with the StartRow or StartColumn property
values set to True. You can override these property values if necessary by specifying the
ControlSize and LabelsWidth property values from the predefined list of options. (See Using
Predefined Size Values for details.)

To create the group of controls, you should perform the following actions:

1. Select the Row node that contains the Active and Featured controls.

2. Select the Properties tab of the Layout Editor.

3. Type Status as the GroupCaption property value and set the StartGroup property value to
True, as shown in the screenshot below.



 | Examples | 383

Figure: Setting the StartGroup property for the PXLayoutRule component

4. Select the Add Controls tab of the Layout Editor.

5. Drag and drop the Empty Rule layout rule under the Active node in the tree, as shown in the
screenshot below.

Figure: Adding the Empty Rule PXLayoutRule components

6. Select the last created Layout Rule node.

7. Select the Properties tab of the Layout Editor.

8. Set the EndGroup property value to True, as shown in the screenshot below.



 | Examples | 384

Figure: Adjusting the EndGroup property for the PXLayoutRule component

9. Click Save on the toolbar of the Layout Editor to save changes to the customization project.

As the screenshot below illustrates, the Active and Featured check boxes are now organized in the
added Status group.

Figure: Viewing the group of controls

SupressLabel Property

Every control contains both a label and a user input control, except for buttons and check boxes.
A check box has a label, which is displayed right of it. When you add a check box onto a form, it is
automatically aligned toward other input controls within the appropriate column. As a result, the area
left of a check box is empty.

To hide control labels placed within a column, you should set the SupressLabel property value to True
of the PXLayoutRule subnode. All control labels placed within the column are hidden and check boxes
are placed without any space to the left of the input control. If needed, you can place any separate
check box to the left by setting the AlignLeft property value to True, or you can set the SupressLabel
property value to True for any other control to hide its label.

In this example, you use the SupressLabel property to hide the empty area to the left of the check
boxes included in the Status group.



 | Examples | 385

:  The SuppressLabel property affects all controls of the group that are placed under the PXLayoutRule
component with the True value of this property. The SupressLabel property value must be defined for
every PXLayoutRule component for the controls placed beneath the component and included in the same
column; this property is never inherited from the previously declared property. The SupressLabel property
value is never applied to PXLayoutRule components with the ColumnSpan property value specified.

To suppress labels for the check boxes within the same column, you should perform the following
actions (shown in the following screenshot):

1. Select the Row node with specified the StartGroup property.

2. Select the Properties tab of the Layout Editor.

3. Set the SuppressLabel property value to True, as shown in the screenshot below.

4. Click Save on the toolbar of the Layout Editor to save changes to the customization project.

Figure: Setting the SuppressLabel property for the Status group of check boxes

As the screenshot below illustrates, the Active and Featured check boxes have been shifted to the left.

Figure: Viewing the shifted check boxes



 | Examples | 386

Nested Container Controls

Next, you need to add a panel (the PXPanel control) onto the Relative Positioning Layout tab, add a
few controls onto the panel, place them into two columns, and hide the empty area to the left of check
boxes.

After you add the PXPanel control, the system creates a node. All the aforementioned layout rules
apply to this node, because it also consists of the separate set of rows and columns. Hence, every
nested container control is arranged toward the parent node layout but contains the separate layout of
subnodes within.

To perform this complex step, you would perform the following actions:

1. Select the Add Controls tab of the Layout Editor.

2. On the opened tab item, drag and drop the Panel (PXPanel) control to the position under the
Layout Rule node which is the end of the group, as shown in the screenshot below.

Figure: Adding the PXPanel control

3. Select the created PXPanel node in the tree.

4. Select the Properties tab of the Layout Editor.

5. Select the Caption property and enter Pending Values to specify the name of the new panel.

6. Open the Add Data Fields tab of the Layout Editor.

7. Select Visible filter for the list to display the visible fields of the Inventory Item data access
class.

8. In the list, select the PendingStdCost and PendingStdCostDate fields.

9. Click Create Controls on the tab toolbar (see the screenshot below).



 | Examples | 387

Figure: Adding the fields onto the PXPanel container control

10. Select Custom filter for the list to display the custom fields of the Inventory Item data access
class.

11. In the list, select the UsrUseOnEntryPndPrice and UsrUseOnEntryPndCost fields.

12. Click Save on the toolbar of the Layout Editor to save changes to the customization project.

After adding a column layout rule for the PXPanel control, placing two new column layout rules
onto the panel and specifying properties for these rules, you can view the final result of the UI
customization, as the following screenshot illustrates.

Figure: Analyzing the final view of the form

The Results of UI Customization that Uses the PXLayoutRule Component

After modifying the UI and publishing the customization project, you should analyze the results of the
UI customization by doing the following:

• Explore the changeset of the project

• Analyze the new layout of the form at run time and check the final positioning of the controls

To view the fragment of the .aspx code that represents the customization result, open the form in the
Layout Editor and select the View ASPX tab. Then select a node on the tree of controls to display



 | Examples | 388

the code fragment for the node. All the changes are highlighted in yellow, as the screenshot below
illustrates.

Figure: Exploring the .aspx changeset

If you need to analyze the added content (changeset) of the customization project, open the project
in the Project Editor, choose the Edit Project Items command on the File menu item, and select the
Object Name field of the customized object (see the screenshot below). The Page item represents the
changes to the .aspx code.

Figure: Exploring the content of the Page item of the customization project

After publishing the customization project, open the Relative Positioning Layout tab of the Stock
Items form to analyze and test the new structure of this tab at run time (see the screenshot below).



 | Examples | 389

Figure: Analyzing the final view of the Relative Positioning Layout tab

Examples of Functional Customization
Functional customization means modifications of the data structure and original application business
logic. All these modifications are related to the code of the appropriate data access classes (DACs) or
business logic controllers (BLCs, also referred to as graphs).

The Acumatica Customization Platform provides the tools and the framework that is based on class
extensions and provides the following key features:

• You can deploy multiple projects that extend DACs or BLCs.

• Extensions are precompiled, which provides a measure of protection for your source code and
intellectual property.

• The framework provides an advanced level of control over the business logic and a multilevel
extension model.

• The platform implements an auto-discovery mechanism, which makes the deployment and
upgrade processes straightforward.

The topics of this section describe the rules and methods of functional customization and give examples
of customization projects that resolve typical functional customization tasks:

• Adding Data Fields

• Customizing DAC Attributes

• Modifying a BLC Action

• Modifying a BLC Data View

• Declaring or Altering a BLC Data View Delegate

• Extending BLC Initialization

• Altering the BLC of a Processing Form

• Adding or Altering BLC Event Handlers

• Altering BLC Virtual Methods



 | Examples | 390

Adding Data Fields
You can add to a form a UI control based on a new data field. To do this, you can use the following
ways:

• Use the Data Class Editor to create the data field and use the Layout Editor to add the control
onto the required area of a form.

• Define the data field in code, add the Table customization item for adding the column to the
database table if the field is bound, and use the Layout Editor to add the control onto the required
area of a form.

These approaches are described in greater detail below.

• Adding a Data Field From the Data Class Editor

• Adding a Data Field From Code

Adding a Data Field From the Data Class Editor

Suppose that you have to add an input UI text box for a bound data field to the Stock Items
(IN.20.25.00) form (Distribution > Inventory > Work Area > Manage). To do this, you have to
(see the diagram below):

• Add a data field to the code of the appropriate DAC (the functional customization step)

• Add a column to the database table (a customization change to the database structure that is a
part of functional customization)

:  You have to add a database column only for bound data fields. Bound data field means the field
values are saved in the database. If you define an unbound field, skip this step.

• Add a control for the field onto the form area (the UI customization step)



 | Examples | 391

Figure: Adding a bound field to a webpage

Suppose you have to add the new Search Keywords text box to the Stock Items form, as the
screenshot below shows.

Figure: The customization task of adding the new field to the form



 | Examples | 392

To open the data access class that provides fields for the form area on the Stock Items form in Data
Class Editor, open the form, select Customization > Inspect Element on the form title bar, and click
the form area of the Stock Items form.

The following information of the control and the data access class should appear in the Element
Properties dialog box:

• Control Type: Form View

• Data Class: InventoryItem

• Business Logic: InventoryItemMaint

InventoryItem is the data access class that provides the data fields for UI controls on the form.
Therefore, you have to add the new data field to the extension of this class.

In the Element Properties dialog box, select Actions > Customize Data Fields to open the Data
Class Editor for the InventoryItem class (see the screenshot below).

:  If you haven't selected the current project yet, you will be asked to select the customization project
to which the customization of the data access class will be added. You can select the current project
to automatically add all customizations that you initiate from the Element Inspector by using the
Customization > Select Project menu to the project. For more information, see Select Customization
Project Dialog Box.

Figure: Selecting the data access class for customization

In the Data Class Editor, select Add Field > Create New Field on the toolbar.

In the Create New Field dialog box, specify the following parameters for the new field:

• Field Name: SearchKeywords

• DisplayName: Search Keywords



 | Examples | 393

• Storage Type: DBTableColumn

• Data Type: string

• Length: 255

As soon as you move the focus out of the Field Name box, the system adds the Usr prefix to the field
name (see the screenshot below), which provides the distinction between the base fields and new
custom fields that you add to the class. Keep the prefix in the field name and click OK to add the data
field to the class.

:  If you select the DBTableColumn storage type, the system automatically adds schema for the new
database column to the customization project. For more information on parameters that you specify for
new fields, see Create New Field Dialog Box.

Figure: Adding the new data field to the class

To the customization project, the system adds the new field as the extension to the InventoryItem
data access class, and adds the Table item for adding the corresponding column to the database table.
Click Save on the toolbar of the Data Class Editor to save the changes to the project.

:  To view the customization item generated for the database schema, select File > Edit Project Items
and find the Table item for the InventoryItem database table in the list of project items.

To be able to add the UI control for the new field, you have to publish the customization project
to make the system compile the customization code and update the database schema with the
new column. To publish the customization project from Project Editor, select Publish > Publish
Current Project and click Publish in the Compilation window. For more information, see Publishing
Customization Projects.

After the publication is complete, in Project Editor add the Stock Items form to the customization
project. To do this, you can use the Element Inspector or select Screens on the navigation pane of
the Project Editor, and add the Stock Items form to the list by selecting Add Screen > Customize
Existing Screen on the toolbar.

Open the form in Layout Editor. In the tree of controls, expand the Form: Item container and select
and expand the first column within the container to set up the position to which the new control will be
added.

To add the control, select the Add Data Fields tab of Layout Editor. Leave the Data View box empty.
(The box specifies the data access class by which the fields are filtered in the table below.)



 | Examples | 394

Select the Custom filter on the tab and select the check box for the UsrSearchKeywords field in the
table, as the following screenshot shows.

Figure: Adding the control for the data field

Click Create Controls on the toolbar of the tab. The control for the Search Keywords field will be
added to the tree.

Figure: The control added to the tree

Now you have to adjust the position and size of the control on the form.

Drag and drop the Search Keywords control at the end of the column after the Description control
and click Save to save the changes to the project.

To adjust the size of the control, you have to place an instance of the PXLayoutRule component right
above the control.

Select the Add Controls tab of Layout Editor and drag and drop an Empty Rule component to the
position above the Search Keywords control in the tree, as the screenshot below shows.



 | Examples | 395

Figure: Adding an Empty Rule component to the tree to adjust the size of the control

Select the Layout Rule component that has been added to the tree and switch to the Properties tab
of Layout Editor.

On the Properties tab, set the ColumnSpan property to 2, which specifies the span of the control on
two columns of the layout on the form. Click Save to save the changes to the project.

:  The controls are organized in two columns on the form. For more information about positioning controls,
see Layout Rule (PXLayoutRule).

Figure: Specifying the span of the control for the number of columns in the layout



 | Examples | 396

The customization to the layout of the form is ready.

:  While working with Layout Editor, you can click Preview Page to view how the changes will affect the
layout of the form.

Publish the project again to view the changes applied to the Stock Items (IN.20.25.00) form
(Distribution > Inventory > Work Area > Manage). After you publish the project, verify that the
customized Stock Items form looks as needed according to the customization task (see above). The
customization items for form layout, data access class, and database schema have been added to the
project. The new Search Keywords text box will appear on the Stock Items form on every system
where you publish the customization project.

The DAC extension code that has been generated for the new field is given below. The system has
generated a DAC extension class for InventoryItem and added the data field definition to the class.
For more information about extension classes, see DAC Extensions.

public class PX_Objects_IN_InventoryItem_Extension_AddColumn: 
  PXCacheExtension<PX.Objects.IN.InventoryItem>
{
  #region UsrSearchKeywords
  public abstract class usrSearchKeywords : IBqlField{} 
  [PXDBString(255)]
  [PXUIField(DisplayName="Search Keywords")]
  public virtual string UsrSearchKeywords
  {
      get; set;
  }
  #endregion
}

You can open the customization code in MS Visual Studio and work with the code there. For more
information, see Integrating the Project Editor with Microsoft Visual Studio.

Adding a Data Field From Code

If you work with the customization code in MS Visual Studio, you can define a new data field in DAC
extension code and then create the control on the form.

Suppose that you have to add an input UI text box for a bound data field to the Stock Items
(IN.20.25.00) form (Distribution > Inventory > Work Area > Manage). To do this, you have to:

• Add a data field to the code of the appropriate DAC (the functional customization step)

• Add a column to the database table (a customization change to the database structure that is a
part of functional customization)

:  You have to add a database column only for bound data fields. Bound data field means the field
values are saved in the database. If you define an unbound field, skip this step.

• Add an input UI text box onto the form area of the form (the UI customization step)

Suppose you have to add the new Local Tax Category selector to the Stock Items form, as the
screenshot below shows.



 | Examples | 397

Figure: The customization task of adding the new field to the form

If you want to work with the DAC extension code in the integrated MS Visual Studio solution without
use of Data Class Editor, you can develop the code in a .cs file added to the customization project as a
custom Code item or in a .cs file in a separate add-on project in the solution. We recommend that you
use either Data Class Editor or develop the entire customization code in an add-on project in MS Visual
Studio, but do not mix up the approaches. For more information, see Integrating the Project Editor with
Microsoft Visual Studio.

To add the UI control for the bound data field created from code, perform the following actions:

1. In MS Visual Studio, define the custom usrLocalTaxCategoryID data field in the DAC
extension class, as listed below.

using PX.Data;
using PX.Objects.IN;
using PX.Objects.TX;

namespace PX.Objects.IN
{
  public class InventoryItemExtension: PXCacheExtension<InventoryItem>



 | Examples | 398

  {
      #region UsrLocalTaxCategoryID
      public abstract class usrLocalTaxCategoryID : PX.Data.IBqlField
      {
      }
      [PXDBString(10, IsUnicode = true)]
      [PXUIField(DisplayName = "Local Tax Category")]
      [PXSelector(typeof(TaxCategory.taxCategoryID),
                  DescriptionField = typeof(TaxCategory.descr))]
      public string UsrLocalTaxCategoryID { get; set; }
      #endregion
  }
}

:  In this example, the .cs file with the DAC extension code is added to the customization project
as a custom Code item. When you develop extensions in custom Code items, define the extension
classes in the namespace of the original class. For more information about adding custom Code
items to the project, see Code.

2. Update the customization project with the new customization code. To do this, open the
customization project that corresponds to the MS Visual Studio solution in the Customization
Project Editor, select the Files list of project items and click Detect Modified Files.

3. In the Modified Files Detected dialog box, select the conflicting file of the custom Code item
and click Update Customization Project to update the code in the project.

:  If you build an assembly with the DAC extension code, update the assembly file in the
customization project. For more information, see To Update a File Item in a Project.

4. Add the database schema for the custom field to the project. To do this, select File > Edit
Project Items on the menu of Project Editor.

5. On the toolbar of the list of project items, select Add > Database Table Field.

6. In the Add UsrField to Database Table dialog box, specify the parameters for the new
database column in the InventoryItem table and click OK to add the database schema to the
project:

• Table Name: InventoryItem

• Field Name: LocalTaxCategoryID (without the Usr prefix)

• Field Type: DBString(nvarchar)

• Length: 10



 | Examples | 399

Figure: Adding the database schema for a custom DAC field created from code

:  We recommend that you add the database schema for the a custom column, as shown above,
and do not alter the original schema of the table by a custom SQL script.

7. Publish the customization project to make the system add the column to the database and
compile the customization code. To do this, select Publish > Publish Current Project on the
menu of Project Editor and publish the project.

8. Add the UI control for the custom field to the Stock Items form. To do this, open the form in
Layout Editor.

:  You can add an existing form to the customization project by using the Element Inspector or
directly from Project Editor. See Customized Screens for details.

9. Select the Tax Category control in the tree to add the new control beneath it.

10. On the Add Data Fields tab, select the check box for the Local Tax Category selector in the
table and click Create Controls to add the control to the tree (see the screenshot below).



 | Examples | 400

Figure: Adding the control for the data field

11. Click Save on the toolbar to save the layout changes.

12. Preview the customized form by clicking Preview Page on the toolbar or publish the
customization project to view the changes applied to the Stock Items (IN.20.25.00) form
(Distribution > Inventory > Work Area > Manage).

Verify that the customized Stock Items form looks as needed according to the customization task (see
above). The customization items for the form layout, custom code (or external assembly file), and
database schema have been added to the customization project. The new Local Tax Category text
box will appear on the Stock Items form on every system where you publish the customization project.

Customizing DAC Attributes
To modify or extend the behavior that is defined within a data access class (DAC), you should append or
override the field attributes declared within the DAC.

Suppose that you have a customization task to modify the Invoices form, and that this task consists of
the following requirements:

1. The Customer Order data field on the form area (see the screenshot below) must have the
None value when the user has not specified the reference number of the customer.

2. The values of the Discount Percent column must be limited to a range of -30 to 25 percent
instead of the original range of -100 to 100 percent.



 | Examples | 401

Figure: Viewing the original form

To begin implementing the first requirement, inspect the properties of the Customer Order UI control.
To do this, on the Customization menu, select Inspect Element and click the box or label of the
control on the form. The system should retrieve the following information of the control that will display
in the Element Properties dialog box:

• Control Type: Text Edit. The type of the UI control.

• Data Class: ARInvoice. The data access class that contains the inspected field.

• Data Field: InvoiceNbr. The field that is represented by the Customer Order control on the
form.

• Business Logic: SOInvoiceEntry. The business logic controller (BLC, also referred to as graph)
that provides the logic executed on the Invoices form.

To modify attributes of the DAC field, select Actions > Customize Data Fields in the Element
Inspector. In the Select Customization Project dialog box, specify the project to which you want to
add the customization item for the data field and click OK.

Data Class Editor opens for customization of the InvoiceNbr field of the ARInvoice data access
class, as the screenshot below shows.



 | Examples | 402

Figure: The data field added to the customization project

Suppose that you decided to append an attribute to the DAC field to specify the default value for the
field. The attribute that you have to add to the field is PXDefault.

:  Acumatica Framework 6.1 provides advanced possibilities to control the field customization by using
additional attributes in the DAC extension. See the Customization of Field Attributes in DAC Extensions for
details.

To append the attribute to the list of attributes of the data field, in the Customize Attributes box,
select Append to Original. In the text area, type [PXDefault("None")] and save the changes in
Layout Editor (see the screenshot below).

Figure: Appending an attribute to the DAC field

The system adds the customized data access class to the Data Access list of project items. For more
information, see Customized Data Classes.



 | Examples | 403

To view the changes applied to the Invoices form, publish the customization project and add a new
document on the Invoices form. When you add a new document, the system will insert the None default
value into the Customer Order box as you have specified with the PXDefault attribute.

To implement the second requirement of the task, inspect the Discount Percent column on the
Document Details tab of the Invoices form. To do this, on the Customization menu, select Inspect
Element and click the area of the Discount Percent column header. The system should retrieve the
following information of the control that will display in the Element Properties dialog box:

• Control Type: Grid Column. The type of the UI control.

• Data Class: ARTran. The data access class that contains the inspected field.

• Data Field: DiscPct. The field that is represented by the Discount Percent column in the table.

• Business Logic: SOInvoiceEntry. The business logic controller (BLC, also referred to as graph)
that provides the logic executed on the Invoices form.

To modify attributes of the DAC field, select Actions > Customize Data Fields in the Element
Inspector. In the Select Customization Project dialog box, specify the project to which you want to
add the customization item for the data field and click OK.

Data Class Editor opens for customization of the DiscPct field of the ARTran data access class, as the
screenshot below shows.

The PXDBDecimal attribute specifies the range of valid values for the field. According to the
customization task, you have to modify the minimum and maximum values specified in the attribute. To
do this, you have to replace the original attributes with the custom ones.

Figure: The data field added to the customization project

To replace the attributes, in the Customize Attributes box, select Replace Original. The original
attributes will be copied to the text area where you enter custom attributes.

In the PXDBDecimal attribute, change the minimum and maximum values, as listed below, and click
Save in Data Class Editor to save the changes.



 | Examples | 404

:  If you replace attributes, you have to repeat all attributes that you want to remain on the data field.

[PXDBDecimal(6, MinValue = -30, MaxValue = 25)]
[PXUIField(DisplayName = "Discount Percent")]
[PXDefault(TypeCode.Decimal, "0.0")]

Figure: Replacing attributes on the data field

The system adds the customized data access class to the Data Access list of project items. For more
information, see Customized Data Classes.

To test the result of the customization, publish the customization project, open the Invoices form, insert
a new document, and add a record to the details table, as shown in the screenshot below. If you try to
specify a value in the Discount column greater than 25 percent or less than -30 percent, the system
will automatically correct the value to the maximum 25 or minimum -30, respectively.

Modifying a BLC Action
To modify the behavior of an action that is defined within a business logic controller (BLC, also referred
to as graph), you should override an action delegate.

Suppose that you need to rename the Release button to Extended Release on the Receipts form
(Distribution > Inventory > Enter > Receipts), which is shown in the following screenshot.



 | Examples | 405

Figure: Viewing the original Receipts form

To do this, you have to find the business logic controller for the form and modify the display name of
the action that corresponds to the Release button.

To find the business logic controller for the form, on the Customization menu, select Inspect
Element and click the button caption on the form. The system should retrieve the following information
of the button, which appears in the Element Properties dialog box:

• Control Type: DS Callback Command. The type of the UI control.

• Business Logic: INReceiptEntry. The business logic controller that contains the code of the
action that is represented by the Release button.

Thus, to rename the button, you have to change the DisplayName parameter of the PXUIField
attribute for the Release action in the BLC extension for the INReceiptEntry class.

To modify the attributes of the action, select Actions > Customize Business Logic in the Element
Inspector. In the Select Customization Project dialog, specify the project to which you want to add
the customization item for the business logic controller of the form and click OK.

The Code Editor opens for customization of the business logic code of the form (see the screenshot
below). The system generates the BLC extension class in which you can develop the customization
code. (See Graph Extensions for details.)



 | Examples | 406

Figure: The BLC extension class generated for customization of the business logic code executed for the Receipts
form

To modify the DisplayName parameter of the PXUIField attribute for the Release action, you have
to redefine the action in the BLC extension class, to which the attributes are attached. Insert the code
listed below into the INReceiptEntry_Extension class, as shown in the screenshot below. In the
DisplayName parameter, you specify the new name for the button, "Extended Release".

#region Customized Actions
  public PXAction<INRegister> release;
  [PXUIField(DisplayName = "Extended Release",
             MapEnableRights = PXCacheRights.Update,
             MapViewRights = PXCacheRights.Update)]
  [PXProcessButton]
  protected IEnumerable Release(PXAdapter adapter)
  {
    return Base.release.Press(adapter);
  }
#endregion

The redefined action delegate must have exactly the same signature—that is, the return value, the
name of the method, and any method parameters—as the base action delegate has. You always have
to redefine the action delegate to alter either its delegate or the attributes attached to the action. To
use the action declared within the base BLC or a lower-level extension from the action delegate, you
should redefine the generic PXAction<TNode> data member within the BLC extension, as shown in
the code above. You do not need to redefine the data member when it is not meant to be used from the
action delegate. For details, see Graph Extensions. When you redefine an action delegate, you have to
repeat the attributes attached to the action. Every action delegate must have PXButtonAttribute (or
the derived attribute) and PXUIFieldAttribute attached.

Click Save in Code Editor to save the changes.



 | Examples | 407

Figure: The Release action redefined in the BLC extension class with the modified DisplayName

The system adds the customization to the business logic code to the Code list of project items. See
Code for details.

To view the result of the customization, publish the customization project and open the Receipts form.
Verify that the button caption has changed to Extended Release, as the following screenshot shows.
Click this button for a document with the Balanced status and verify that the release procedure works
exactly as it worked before publication of the current customization project.

Figure: Viewing the result of the customization



 | Examples | 408

Modifying a BLC Data View
A data view is a PXSelect BQL expression declared in a business logic controller (BLC, also referred
to as graph) for accessing and manipulating data. A data view may contain a delegate that is used
to extend data access. To modify the data view, you have to alter the appropriate PXSelect BQL
expression.

Suppose that you need to filter the rows on the Vendor Details tab of the Stock Items form
(Distribution > Inventory > Work Area > Manage). Open the original Stock Items form and create
an item that has multiple vendor records on the Vendor Details tab, one or more of which has a Lot
Size column value that equals 0.00, as the screenshot below illustrates.

Your task is to modify the selection of records for the Vendor Details tab so that only the records that
have a non-zero Lot Size value are retrieved to the tab. To resolve this customization task, you have to
redeclare the data view that provides the data displayed on the tab.

Figure: Viewing the original Stock Items form

The data for the Vendor Details tab is provided by the VendorItems data view that is defined in the
InventoryItemMaint class—that is, the business logic controller for the Stock Items form. To resolve
the customization task, you have to redefine the VendorItems data view in the BLC extension for the
business logic controller of the form.

To select the business logic controller for customization, on the Customization menu, select Inspect
Element and click the Vendor Details tab. The system should retrieve the following information that
appears in the Element Properties dialog box:

• Business Logic: InventoryItemMaint. The business logic controller that provides the logic for the
Stock Items form.

Select Actions > Customize Business Logic in the Element Inspector. In the Select Customization
Project dialog box, specify the project to which you want to add the customization item for the
business logic controller of the form and click OK.

The Code Editor opens for customization of the business logic code of the form (see the screenshot
below). The system generates the BLC extension class in which you can develop the customization
code. (See Graph Extensions for details.)



 | Examples | 409

Figure: The BLC extension class generated for customization of the business logic code executed for the Stock Items
form

In the BLC extension class for InventoryItemMaint, redefine the VendorItems data view, as listed
below.

public POVendorInventorySelect<POVendorInventory, 
    LeftJoin<InventoryItem, 
        On<InventoryItem.inventoryID, Equal<POVendorInventory.inventoryID>>, 
    LeftJoin<Vendor, 
        On<Vendor.bAccountID, Equal<POVendorInventory.vendorID>>, 
    LeftJoin<Location, 
        On<Location.bAccountID, Equal<POVendorInventory.vendorID>, 
            And<Location.locationID,
 Equal<POVendorInventory.vendorLocationID>>>>>>, 
    Where<POVendorInventory.inventoryID, Equal<Current<InventoryItem.inventoryID>>,
        And<POVendorInventory.lotSize, Greater<decimal0>>>, InventoryItem>
 VendorItems;

To modify a data view, you have to redefine the data view in the BLC extension class. The data view
redefined within a BLC extension completely replaces the base data view within the Views collection
of a BLC instance, including all attributes attached to the data view declared within the base BLC. You
can either attach the same set of attributes to the data view or completely redeclare the attributes. For
details, see Graph Extensions. The data view must have exactly the same identifier, VendorItems,
which is referred in the UI control.



 | Examples | 410

Click Save in Code Editor to save the changes.

Figure: The data view redefined in the BLC extension class

The system adds the customization to the business logic code to the Code list of project items. See
Code for details.

To view the result of the customization, publish the customization project and open the Stock Items
form (Distribution > Inventory > Work Area > Manage). Verify that the records are filtered on the
Vendor Details tab as required according to the customization task (only the records with non-zero
Lot Size are retrieved).



 | Examples | 411

Figure: Viewing the result of the customization

Declaring or Altering a BLC Data View Delegate
You can modify the data view delegate—that is, the method that is invoked when the records are
retrieved through the data view.

:  For this example, you have to enable the Warehouses feature in the system to view the Warehouse
Details tab on the Stock Items form.

For the Stock Items form, suppose that you have to make the system display the default warehouse in
the Default Receipt To column for those records for which this column is empty. Your customization
task specifies that the default warehouse for such records is the Default Receipt To warehouse of the
default record selected on the Warehouse Details tab.

Open the Stock Items form (Distribution > Inventory > Work Area > Manage) and select the
Warehouse Details tab to view the original tab, which is shown in the screenshot below.

Figure: Viewing the original Stock Items form



 | Examples | 412

To resolve this task, you have to modify the logic that retrieves the records to the Warehouse Details
tab—that is, the modify the delegate of the data view that provides data for the tab. The data view that
provides data for the tab is itemsiterecords that is defined in the business logic controller of the
form. The business logic controller of the form is the InventoryItemMaint class.

To select the business logic controller for customization, on the Customization menu, select Inspect
Element and click the Warehouse Details tab. The system should retrieve the following information
that appears in the Element Properties dialog box:

• Business Logic: InventoryItemMaint. The business logic controller that provides the logic for the
Stock Items form.

Select Actions > Customize Business Logic in the Element Inspector. In the Select Customization
Project dialog box, specify the project to which you want to add the customization item for the
business logic controller of the form and click OK.

The Code Editor opens for customization of the business logic code of the form (see the screenshot
below). The system generates the BLC extension class in which you can develop the customization
code. (See Graph Extensions for details.)

Figure: The BLC extension class generated for customization of the business logic code executed for the Stock Items
form

To resolve the customization task, you have to redefine the itemsiterecords data view and
implement the needed logic in the itemSiteRecords() data view delegate.



 | Examples | 413

To the BLC extension class for InventoryItemMaint, add the code that is listed below.

#region Customized Data Views
  public PXSelectJoin<INItemSite,
    InnerJoin<INSite,
      On<INSite.siteID, Equal<INItemSite.siteID>>,
    LeftJoin<INSiteStatusSummary,
      On<INSiteStatusSummary.inventoryID, Equal<INItemSite.inventoryID>,
        And<INSiteStatusSummary.siteID, Equal<INItemSite.siteID>>>>>>
    itemsiterecords;

  protected IEnumerable itemSiteRecords()
  {
    int? dfltReceiptLocationID = null;
    foreach (var res in Base.itemsiterecords.Select())
    {
      INItemSite site = (INItemSite)res;
      if (site.DfltReceiptLocationID != null && site.IsDefault == true)
        dfltReceiptLocationID = site.DfltReceiptLocationID;
      else if (site.DfltReceiptLocationID == null && dfltReceiptLocationID != null)
        site.DfltReceiptLocationID = dfltReceiptLocationID;
      yield return res;
    }
  }
#endregion

When you declare or alter a data view delegate within a BLC extension, the new delegate is attached
to the corresponding data view. To query a data view declared within the base BLC or lower-level
extension from the data view delegate, you should redeclare the data view within the BLC extension.
You do not need to redeclare a generic PXSelect<Table> data member when it will not be used from
the data view delegate. For details, see Graph Extensions.

The redeclared data view delegate must have exactly the same signature—the return value, the name
of the method, and any method parameters— as the base data view delegate.

Click Save in Code Editor to save the changes.



 | Examples | 414

Figure: The data view and the data view delegate redefined in the BLC extension class

The system adds the customization to the business logic code to the Code list of project items. See
Code for details.

To view the result of the customization, publish the customization project and open the Stock Items
form (Distribution > Inventory > Work Area > Manage). Verify that the default warehouse is
displayed for all records as needed according to the customization task. The default warehouse is
taken from the Default Receipt To warehouse of the record selected as Default in the table (see the
screenshot below).



 | Examples | 415

Figure: Viewing the result of the customization

Extending BLC Initialization
During the initialization of a business logic controller (BLC, also referred to as graph), you can retrieve
additional preferences, change field settings, or configure the processing form. You can extend the BLC
initialization by implementing the needed logic in a BLC extension. To extend the initialization process,
you have to override the Initialize() method of the PXGraphExtension<T> class and do not use
the constructor of the BLC extension class for that. During the BLC initialization, the system calls the
Initialize() methods of all extension levels, from the lowest to the highest. See Graph Extensions for
details.

In this example, you will create an extension of the InventoryItemMaintExtension BLC, which
overrides the Initialize() method to change the display name of the InventoryItem data access
class (DAC) field from Inventory ID to Inventory Item ID during the initialization of the base (original)
BLC instance.

If you open the Stock Items form, you can see its original view with the Inventory ID control (see the
following screenshot) that corresponds to the InventoryItem DAC field.



 | Examples | 416

Figure: Viewing the original Stock Items form

To select the business logic controller for customization, on the Customization menu, select Inspect
Element and click the Inventory ID label. The system should retrieve the following information that
appears in the Element Properties dialog box:

• Business Logic: InventoryItemMaint. The business logic controller that provides the logic for the
Stock Items form.

Select Actions > Customize Business Logic in the Element Inspector. In the Select Customization
Project dialog box, specify the project to which you want to add the customization item for the
business logic controller of the form and click OK.

The Code Editor opens for customization of the business logic code of the form (see the screenshot
below). The system generates the BLC extension class in which you can develop the customization
code. (See Graph Extensions for details.)



 | Examples | 417

Figure: The BLC extension class generated for customization of the business logic code executed for the Stock Items
form

To resolve the customization task, override the Initialize() method; in the method, set the display
name of the InventoryItem data access class (DAC) field to Inventory Item ID. (For demonstrative
purposes, the code also retrieves the INSetup data record and shows how you can implement the logic
depending on values of the record.)

:  Do not define constructors of BLC extension classes; always use the Initialize() method to
implement the needed initialization logic.

To the BLC extension class for InventoryItemMaint, add the code that is listed below.

#region Extended initialization
public override void Initialize()
{
    PXUIFieldAttribute.SetDisplayName<InventoryItem.inventoryCD>(
        Base.Item.Cache,
        "Inventory Item ID"); 
    //retrieval of the setup record that stores preferences of the Inventory module 
      
    INSetup setup = Base.insetup.Current;
    if (setup.UpdateGL != true)
    {
        // Do some actions here



 | Examples | 418

    }
}
#endregion    

In this method, you change the display name of the InventoryCD field of the InventoryItem DAC. You
do this by calling the SetDisplayName() static method of PXUIFieldAttribute. Also, you obtain the
INSetup DAC instance by using the Current property of the INSetup data view. In your customization
tasks, you may need to perform some actions that depend on field values of this setup DAC instance.

You do not need to explicitly invoke the Initialize() method on the previous extension levels;
these methods are called automatically. Invoking base.Initialize() makes no sense, because
the base variable points to the base class, which is PXGraphExtension (not the base graph). The
PXGraphExtension class defines Initialize() as an empty method.

Click Save in Code Editor to save the changes.

Figure: The initialization method implemented in the BLC extension class

The system adds the customization to the business logic code to the Code list of project items. See
Code for details.



 | Examples | 419

To view the result of the customization, publish the customization project and open the Stock Items
form (Distribution > Inventory > Work Area > Manage). Verify that the label has changed to
Inventory Item ID, as shown in the screenshot below.

Figure: Viewing the result of the customization

Altering the BLC of a Processing Form
For most processing forms of Acumatica ERP, the processing method, the button captions that are
displayed on the toolbar of the form are set up during the BLC initialization (business logic controller,
also referred to as graph)—that is, in the constructor of the BLC that provides the logic for the
processing form, or in the RowSelected event handler of the main view data access class (DAC). To
modify the logic that is executed during the BLC initialization, you have to create a BLC extension class
and implement the needed logic in the Initialize() method overridden in the extension class; do not
use the constructor for that.

For example, to disable the Release All button and modify the functionality of the Release button of
the Release IN Documents process form, you create an extension on the INDocumentRelease BLC and
override the Initialize() method.

Open the Release IN Documents form (Distribution > Inventory > Processes > Daily) to see its
original view (see the screenshot below). Notice that the Release and Release All buttons are both
available for clicking.



 | Examples | 420

Figure: Analyzing the original Release IN Documents form

To select the business logic controller for customization, on the Customization menu, select Inspect
Element and click any element on the form, for example, the Release button. The system should
retrieve the following information that appears in the Element Properties dialog box:

• Business Logic: INDocumentRelease. The business logic controller that provides the logic for the
Release IN Documents form.

Select Actions > Customize Business Logic in the Element Inspector. In the Select Customization
Project dialog box, specify the project to which you want to add the customization item for the
business logic controller of the form and click OK.

The Code Editor opens for customization of the business logic code of the form (see the screenshot
below). The system generates the BLC extension class in which you can develop the customization
code. (See Graph Extensions for details.)



 | Examples | 421

Figure: The BLC extension class generated for customization of the business logic code executed for the Release IN
Documents form

To resolve the customization task, override the Initialize() method. In the method, disable the
Release All button on the toolbar of the form, set the processing method, and set the method for
asking the confirmation from the user before running the process.

:  Do not define constructors of BLC extension classes; always use the Initialize() method to
implement the needed initialization logic.

To the BLC extension class for INDocumentRelease, add the code that is listed below.

#region Extended initialization
public override void Initialize()
{
    // Disable the Process All button
    Base.INDocumentList.SetProcessAllEnabled(false);
    //If set by the SetParametersDelegate, the method is executed before the
 processing is run and
    //Provides conditional processing depending on the confirmation from the user
    //If the method returns true, the system executes the processing method that is
 set by SetProcessDelegate
    Base.INDocumentList.SetParametersDelegate(delegate(List<INRegister> documents)
    {
        return Base.INDocumentList.Ask("IN Document Release",
                                       "Are you sure?",
                                       MessageButtons.YesNo) == WebDialogResult.Yes;
     });



 | Examples | 422

     Base.INDocumentList.SetProcessDelegate(delegate(INRegister doc)
     {
         INDocumentRelease.ReleaseDoc(new List<INRegister>() { doc }, true);
     });
}
#endregion

For another example of extending the BLC initialization, see Extending BLC Initialization.

Click Save in Code Editor to save the changes.

Figure: The initialization method implemented in the BLC extension class

The system adds the customization to the business logic code to the Code list of project items. See
Code for details.

To view the result of the customization, publish the customization project and open the Release IN
Documents form (Distribution > Inventory > Processes > Daily). Notice that the Release All
button has become unavailable. Select a few check boxes for documents to be released and click
Release. The dialog box appears with the question that you have added in the BLC code (see the
following screenshot). Click Yes to release the documents or No to cancel the operation and exit the
dialog box.



 | Examples | 423

Figure: Viewing the result of the customization

Adding or Altering BLC Event Handlers
The following examples of customization tasks demonstrate how you can implement custom handlers
for events in extension classes to business logic controllers (BLCs, also referred to as graphs).

• Implementing a Handler That is Appended to the Collection of Base Handlers

• Implementing a Handler That Replaces the Collection of Base Handlers

• Adding an Event Handler From the Layout Editor

Implementing a Handler That is Appended to the Collection of Base Handlers

When you define an event handler in the BLC extension class with the same declaration, as it is defined
in the base (original) BLC, this handler is added to the appropriate event handler collection. Depending
on the event type, the event handler is appended to either the end of the collection or the start of it.
When the event occurs, all event handlers in the collection are executed, from the first one to the last
one. For details, see Event Handlers.

Suppose that you need to add validation of Local Tax Category on the General Settings tab of the
Stock Items form (Distribution > Inventory > Work Area > Manage). Local Tax Category that is
shown in the screenshot below is a custom field that has been added to the form, as described in the
example of Adding Data Fields. Local Tax Category is linked to the custom UsrLocalTaxCategoryID
data field defined in the DAC extension for the InventoryItem data access class.

Your task is to check whether the selected Local Tax Category is the same as the selected Tax
Category of the item and add a warning message that appears for the Local Tax Category box if they
are the same.



 | Examples | 424

Figure: The control for the custom field on the Stock Items form

To resolve the task, you implement validation of fields on the RowUpdating event handler that you will
add to the BLC extension for the Stock Items form. In this variant of implementation, the validation
will occur when the user attempts to save the InventoryItem record. In the handler, you compare the
TaxCategoryID and UsrLocalTaxCategoryID fields and return an error message that displays for the
Local Tax Category box if the values are equal.

To select the business logic controller for customization, on the Customization menu, select Inspect
Element and click the Warehouse Details tab. The system should retrieve the following information
that appears in the Element Properties dialog box:

• Business Logic: InventoryItemMaint. The business logic controller that provides the logic for the
Stock Items form.

Select Actions > Customize Business Logic in the Element Inspector. In the Select Customization
Project dialog box, specify the project to which you want to add the customization item for the
business logic controller of the form and click OK.



 | Examples | 425

The Code Editor opens for customization of the business logic code of the form (see the screenshot
below). The system generates the BLC extension class in which you can develop the customization
code. (See Graph Extensions for details.)

Figure: The BLC extension class generated for customization of the business logic code executed for the Stock Items
form

To the BLC extension class for InventoryItemMaint, add the code that is listed below.

#region Event Handlers
protected void InventoryItem_RowUpdating(PXCache sender, PXRowUpdatingEventArgs e)
{
     InventoryItem row = e.NewRow as InventoryItem;
     InventoryItemExtension rowExt =
 cache.GetExtension<InventoryItemExtension>(row);
     if (row.TaxCategoryID != null && rowExt.UsrLocalTaxCategoryID != null &&
         row.TaxCategoryID == rowExt.UsrLocalTaxCategoryID)
     {
         cache.RaiseExceptionHandling<InventoryItemExtension.usrLocalTaxCategoryID>(
             row,
             rowExt.UsrLocalTaxCategoryID,
             new PXSetPropertyException("Tax category and local tax category should
 differ",
                 PXErrorLevel.Warning));
     }
}
#endregion

The event handler checks whether the TaxCategoryID and UsrLocalTaxCategoryID field values
are not null and do not equal each other. If these conditions are not satisfied, the handler issues



 | Examples | 426

the warning that will be shown on the Local Tax Category box in the UI, which corresponds to the
UsrLocalTaxCategoryID field.

:  The field is accessed by its string name by using the GetValue() method on the cache. There is a
number of ways how you can access customization objects from code. See Access to a Custom Field for
details.

Click Save in Code Editor to save the changes.

Figure: The event handler implemented in the BLC extension class

The system adds the customization to the business logic code to the Code list of project items. See
Code Editor for details.

To view the result of the customization, publish the customization project and open the Stock Items
form (Distribution > Inventory > Work Area > Manage). To test the validation, select an item on
the form, set the Local Tax Category the same as the Tax Category of the item and click Save. The
warning message appears for the Local Tax Category box, as it was required by the task. To view the
warning message, point the mouse to the warning icon, as shown on the screenshot below.



 | Examples | 427

Figure: The warning message appears on saving attempt

Implementing a Handler That Replaces the Collection of Base Handlers

In a BLC extension, you can define an event handler so that the handler replaces the base BLC event
handler collection. To do this, you declare the event handler with an additional parameter, as described
below. When the event is raised, the system calls the event handler with an additional parameter of
the highest-level BLC extension. The system passes the link to the event handler with an additional
parameter from the extension of the previous level, if such an event handler exists, or to the first item
in the event handler collection (also described in Event Handlers). In the event handler that replaces
the collection of handlers of the base BLC, you can invoke the collection of base handlers as well as
implement the logic to be executed before and after the base collection.

Suppose that you need to resolve the same customization task, as described above—that is, you have
to add validation of Local Tax Category on the General Settings tab of the Stock Items form. To
resolve the task, you implement validation in the RowUpdating event handler that you define in the BLC
extension for the InventoryItemMaint class.

If you define the event handler, as listed below, the handler will replace the collection of handlers of
the base BLC. The code of the replacing handler that is given below introduces the same behavior of
the Stock Items form as the code of the event handler that is added to the collection, as described
above in Adding a Handler to the Collection of Base Handlers. In the handler below, you invoke the base
handlers first and then validate the TaxCategoryID and UsrLocalTaxCategoryID fields and return an
error message that displays for the Local Tax Category box if the validation fails.

#region Event Handlers
protected void InventoryItem_RowUpdating(
    PXCache cache, PXRowUpdatingEventArgs e, PXRowUpdating InvokeBaseHandler)
{
    //execute the collection of base handlers
    if(InvokeBaseHandler != null) InvokeBaseHandler(cache, e);
    //add the validation of Local Tax Category
    InventoryItem row = e.NewRow as InventoryItem;
    InventoryItemExtension rowExt = cache.GetExtension<InventoryItemExtension>(row);
    if (row.TaxCategoryID != null && rowExt.UsrLocalTaxCategoryID != null &&
        row.TaxCategoryID == rowExt.UsrLocalTaxCategoryID)
    {



 | Examples | 428

        cache.RaiseExceptionHandling<InventoryItemExtension.usrLocalTaxCategoryID>(
            row,
            rowExt.UsrLocalTaxCategoryID,
            new PXSetPropertyException("Tax category and local tax category should
 differ",
                PXErrorLevel.Warning));
    }
}
#endregion

:  Notice the three parameters within the event handler declaration. When the event is raised, the system
calls the event handler, passing a link to the first item in the base BLC event handler collection. You execute
InvokeBaseHandler() to invoke the collection of event handlers defined in the base BLC. Depending on
a customization task, you can skip the execution of base handlers or implement the needed logic before the
base handlers are invoked.

Adding an Event Handler From the Layout Editor

To add a custom handler for a row or field event to the customization project, you can use the Layout
Editor, as described below.

:  For this example, you have to enable the Lot and Serial Tracking feature in the system to view the Lot/
Serial Class box on the General Settings tab of the Stock Items form.

Open the Stock Items form (Distribution > Inventory > Work Area > Manage). Suppose that you
need to replace the error message that appears on the Lot/Serial Class box for an incompatible class
selected in the box (see the screenshot below) with a warning message.



 | Examples | 429

Figure: The original error message on the Stock Items form

To resolve the task, you have to modify the logic of validation of the DAC field that corresponds to the
Lot/Serial Class box. You have to implement a custom handler for the FieldVerifying event on
the DAC field.

To find the DAC field and add the event handler to the customization project for it, open the form in
Layout Editor. To do this, on the Customization menu, select Inspect Element and click the label or
the box area of the Lot/Serial Class control. The system should retrieve the following information that
appears in the Element Properties dialog box:

• Control Type: Selector. The type of the inspected UI control.

• Data Class: InventoryItem. The data access class that contains the field corresponding to the
inspected control.

• Data Field: LotSerClassID. The data field that is linked to the inspected control.

• Business Logic: InventoryItemMaint. The business logic controller that provides the logic for the
Stock Items form.

Click Customize in the Element Inspector to open the form in Layout Editor. In the Select
Customization Project dialog box, specify the project to which you want to add the customization
item for the business logic controller of the form and click OK.

Layout Editor opens for the form already navigated to the inspected control, as the screenshot below
shows.



 | Examples | 430

Figure: Layout Editor opened for the inspected element

To add the FieldVerifying event handler for data field underlying the Lot/Serial Class control,
select the Events tab. On the tab, the selected check box Handled in Source means that the
FieldVerifying event is already handled for the LotSerClassID field in the original business logic
controller, InventoryItemMaint class.

:  The Events tab displays the events depending on the control selected in the tree. The tab shows the field
events f you select a control that is linked to a data field (that is, has the DataField property specified)
and the row events of the parent container that is linked to a data view (that is, has the DataMember
property specified). If you select a container that is not linked to a data view or data field, the tab shows no
events.



 | Examples | 431

Figure: The event handled in the original business logic controller

To add a custom handler for the LotSerClassID field to the customization project, click the
FieldVerifying event in the table and click Add Handler on the toolbar (see the screenshot below).

Figure: Adding an event handler to the customization project



 | Examples | 432

The system generates the definition of the event handler, adds the definition to the BLC extension
class for the form, and opens the Code Editor with the generated code (see the screenshot below).
The system generates handlers with three input parameters; a handler with such definition replaces
the collection of event handlers implemented in the original BLC, which is described in Implementing a
Handler That Replaces the Collection of Base Handlers. You can modify the generated code as needed.

Figure: The generated definition of the event handler

Modify the generated code, as listed below, and click Save in Code Editor to save the changes to the
customization project. In the code, you catch the exception that could be thrown from the original
handlers and create another exception with the warning message instead of the original one.

protected void InventoryItem_LotSerClassID_FieldVerifying(
    PXCache cache, PXFieldVerifyingEventArgs e, PXFieldVerifying InvokeBaseHandler)
{
    try
    {
        if(InvokeBaseHandler != null) InvokeBaseHandler(cache, e);
    }
    catch (PXSetPropertyException ex)
    {
        cache.RaiseExceptionHandling<InventoryItem.lotSerClassID>(
            e.Row,
            e.NewValue,
            new PXSetPropertyException(
                ex.MessageNoPrefix, PXErrorLevel.Warning));
    }  
}

To view the result of the customization, publish the customization project and open the Stock Items
form (Distribution > Inventory > Work Area > Manage). To test the validation, select an
incompatible class in the Lot/Serial Class box, as shown in the screenshot below. The warning
message appears for the box instead of an error message.



 | Examples | 433

Figure: The warning message that appears on selecting an incompatible class

Altering BLC Virtual Methods
In a BLC extension, you can override virtual methods defined within a business logic controller (BLC,
also referred to as graph). As with the event handlers, you have two options:

• You can define the override method with exactly the same signature—that is, the return value,
the name of the method, and all method parameters—as the overridden base virtual method. As
a result, the method is added to the queue of all override methods. When the system invokes the
base method, all methods in the queue are executed sequentially, from the first to the last one.
The lower the level the BLC extension has, the earlier the system invokes the override method.

• You can define the override method with an additional parameter, which represents the delegate
for one of the following:

• The override method with an additional parameter from the extension of the previous level,
if such a method exists.

• The base virtual method, if no override methods with additional parameters declared within
lower-level extensions exist.

In both cases, you should attach the PXOverrideAttribute to the override method declared within the
BLC extension. See the topics below for details.

• Override Method That is Added to the Override Method Queue

• Override Method That Replaces the Original Method



 | Examples | 434

Override Method That is Added to the Override Method Queue

By declaring an override method with exactly the same signature as the overridden base virtual
method, you extend the base method execution. The base BLC method is replaced at run time with the
queue of methods that starts with the base BLC method. When the system invokes the base method, all
methods in the queue are executed sequentially, from the first to the last one. The lower the level the
BLC extension has, the earlier the system invokes the override method. If the system has invoked the
base method, you have no option to prevent the override method queue from execution. To prevent the
base method executions, see Override Method That Replaces the Original Method below.

Suppose that you need to modify the behavior of the Journal Transactions form (Finance > General
Ledger > Work Area > Enter).

Open Journal Transactions and explore its original behavior. Start by adding a new journal transaction,
selecting an account, and setting the Debit Amount to 2000.00. Then add one more journal
transaction and select a different account, and notice that the Credit Amount is set by default to
2000.00 to balance the batch, as the following screenshot illustrates.

Figure: The Credit Amount by default is set to balance the batch

Suppose that you need this form to work differently, so that if the user first inserts a debit entry, by
default each Credit Amount value equals 0.00, to make the user add the required values manually.
If the user first inserts a credit entry, a Debit Amount value should also equal 0.00 by default, so
that the user must add the needed values. You can implement this behavior in the PopulateSubDescr
method that you have to override in a BLC extension for the JournalEntry class.

To select the business logic controller for customization, on the Customization menu, select Inspect
Element and click any element on the form, for example, the form area. The system should retrieve
the following information that appears in the Element Properties dialog box:

• Business Logic: JournalEntry. The business logic controller that provides the logic for the Journal
Transactions form.

Select Actions > Customize Business Logic in the Element Inspector. In the Select Customization
Project dialog box, specify the project to which you want to add the customization item for the
business logic controller of the form and click OK.

The Code Editor opens for customization of the business logic code of the form (see the screenshot
below). The system generates the BLC extension class in which you can develop the customization
code. (See Graph Extensions for details.)



 | Examples | 435

Figure: The BLC extension class generated for customization of the business logic code executed for the Journal
Transactions form

To the BLC extension class for JournalEntry, add the code that is listed below.

[PXOverride]
public void PopulateSubDescr(PXCache sender, GLTran row, bool externalCall)
{
    decimal difference = (Base.BatchModule.Current.CuryCreditTotal ?? decimal.Zero)
 - 
        (Base.BatchModule.Current.CuryDebitTotal ?? decimal.Zero);
    if (difference != 0)
    {
        if (row.CuryCreditAmt == Math.Abs(difference))
        {
            row.CuryCreditAmt = 0;
        }
        else if (row.CuryDebitAmt == Math.Abs(difference))
        {
            row.CuryDebitAmt = 0;
        }
    }
}

In the code, you override the PopulateSubDescr method of the original BLC by adding the new
method to the queue of override methods to be executed. The system invokes the base method first,
and then executes the override method. The override method resets the value of the Credit Amount 
or the Debit Amount to 0.00.

Click Save in Code Editor to save the changes.



 | Examples | 436

Figure: The override method implemented in the BLC extension class

To view the result of the customization, publish the customization project and open the Journal
Transactions form (Finance > General Ledger > Work Area > Enter).

Test the modified behavior of Journal Transactions. Add a new journal transaction, select an account,
and set the Debit Amount to 2000.00. Then add one more journal transaction and select a different
account, and notice that the Credit Amount is set by default to 0.00. You must manually specify the
amount for every journal entry to make the batch balanced. Otherwise, you will not be able to save the
batch with the Balanced status, and you will see the appropriate error message on the Debit Total box.

:  You should also test the case when the user first adds a transaction with a Credit Amount: Then the
Debit Amount must equal 0.00 by default.



 | Examples | 437

Figure: Viewing the result of the customization

Override Method That Replaces the Original Method

The override method with an additional parameter replaces the base BLC virtual method. When the
virtual method is invoked, the system invokes the override method with an additional parameter of
the highest-level BLC extension. The system passes a link to the override method with an additional
parameter from the extension of the previous level, if such a method exists, or to the base virtual
method.

You use a delegate as an additional parameter to encapsulate the method with exactly the same
signature as the base virtual method. If the base virtual method contains a params parameter, then you
should not use the params keyword when you declare the override method with an addition parameter.
For example, to declare an ExecuteInsert override method with an additional parameter within a BLC
extension, you can use the following code.

public class BaseBLCExt : PXGraphExtension<BaseBLC>
{
    [PXOverride]
    public int ExecuteInsert(string viewName, IDictionary values, object[]
 parameters,
                             Func<int, string, IDictionary, object[]> del)
    {
        if (del != null)
        {
            del(viewName, values, parameters)
        }
    }
}

You can decide whether to call the method pointed to by the delegate. By invoking the base method,
you also start the override method queue execution.

Suppose that you need to modify the logic of generating batches on release of Accounts Receivable
documents.

For example, open the Invoices and Memos form (Finance > Accounts Receivable > Work Area >
Enter) and explore its original behavior. Create and save an invoice, clear the Hold check box, click the
Release button, and notice that a new GL batch has been generated by the system while the system
releases the invoice. You can see the batch number on the Financial Details tab of the Invoices and
Memos form, as the following screenshot shows.



 | Examples | 438

Figure: The batch has been generated during release of the Accounts Receivable invoice

Suppose that you need to prevent generation of batches during release of Accounts Receivable
documents. You can implement the new behavior in the Persist method that you have to override in
a BLC extension for the JournalEntry class. In the override method, you need to handle execution of
the Persist method of the original BLC. Therefore, you have to implement the override method with
an additional parameter, as described below.

To the BLC extension class for JournalEntry, add the code that is listed below. For example, you can
add the override method to the JournalEntry_Extension BLC extension class generated by the
system, as described above in Override Method That is Added to the Override Method Queue.

[PXOverride]
public void Persist(Action del)
{
    if (Base.BatchModule.Current != null &&
        Base.BatchModule.Cache.GetStatus(Base.BatchModule.Current) ==
 PXEntryStatus.Inserted &&
        Base.BatchModule.Current.Module == "AR")
        return;
    if (del != null) 
        del();
}

The code modifies the logic so that the system will not invoke the base virtual method if the batch
is being generated from the Accounts Receivable module; otherwise, the system executes the base
business logic.

To view the result of the customization, publish the customization project and open the Invoices and
Memos form (Finance > Accounts Receivable > Work Area > Enter).

To test the modified behavior of the Invoices and Memos form, add and save a new invoice, clear the
Hold check box, and click the Release button. Notice that no new GL batch is generated by the system



 | Examples | 439

while it releases the invoice. Open the Financial Details tab. No batch number is displayed, as the
following screenshot illustrates.

Figure: No batch has been generated by the system for the Accounts Receivable Invoice



 | Appendix | 440

Appendix

The appendix provides some reference information relevant for this document. The additional
information in this section is a useful source for readers who need some reference material that is
related to system forms and tables, as well as running reports.

In this section:

• Reports

• Form Toolbar

• Table Toolbar

• Glossary

Reports
In addition to offering a comprehensive collection of reports for each module, Acumatica ERP gives you
a high degree of control over each report.

A typical report form, described in Report Form, lets you adjust the report settings to meet your specific
informational needs. You can specify sorting and filtering options and select the data by using report-
specific settings—such as financial period, ledger, and account—and configure additional processing
settings for each report. The settings can be saved as a report template for later use. For details, see
To Run a Report and To Create a Report Template.

After you run a report, the prepared report appears on your screen. You can print the report, export the
report to a file, or send the report by email.

This chapter describes a typical report form and the main tasks related to using reports.

In This Chapter

• Report Form

• To Run a Report

• To Configure an Ad Hoc Filter on a Report Form

• To Modify an Ad Hoc Filter on a Report Form

• To Create a Report Template

Report Form
Before you run a report, you set a variety of parameters on the report form. You can select a template
or manually make selections that affect the information collected. Also, you can specify appropriate
settings to print or email the finished report.

The following screenshot shows a typical report form.



 | Appendix | 441

Figure: Parameters View of Report Form

1. Report Form Toolbar

2. Parameters Toolbar

3. Template Area

4. Details Area

Report Form Toolbar

The following table lists the buttons of the report form toolbar when you are configuring a report.

Button Description

Cancel Clears any changes you have made and restores default settings.

Run Report Initiates data collection for the report and displays the generated report.

Save Template Gives you the ability to save the currently selected report as a template with all the
selected settings.

Remove
Template

Removes the previously saved template.

This button is available only when you select a template.

Schedule
Template

Opens the Select Schedule Name dialog box, which you can use to schedule report
processing.

This button is available only when you select a template.

Select Schedule Name Dialog Box

Element Description

Schedule The schedule for report processing. Select an existing schedule, or leave the
box blank and click OK to open the Automation Schedules (SM.20.50.20)
form to create a new schedule for running the report. For more information on
scheduling, see To Schedule Processing in the Acumatica ERP User Guide.

Merge Reports A check box that indicates (if selected) that this report will be merged with the
other reports selected for merging into one net report when processed.



 | Appendix | 442

Element Description

:  You can check the reports that will be merged when processed on the Send
Reports (SM.20.50.60) form.

Merging Order The number of the report in the net report.

Report Toolbar

The following table lists the buttons of the toolbar after you run the configured report.

Buttons Icon Description

Parameters Navigates back to the report form to let you change the report parameters.

Refresh Refreshes the information displayed in the report (if any data changes were
made).

Groups Adds to the report a left pane where the report structure is shown. Click a
report node to highlight the pertinent data in the right pane.

View PDF /
View HTML

/ 

Displays the report as a PDF, or displays the report in HTML format. The
available button depends on the current report view; if you're viewing a PDF,
for instance, you will see the View HTML button.

First Displays the first page of the report.

Previous Displays the previous page.

Next Displays the next page.

Last Displays the last page of the report.

Print Opens the browser dialog box so you can print the report.

Send Opens the Email Activity dialog box, which you use to send the report file (in
the chosen format) to the specified email address.

Export Enables you to export the data in the chosen format (Excel or PDF).

Template Area

Use the elements in this area to select an existing template and then use the template, share it with
other users, or use it as your default report settings.

The Template area elements, which are available for all reports, are described in the following table.

Template Area Elements

Element Description

Template The template to be used for the report. If any templates were created and saved,
you can select a template to use its settings for the report.



 | Appendix | 443

Element Description

Default A check box that indicates (if selected) that the selected template is marked as the
default one for you. A default template cannot be shared.

Shared A check box that indicates (if selected) that the selected template is shared with
other users. A shared template cannot be marked as the default.

Locale A locale that you select to indicate to the system that the report should be
prepared with the data translated to the language associated with this locale. This
box is displayed if there are multiple active locales in the system. For details, see
Locales and Languages.

Report Parameters Tab

The Report Parameters tab includes sections where you can specify the contents of the report
depending on the current report and vary in the following regards:

• How many elements and which elements are available on a particular report

• Whether elements contain default values

• Whether specific elements require values to be selected

• Whether elements may be left blank to let you display a broader range of data

Additional Sort and Filters Tab

The Additional Sort and Filter tab contains additional sorting and filtering conditions:

• Additional sorting conditions: Defines the sorting order. You can add a line, select one of the
report-specific properties, and select the Descending or Ascending sort order for the column.

• Additional filtering conditions: Defines the report filter. You can add a line, select one of the
report-specific properties, and define a condition and its value. The list of conditions include one-
operand and two-operand conditions. To create a more complicated logical expression, you can
use brackets and logical operations between brackets. For more information on creating filters,
see Creation of Ad Hoc and Reusable Filters in Acumatica ERP User Guide. For detailed procedures
on using ad hoc filters, see To Configure an Ad Hoc Filter on a Report Form and To Modify an Ad
Hoc Filter on a Report Form.

Print and Email Settings Tab

If you plan to print the report or save the report as a PDF, select the appropriate settings in the Print
Settings area.

Print Settings Section

Element Description

Deleted Records Selects the visibility of the data deleted from the database.

Print All Pages Causes all pages of the report to be printed.

Print in PDF format Displays the report in PDF format.

Compress PDF file Indicates that the system will generate a compressed PDF.

Embed fonts in PDF
file

Indicates that the system will generate the PDF with fonts embedded.



 | Appendix | 444

If you plan to send the report as an email, in the Email Settings area, specify the format in which the
report will be sent, as well as the email subject, the recipients of copies of the report, and the email
account of the recipient.

Email Settings Section

Field Description

Format The format (HTML, PDF, or Excel) in which the report will be emailed.

:  Merge function for reports in Excel format is not supported. If you want to merge
a report with other reports and send an aggregated report by email, you should
select either the HTML or PDF format for the report.

Email Account The email address of the recipient.

CC An additional addressee to receive a carbon copy (CC) of the email.

BCC The email address of a person to receive a blind carbon copy (BCC) of the email;
an address entered in this box will be hidden from other recipients.

Subject The subject of the email.

Report Versions Tab

If the report has multiple versions, you can select one of them.

Report Versions Tab Toolbar

Button Description

Refresh Refreshes the list of report versions.

Select Temporarily activates the selected report version.

Report
Once you click Run Report, the prepared report appears on your screen. You can print the report,
export the report to a file, or send the report by email.

The prepared report is displayed in the report view of the report form. For more information about
setting up the report parameters and the parameters view of the report form, see Report Form.

Report Toolbar

The following table lists report toolbar buttons.

Buttons Icon Description

Parameters Navigates back to the report form to let you change the report parameters.

Refresh Refreshes the information displayed in the report (if any data changes were
made).

Groups Adds to the report a left pane where the report structure is shown. Click a
report node to highlight the pertinent data in the right pane.



 | Appendix | 445

Buttons Icon Description

View PDF /
View HTML

/ 

Displays the report as a PDF, or displays the report in HTML format. The
available button depends on the current report view; if you're viewing a PDF,
for instance, you will see the View HTML button.

First Displays the first page of the report.

Previous Displays the previous page.

Next Displays the next page.

Last Displays the last page of the report.

Print Opens the browser dialog box so you can print the report.

Send Opens the Email Activity dialog box, which you use to send the report file (in
the chosen format) to the specified email address.

Export Enables you to export the data in the chosen format (Excel or PDF).

Form Toolbar
The form toolbar, available on most forms, is located near the top of the form, under the form title bar
(see the screenshot below). The form toolbar may include standard and form-specific buttons.

Figure: Form toolbar

You use the standard buttons on the form toolbar to navigate through objects and entities that were
created by using the current form, insert or delete an object or entity, use the clipboard, save the data
you have entered, or cancel your work on the form.

In addition to standard buttons, a form toolbar on a particular form may include form-specific
buttons. These buttons usually provide navigation to other forms, take specific actions, and perform
modifications or processing related to the functionality of the form.



 | Appendix | 446

Standard Form Toolbar Buttons

The following table lists the standard buttons of the form toolbar. A form toolbar may include some or
all of these buttons.

Standard Form Toolbar Buttons

Button Icon Description

Save Saves the changes made to the object or entity.

Cancel Depending on the context, does one of the following:

• Discards any unsaved changes you have made to objects or
entities and retrieves the last saved version.

• Clears all changes and restores the default settings.

Add New Record Clears any values you've specified on the form, restores any default
values, and initiates the creation of a new object or entity.

Clipboard Provides options to do the following:

• Copy: Copy the selected object or entity to the clipboard.

• Paste: Paste an object, entity, or template from the clipboard.

• Save as Template: Create a template based on the selected
object or entity.

• Import from XML: Import an object, entity, or template from
an .xml file.

• Export to XML: Export the selected object or entity to an .xml file.

For more information on templates and copy-and-paste operations in
Acumatica ERP, see Using Forms. For more information on importing
and exporting .xml files, see System-Wide Actions in Acumatica ERP in
the Acumatica ERP User Guide.

Delete Deletes the currently selected object or entity, clears any values you've
specified on the form, and restores default values.

:  You can delete a document that is not linked with another document.

Go to First
Record

Displays the first object or entity (in the list of objects or entities of the
specific type) and its details.

Go to Previous
Record

Displays the previous object or entity and its details.

Go to Next
Record

Displays the next object or entity and its details.

Go to Last
Record

Displays the last object or entity (in the list of objects or entities of the
specific type) and its details.

Schedules Gives you the ability to schedule the processing. For more information,
see To Schedule Processing topic in the Acumatica ERP User Guide.



 | Appendix | 447

Inquiry Form Toolbar Buttons

Acumatica ERP inquiry forms present the data in a tabular format. These forms can be designed by
a user with the appropriate access rights by using the Generic Inquiry tool (for details, see Managing
Generic Inquiries in the Acumatica ERP User Guide), or can be initially configured in your system. A
toolbar of an inquiry form contains both the standard form toolbar buttons (described in the table
above) and additional buttons described below.

Button Icon Description

Fit to Screen Expands the form to fit on the screen and adjusts the column widths
proportionally.

Export to Excel Exports the data to an Excel file. For more information, see Integration
with Excel in the Acumatica ERP User Guide.

Filter Settings Opens the Filter Settings dialog box, which you can use to
define a new filter. After the filter has been created and saved, the
corresponding tab appears on the table. For more information about
filtering, see Filters.

Table Toolbar
Each table on an Acumatica ERP form, tab, or dialog box has a table toolbar, which contains the search
box and buttons you can use to work with the details or objects of the table.

The table toolbar, shown in the following screenshot, can include the following sections:

• Action section: Contains buttons that are specific to the table, standard buttons that most table
toolbars have, and the search box.

• Footer section: Displays navigation buttons if there are too many details or objects (that is, table
rows) to fit on one page.

Figure: Table toolbar sections

1. Action section

2. Footer section

Action Section of Table Toolbar

The action section, commonly located at the top of a table, can contain standard and table-specific
buttons. If a table toolbar includes table-specific buttons, they are described in the form reference help
topic.



 | Appendix | 448

The following table describes the standard table toolbar buttons. A table toolbar may include some or all
of those buttons.

Standard Table Toolbar Buttons

Button Icon Description

Refresh Refreshes the data in the table.

Switch Between
Grid and Form

Controls how the elements are displayed on the form: in a table (grid) with
rows and columns; or as separately arranged elements for one table row on
a form, with navigation tools you use to move between rows.

Add Row Appends a new blank row to the table so you can define a new detail or
object. A row may contain some default values.

Delete Row Deletes the selected row.

Fit to Screen Adjusts the table to the screen width and makes the column width
proportional.

Export to Excel Exports the data in the table to an Excel file. For more information, see
Integration with Excel in the Acumatica ERP User Guide.

Filter Settings Opens the Filter Settings dialog box, which you can use to define a new
filter. After the filter is created and saved, the corresponding tab appears on
the table. For more information about filtering, see Filters.

Load Records
from File

Opens the File Upload dialog box, described in detail below, so you
can locate and upload a local file for import. You can use this option to
import data from Excel spreadsheets (.xlsx) and .csv files. For the detailed
procedure, see To Import Data from a Local File to a Table.

Search A box in which you can type a word, part of a word, or multiple words. As
you type, the system filters the contents of the table to reflect the string
you have typed.

File Upload Dialog Box

The File Upload dialog box gives you the ability to upload a file of one of the supported formats
(.csv or .xlsx) and import data from the file. You import the file by using the File Upload dialog box,
specify the import settings by using the Common Settings dialog box, and then match the columns
in the imported file to the columns in the Acumatica ERP table to which you import data by using the
Columns dialog box.

Element Description

File Upload dialog box

File Path The path to the file you want to upload.

To select the file, click Browse, and then find and select the file you want to
upload.

The dialog box has the following button:

Upload The button you click to upload the selected file and to open the Common
Settings dialog box.



 | Appendix | 449

Element Description

Common Settings dialog box

Separator Chars The character that is used as the separator in the imported file. Specify the
separator character if the imported file uses an atypical separator. This box
appears on the interface only when you import data from a .csv file.

Null Value Optional. The value that is used to mark an empty column in the imported file.
Specify the null value if the value in the imported file differs from the standard
empty value.

Encoding The encoding that is used in the imported file. This box appears on the interface
only when you import data from a .csv file.

Culture The regional format that has been used to display the time, currency, and other
measurements in the imported file..

Mode The mode defining which rows of the uploaded file will be imported into the table.
The following options are available:

• Update Existing: The rows already present in the table will be updated, and
the rows not present in the table will be added.

• Bypass Existing: Only the new rows that are not present in the table will
be imported. The rows that are already present in the table will not be
updated.

• Insert All Records: All the rows from the file will be imported into the table.

:  If you select this option, you may get duplicated rows because the
system won't check for duplicates when importing rows from the file.

The dialog box has the following buttons:

OK Closes the dialog box and opens the Columns dialog box.

Cancel Closes the dialog box without importing the data from the file.

Columns dialog box

Column Name The name of the column in the uploaded file.

Property Name The name of the corresponding column in the table in Acumatica ERP.

The dialog box has the following buttons:

OK Closes the dialog box and import the selected file.

Cancel Closes the dialog box without importing the data from the file.

Shortcut Menu

Right-clicking within the rows of a table opens a shortcut menu. The commands you see in the menu,
which depend on the table you are working with, are mostly duplicates of actions on the table toolbar,
but they offer easier access to them. The unique menu commands are described in the following table.

Shortcut Menu Commands

Option Icon Description

Clear Column
Filter

Clears the simple filter that you have applied to the selected column.



 | Appendix | 450

Option Icon Description

Filter by This
Cell Value

Filters the data in the table by the value of the selected cell. For details, see
To Use Simple Filters.

Footer Section of Table Toolbar

If a particular table has too many details (table rows) to fit on one page, you use the footer to browse
the table pages.

Standard Table Navigation Buttons

Element Icon Description

Go to First Page Displays the first page of the table.

Go to Previous
Page

Displays the previous page of the table.

Go to Next Page Displays the next page of the table.

Go to Last Page Displays the last page of the table.

Glossary
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A

account A General Ledger entity that holds a detailed record of similar
transactions involving a particular item, such as a source of cash
or a recipient of income. supports several account types: Asset,
Liability, Income, and Expense. All of a company's accounts are listed
on its chart of accounts. In Acumatica ERP, accounts are used with
subaccounts, and at system setup, you choose whether account
identifiers should be composed of segments. See also General Ledger,
chart of accounts, subaccount, segment.

account class A user-defined class that is used to group related accounts of the
same type and that can be used in reports and inquiries for convenient
grouping, sorting, and filtering of information associated with accounts.
For example, you can create a class for long-term liabilities and another
for middle-term liabilities.

Accounts Payable (AP) An Acumatica ERP module that provides functionality for efficient
management of your company’s vendors, primarily for goods and
services purchased by your company. See also module, vendor.

Accounts Receivable (AR) An Acumatica ERP module that provides functionality for efficient
management of your company’s customers, primarily for goods and
services sold by your company. See also module, customer.

home page The first page a user sees upon signing in to the web site. By default,
the home page displays the documentation list, but it can be configured
to display the home page dashboard. See also dashboard.



 | Appendix | 451

adjustment period A financial period with the same start and end dates (and, thus, a
duration of zero days) that is the last period in the financial year. An
adjustment period can be added only at initial setup. On data entry
forms, an adjustment period is available only when you directly type it
in the Fin. Period box. See also financial period, financial year.

aging period One of a group of time intervals used for sorting a company's open AR
documents by age or its open AP documents by days outstanding. For
example, aging periods may be defined as follows: -999 to 0 days past
due, 1 to 30 days past due, 31 to 60 days past due, and 61 to 91 days
past due.

aggregating value A special value of a segment of a subaccount that indicates the sum of
appropriate budget articles whose subaccounts have other values in this
segment. Aggregating values let you build a hierarchical structure of
budget articles. See also segment, subaccount.

allocation template A group of settings, saved as a whole, used in to help you automate
allocations; allocation templates can be defined using the Allocations
(GL.20.45.00) form. You can create an allocation source by using input
masks to specify multiple accounts and subaccounts at once, and
you can set up rules for distributing the source amount over multiple
accounts. See also input mask, account, subaccount.

AP bill A document created for each vendor invoice that includes information
about the vendor, location, and currency used for the transaction. A bill
may contain either line items or one summary line with a tax category
specified. Some taxes are calculated for the entire document, and some
are calculated for each line item, depending on each tax's Calculate On
setting on the Taxes (TX.20.50.00) form. See also vendor, location, tax
category, tax.

AP check A payment document created for a vendor. A separate AP check
may be required for each AP document, depending on your selected
configuration options. AP checks should always have zero unapplied
balance; that is, the amount of a check should be exactly the amount of
the bill or bills it pays for. See also vendor.

AP credit adjustment A clearing document created to correct errors on an existing bill, or in
response to a vendor's overdue charges or a debit memo. Posting a
credit adjustment increases the balance of Accounts Payable.

AP debit adjustment An AP document created on the Bills and Adjustments (AP.30.10.00)
form for a vendor refund. It may be applied to any bills of the same
vendor. Discounts cannot be taken on debit adjustments. See also
vendor.

approval The act of formally giving permission for a document to proceed to the
next step in its workflow. An organization may require documents, such
as purchase orders or expense claims, to be approved by authorized
persons before they may be paid. Also, you can require that wiki
articles be approved before they may be published. In Acumatica ERP,
you can configure approvals by assigning documents to specific persons
for approvals and by giving only authorized persons access to certain
processing forms. See also form.

AR credit memo A clearing document created for damaged goods or a previous
overcharging invoice. A credit memo may have one summary line or



 | Appendix | 452

multiple line items. A credit memo may be applied against invoices,
debit memos, and overdue charges. See also overdue charges.

AR debit memo A document that adjusts the amount in one or several previous
undercharging invoices. It doesn't contain a direct reference to any
original invoices; if needed, you can reference the original invoice in
the Description box. Debit memos may be numbered differently from
invoices.

AR invoice An itemized request for payment for goods sold or services rendered.
An invoice includes the customer information, location, currency, and
any reference number in the original customer document. The due date
of the document is calculated based on the credit terms associated
with the customer. An AR invoice may have a single summary line or
multiple line items. For each line, a tax category may be specified. See
also customer, location, credit terms, tax category.

assignment map A structure representing the hierarchy of workgroups involved in
processing or approval. See also approval.

assignment rules A set of rules you can configure—based on the properties of an entity
(such as a lead or case) or a document (such as an expense claim,
sales order, or purchase order)—to enable automatic assignment to
appropriate employees for processing or approval. For the selected
entity type, you facilitate automatic assignment of entities to
workgroups and to particular users by creating an assignment map and
rules based on properties of the entity or document. See also approval,
assignment map.

attribute A custom element that your company can add to forms to keep
additional information about products, leads, customers, inventory
items, and other entities. Attributes—which are used by the Inventory,
Customer Management, and Common Settings modules—allow you to
gather details that are meaningful for your business. See also form,
customer, inventory item, Inventory, module.

attribute class A grouping of your company's leads, opportunities, customers, or cases
by a specific set of attributes. For more information, see Attribute
Classes. See also attribute, attribute class.

authentication The process by which establishes a potential user as valid and grants
access to the system. A user must use a valid user name and password
pair for successful authentication. See also user.

authorization The process by which verifies whether a user has sufficient access
rights to particular forms, elements, and actions. The system makes
this determination for a user who has successfully signed in, based on
the roles assigned to the user and the restriction groups that include
the user as a member. See also user, form, role, restriction group.

auto-reversing batch A batch for which the General Ledger module automatically creates
another batch that reverses debit and credit entries into the next
financial period; the debit entry is reversed as a credit entry and vice
versa. Auto-reversing entries are used to reverse some period-end
adjustments. See also batch, General Ledger, module, financial period.

automation definition A complete set of all automation steps defined for all forms created
using the Automation Definitions (SM.20.50.10) form. You can use
definitions created before system upgrades (or before major changes in



 | Appendix | 453

automation steps) as backups of various states of automation in your
system. See also automation steps, automation definition.

automation schedule A schedule defined for an processing form to direct the system to
perform specific processing periodically. You can create automation
schedules using the Automation Schedules (SM.20.50.20) form. See
also automation schedule

automation steps Steps to be executed for specific records or objects on a particular
form, depending on the record or object properties. Automation steps
allow you to extend the functionality of data entry and processing
forms. You can add new object statuses, associate statuses with certain
actions, and enable or disable actions, depending on object properties.
See also form.

B

bank account A cash account associated with a specific bank (which in is defined
as a vendor) and with one or more linked clearing accounts. Bank
charges can be configured as entry types associated with the bank
account. Bank accounts generally require periodic reconciliations
to be performed. See also vendor, clearing account, entry type,
reconciliation.

base currency The currency of the environment in which the company generates and
expends cash. A base currency can be the only currency used in the
system or one of multiple currencies used. The base currency is the
default currency for recording transactions, budgets, and other GL
data, and it is used for reporting, income statement, and balance sheet
calculations. For General Ledger accounts denominated to a foreign
currency, maintains the history of transactions and balances in both
the currency of denomination and the base currency. See also General
Ledger, account.

base price A price for an item set with respect to the base unit, expressed in the
base currency and offered to customers of the base price class (those
not associated with any specific price class by default). Base prices can
be defined and maintained directly, following your company's pricing
policy, via the Inventory or Sales Orders module. See also base unit,
base currency, customer, Inventory.

base unit The unit of measure in which a particular item is tracked from the
moment it is received at a warehouse or produced at one of your
facilities until it is picked for shipping. Generally, the base unit is the
smallest unit defined in the system for a particular item. Also, the base
unit is the unit of measure used for calculating item costs. See also
warehouse.

batch A set of related transactions or journal entries that are in the same
currency, refer to the same ledger, and occur in the same financial
period. A batch's debit total and credit total are calculated over all the
transactions. Some batches are generated by the system automatically,
such as those implementing revaluations. Only balanced batches (those
for which the credit total equals the debit total) can be released and
posted to the specified ledger. See also journal entry, financial period,
revaluation

batch control total A user-entered total that is used for batch status validation if it is
enforced in your system—that is, if the Validate Batch Control Totals



 | Appendix | 454

on Entry check box on the General Ledger Preferences (GL.10.20.00)
is selected. A batch can be saved with the Balanced status only if the
user types into this box a value that is equal to the batch's debit total
and credit total amounts. We recommend that you use batch control
total validation to reduce data input errors. See also batch.

budget article An account-subaccount pair recorded in a budget ledger with a budget
amount. A budget article has subarticles if its subaccount has at least
one aggregating value in any segment. See also account, subaccount,
aggregating value, segment.

business account A set of information about one of your company's vendors or
customers, including its locations, contacts, and payment and shipping
options. Acumatica ERP uses this information, which is specified on data
entry forms, in a variety of modules. Your company also has a business
account to record its own locations, contacts, and shipping settings. See
also vendor, customer, location, module.

C

cash account A special type of General Ledger account used to record various
monetary transactions in a specific currency. You can specify entry
types and payment methods with which the cash account is associated.
Each cash account is assigned to a specific branch. See also General
Ledger, account, entry type, payment method.

cash-in-transit account An account used for cash that is being moved from one currency to
another. Because cross-rates are not used in Acumatica ERP, currency
conversion is performed via the base currency with the use of the cash-
in-transit account and subaccount. See also account, base currency,
subaccount.

cash discount A deduction from the total payable amount, allowed if the amount owed
is paid within a specified time period on or before a due date. Cash
discounts available for your organization are defined by credit terms
assigned to vendors, and cash discounts available for customers are
defined by credit terms assigned to customers. See also credit terms,
vendor, customer

Cash Management An Acumatica ERP module that manages cash and bank accounts,
cash transactions (including funds transfer), and bank statement
reconciliations. The module is integrated with the Accounts Payable and
Accounts Receivable modules for smooth payment processing. See also
module, cash account, bank account, funds transfer, reconciliation.

chart of accounts A listing of the accounts in the system to which you will record
accounting transactions. The chart of accounts, which you maintain in
Acumatica ERP via the Chart of Accounts (GL.20.25.00) form, consists
of balance sheet accounts (assets and liabilities) and income statement
accounts (income and expenses). The chart of accounts should follow
national and industry standards while also reflecting the operations of
your company. See also account.

clearing account A cash account that temporarily holds customer payments included in
a deposit. Once the money is actually deposited to the bank and the
deposit is released, a batch of transactions will be generated to move
the payment amounts from clearing accounts to the bank account and
to record the charges incurred as expenses. See also cash account,
customer, deposit, batch, bank account.



 | Appendix | 455

combined subaccount A subaccount that can be combined from multiple involved
subaccounts, based on rules you create, for certain transactions; use
elements with labels such as Combine Subaccount From to set up
such rules. A box for a combined subaccount displays a subaccount
mask, such as ––––.––.–––.––––, in accordance with the segmented
structure of subaccounts defined for your company. For each segment,
you can specify one of the involved subaccounts as the source of
the segment value. See the Combined Subaccounts article for more
information. See also subaccount, combined subaccount.

commission A payment made to a salesperson for goods and services sold.
Commission is calculated once in a commission period based on total
invoice amounts or payments received, depending on your configuration
choice. For each document, calculates the commission amount as
a percentage. For an invoice, the commission may be split among
multiple salespersons.

Common Settings A module used to control global system settings. Some configuration
settings—such as company information, segmented keys, and
numbering sequences—must be provided during initial system setup
and cannot be modified later. Other information, such as credit terms
and logistics settings, can be added at any time. See also module,
segmented key, numbering sequence, credit terms.

consolidation The process of combining separate accounting data into one set of
data by importing data from subsidiaries to the parent company.
Whether your organization is a parent company or a subsidiary of a
larger company, the General Ledger module enables you to prepare
and consolidate the data into one consolidation ledger in the parent
company. See also General Ledger, module.

consolidation data The data imported to the parent company (as GL batches with system-
generated descriptions) to enable consolidation. Consolidation data
prepared by consolidation units is available via the SOAP gateway
as a set of GLConsolRead instances. See also General Ledger, batch,
consolidation.

consolidation mapping The process of matching accounts and subaccounts in a subsidiary
against those of the parent company for consolidation. Mapping of
subaccounts can be performed across subaccount segments. See also
account, subaccount, segment.

credit terms Conditions and stipulations used by vendors in their relations with your
company and by your company in its relations with customers when
any outstanding balance is paid. Credit terms include an installment
option (one payment or multiple installments), a payment schedule,
and terms for cash discount (for only the single-installment option).
Also, credit terms can be used as a schedule for overdue charges. For
more information about setting up credit terms in Acumatica ERP, see
Credit Terms. See also vendor, customer, cash discount, credit terms.

Currency Management An Acumatica ERP module that lets you define multiple currencies,
enabling foreign currency transactions throughout other modules. You
can maintain the lists of currencies, track exchange rate fluctuations,
and perform periodical revaluations. See also module, revaluation.

currency rate The rating of one currency valued against another. You use the
Currency Rates (CM.30.10.00) form to enter foreign currencies'
exchange rates and the base currency rates. Rates for each rate type



 | Appendix | 456

are specified with respect to the base currency and are recorded to
the database with the type of arithmetic operation required to apply
the rate. Each record contains the rate and the date when it becomes
effective. The rate is used for currency conversions for documents that
have later dates until a new rate is recorded. See also currency rate,
base currency.

customer One of your company’s trade debtors. Acumatica ERP lets you set
up default values for individual customers, customer classes, and
customer documents to help make data entry easier and less error-
prone. When you enter a new invoice for a customer, calculates the
due date, discount date, and amount automatically, based on its credit
terms. Tax settings are by default those of the tax zone associated with
the customer location. See also customer class, credit terms, tax, tax
zone.

customer class A group of settings that provides default values when users create new
customer accounts, thus saving them time. You divide customers into
classes based on the types of goods or services they purchase from
you. For more details, see Customer Defaults and Overrides. See also
customer.

Customer Management An Acumatica ERP module that helps your company set up customer
service based on contracts and effectively track service issues reported
by customers. Also, the module provides tools to help salespeople
generate quality leads, track and analyze sales opportunities, and
manage marketing campaigns by sending personalized emails in bulk.
See also module, customer.

customer price class A group of customers that may be offered special prices because of
their buying habits. All customers of the same customer price class are
charged the same price for the same item, and you can set different
prices for the same item for different customer price classes. See also
customer.

customer statement A complete record of the customer's invoices, debit and credit memos,
payments, prepayments, and overdue charges for a specific period.
A statement includes all new activity for a statement cycle, from the
previous statement date to the current statement date. Any open debit
items from prior periods are included in the statement, grouped by days
outstanding. See also statement cycle, prepayment.

D

dashboard An interface that organizes and presents key information in a format
that users can interpret easily. A dashboard can be configured for the
home page and for each module web page. System administrators
can design a set of company-specific template dashboards. A user
can modify any of them or create from scratch a set of personalized
dashboards that display information tailored to job and information
needs. For details, see Dashboards. See also user, module, dashboard.

deferral code A code used in Acumatica ERP to configure how revenues and expenses
are recognized. If a line amount in an invoice or a bill should be
recognized over several periods, a deferral code (of the revenue or
expense type, respectively) is assigned to this line.



 | Appendix | 457

deferral schedule A number of related transactions automatically generated for the
documents whose lines have deferral codes assigned. See also deferral
code.

Deferred Revenue An Acumatica ERP module that stores definitions of deferral codes,
while allowing you to view and edit deferral schedules generated for AP
and AR documents and recognize parts of deferred amount according to
these schedules. See also module.

deposit 1. An instance of physically placing money in a bank.

2. In Acumatica ERP, an internal document created using the Bank
Deposits (CA.30.50.00) form. Batch deposits are used to group
customer payments deposited to the bank in bulk. When you
enter payments intended for such deposits into Acumatica ERP,
they are recorded to special clearing accounts, which temporarily
hold payments drawn from customers' AR accounts. Before you
make a deposit to the bank, you create a deposit in Acumatica
ERP, list the payments and cash to be deposited, and print a
deposit slip. After the money was actually deposited, the deposit
can be corrected to contain only payments accepted by the bank
and released. On the deposit's release, a batch of transactions
will be generated to move the payment amounts from clearing
accounts to the bank account and to record the charges incurred
as expenses.

See also deposit, batch, customer, clearing account, bank account.

discount A means of reducing sales prices. Acumatica ERP allows your company
to configure various types of discounts applicable to sales orders and
intended to attract customers: document-level discounts that are
subtracted from the document total, item-level discounts that apply to
a document line, and flat-price discounts, which are special discounted
prices that depend on the quantities of goods purchased. See also
customer.

E

entry type A user-defined type of transaction (which can be a cash receipt or
cash disbursement) entered by using the Cash Management module.
Entry types are used to categorize cash transactions. See also Cash
Management, module.

event An activity that has a specific start time and duration. You create
events for all or several users and invite users, leads, contacts, and
customers as attendees. You can send invitation or rescheduling emails
to attendees.

F

Favorites Links to the forms the particular user accesses most frequently. Any
user can create his or her own list of favorites for personal use.

financial period A part of a financial year defined by its start date and end date. A
financial year can be divided into monthly, bimonthly, quarterly, or
custom-defined periods. For each next new year, generates financial
periods in accordance with initial system settings. We recommend that
you not change financial settings in once transactions have been posted
to any of the periods. See also financial year.



 | Appendix | 458

financial year A time interval used for calculating annual financial statements. The
year is defined by its start date, which you determine, and lasts 12
months. For example, the U.S. government's financial year begins on
October 1 of the previous calendar year and ends on September 30
of the year that gives the financial year its number. A financial year
consists of a number of financial periods and may include an additional
adjustment period. See also financial period, adjustment period.

FOB point A destination at which the vendor delivers the goods to be loaded to
the transportation provided by the carrier. The customer covers the
freight and other expenses for the cargo from a FOB (meaning freight
on board) point. See also vendor, customer.

foreign currency
translation

The process of restating the account balances in a reporting
currency. For accounts denominated to currencies other than the
reporting currency, the balances expressed in the base currency are
recalculated to the reporting currency. For more details, see Overview
of Translations. See also account, base currency.

form A screen in Acumatica ERP that lets you, using various actions and
elements, enter needed data and perform functions that are key to the
capabilities of the module. In most modules, forms are grouped into the
following categories: Data Entry, Processing, Inquiries, Maintenance,
and Setup. See also module.

form toolbar A toolbar present on most forms with data navigation and processing
actions that apply to the entire form. For example, its actions allow you
to cancel or save changes you've made, to insert or delete objects, or
to navigate through the objects created via the form. See also form.

funds transfer A transaction that moves an amount from one cash account to another,
with related service charges. Funds can be transferred between
accounts denominated to different foreign currencies in two steps, using
the cash in transit account for currency conversion to the base currency
and from the base currency. See also cash account, cash-in-transit
account, base currency.

G

General Ledger (GL) An Acumatica ERP module that serves as the central application where
all financial information is collected for analyzing, summarizing, and
reporting. You use the module to set up your company's financial
structure through the chart of accounts and subaccounts, collect
information through transactions entered by users and imported from
other modules, and prepare data for generating various financial
statements. See also module, chart of accounts, subaccount.

H

historical rate An exchange rate for the foreign currency with respect to the base
currency that was effective during a certain past period. The General
Ledger module uses historical rates for foreign currency translations
and "past-date" transactions. See also base currency, General Ledger,
module.

I



 | Appendix | 459

inline editor An editing tool you can use to edit a section of a Wiki article or its full
text. The inline editor contains both a text box (which contains the text
of the applicable section) and a Formatting toolbar.

input mask A mask implemented to govern what a user may enter into a box, so
that the required format is used on data entry forms. Masks are used,
for example, for phone numbers, postal codes, and tax registration
IDs. Moreover, input masks can be created using regular expressions to
validate entered values, since the values for some elements must follow
not only input format requirements but also specific rules. For more
details, see Input Validation Options.

integration services The powerful capabilities, provided as part of the Integration module,
that allow you to filter and import data from external sources,
converting it into internal format, and configure data synchronization
between and third-party applications to be performed on schedule.
Also, you can configure data export with conversion to required
formats. See also module.

inventory item A stock or non-stock item defined and tracked in Acumatica ERP. The
record's unique identifier, Inventory ID, as with other identifiers in
Acumatica ERP, can be segmented, with special meaning assigned to
each segment. (The INVENTORY key is used to configure inventory
IDs.) Well-designed inventory IDs can help you sort and group items in
operational and management reports. See also stock item, non-stock
item.

Inventory An Acumatica ERP module that provides real-time access to item
availability data configured in accordance with your company's policies.
The Inventory module lets you maintain a perpetual inventory system
as well as performing physical inventories, which can be performed
as full inventory and by cycles. You can use subitems as an additional
means of tracking special types of inventory items, and you can track
inventory items by either lot or serial numbers and expiration dates.
(See lot serial numbers for more details.) Advanced functionality of
the module includes flexible posting settings, multiple warehouses with
multiple specialized locations, and automatic replenishments. See also
module, subitems, inventory item, lot or serial numbers.

inventory price class A class used to group inventory items by the method of their price
calculation. An inventory price class may include items of one or more
item classes. See also inventory item, item class.

item class A class used to group stock or non-stock items with similar properties
and to provide default settings for new items. See also stock item, non-
stock item.

J

journal entry A record of debit or credit to any account in General Ledger. Journal
entries (or transactions), which are added in batches, must follow the
generalized double-entry rule: The debits total must be equal to the
credits total through all the entries in a batch. The batch contains the
date, the accounts and subaccounts to be debited, the accounts and
subaccounts to be credited, and the debit or credit amounts for each
transaction. A batch of journal entries can be marked as recurring or
auto-reversing. See also account, General Ledger, batch, subaccount,
auto-reversing batch.



 | Appendix | 460

K

kit An inventory item that consists of other stock or non-stock items as
components and requires assembling (or packaging) to become a
salable good. You enter a kit as a stock or non-stock item using either
the Stock Items (IN.20.25.00) or #unique_265 (IN.20.20.00) form and
select the Is a Kit option. You can specify the kit's components (with
their quantities) using the Kit Specifications (IN.20.95.00) form. A kit
may include a number of stock and non-stock components. See also
inventory item, non-stock item, stock item.

L

landed costs All extra costs—beyond the prices at which the goods are purchased
from vendors—associated with acquiring products and “landing” them
at one of your company's locations. These costs might include customs
duties, handling fees, freight charges, value-added taxes, and other
costs for a particular product. In Acumatica ERP, you can define these
costs via the Landed Cost Codes (PO.20.20.00) form. See also vendor,
tax.

location 1. One of multiple places of business for a particular company.
Each location is assigned to a tax zone and, as a business entity,
may have a separate tax registration ID from that of the main
location of the company.

2. A warehouse location.

See also tax zone, warehouse location.

location table The list of a particular warehouse's locations and their properties.
Use the location table to configure your warehouse to fit the logistical
processes established in your company. For each location table,
you can specify whether to include the quantities of stock items
stored at this location in the quantity of available items calculated
for the warehouse, whether to cost the inventory on this location
separately, what inventory operations are allowed for the location,
and what the location's pick priority is. Users can consult this table for
reference when they’re creating receipts, issues, or transfers. See also
warehouse, stock items.

lot or serial numbers Identifying numbers through which you track goods in your inventory.
Serial numbers are used when you need to trace each item of the same
inventory ID, while lot numbers are used to trace items (of the same
ID) that were purchased or produced together and have the same
expiration dates (if applicable). You can segment lot and serial numbers
via the Lot/Serial Classes (IN.20.70.00) form. Acumatica ERP supports
the following types of segments for lot/serial numbers: constant, date,
and auto-incrementing. See also segment.

low seasons Time intervals in which the decreasing factors (used to divide the
standard replenishment quantity to get lower replenishment quantities
during low seasons) should be applied to quantities on purchase
orders generated to replenish the stock. Each inventory item may have
multiple low seasons, each with different decreasing factors. See also
inventory item.

M



 | Appendix | 461

main menu A menu, that fits across the top on each page, containing functions that
are not specific to the form or wiki article. The toolbar allows you to
navigate to a Help article for the form (if available), add the form to
Favorites and dashboards, among other capabilities. For details, see
Main Menu. See also form, Favorites, dashboard

module A software component of Acumatica ERP that consists of a variety of
forms. While each module provides specialized functionality, it is tightly
integrated with other modules. See also form.

multi-currency A mode in which Acumatica ERP can function to support multiple
currencies. If you have activated multi-currency support, you can
manage transactions in various foreign currencies, record exchange
rates for multiple rate types as needed, report in a specific foreign
currency, and revalue GL, AP, and AR accounts in the base currency.
The base currency is used for reporting and income statement
calculation. See also base currency, Currency Management, module.

N

navigation pane A pane, located on the left side of any page, that allows you to select
the form, or article you wish to display in the right pane. The navigation
pane contains the tree structure of a module or wiki, which shows the
hierarchy of its forms or articles and contains links to those items.
When you click a link, the requested form or article opens in the right
pane. See also form, dashboard, module.

negative inventory An option, offered in Acumatica ERP, allowing a negative inventory
balance for an inventory item or a group of items. This can occur
when the inventory issue is made before the necessary quantity of the
item arrives at the warehouse. To calculate the balance of over-issued
inventory items, the most recent historical cost will be used until the
item is received. When the inventory is received, the system will match
the receipt cost with the issue cost, and generate a cost adjustment
for the difference. Appropriate warnings are issued on transactions
that will result in negative inventory balances. See also inventory item,
warehouse.

non-stock item An inventory item that is not stored in a warehouse. Such items can be
of different types: labor, service (such as product assembly, installation,
or personalization), charge, expense, and actual non-stock items, such
as goods used only for drop-shipments. For a non-stock item, you can
specify the following information in Acumatica ERP: base, sales, and
purchase units; conversion coefficients; price and cost information; and
the default GL accounts and subaccounts to be used for transactions
with the items. See also inventory item, warehouse, General Ledger,
account.

notification template An article in the Notification Templates Wiki that is an email template
with variables denoting values in an employee or contact record.
When the email is sent, the system replaces variables with values
from the database record associated with each addressee for email
personalization.

numbering sequence A set of rules the system uses to generate the next unique identifier
when you create a new object of certain type (such as a batch).
provides a number of predefined numbering sequences you can use.
A numbering sequence may have subsequences. If one numbering
sequence is used for multiple object types, all the objects get numbers



 | Appendix | 462

according to the order in which they were created, so successive
numbers can be assigned to objects of different types. See also batch.

O

overdue charges Charges calculated on open Accounts Receivable items that are past
due. Acumatica ERP calculates overdue charges and displays them on
customer statements. You can configure these charges to be compound
charges (charges calculated on charges) or not. Overdue charges are
based on terms that provide a schedule for payment. See also Accounts
Receivable, customer statement.

P

payment method A way in which customers pay for goods they purchase from your
organization. For each payment method, you can use a number of
predefined elements: define the element names as you want them to
appear on the interface, and set up input validation for these elements
(input masks or regular expressions). Payment methods are based on
the following general means of payment: credit cards, gift certificates,
purchase orders, cash cards, and custom methods. See also customer,
input mask.

PI cycle The physical inventory cycle assigned to the stock item. PI cycles are
used to arrange the items into groups for periodic counting. For more
details on using PI cycles, see Planning for Physical Inventory. See also
stock item.

posting class A group of items in the Inventory module that defines the default
account to be used and the rules for composing the default subaccount
for transactions with the applicable inventory items. Accounts and
subaccounts for transactions can be obtained from the following
sources: inventory item, warehouse, or posting class. See also
combined subaccount, Inventory, module, account, subaccount,
combined subaccount, warehouse, inventory item.

prepayment A document that represents amounts paid in advance for future
purchases. In the Accounts Payable module, a vendor's request for
prepayment is processed as follows: You use the Checks and Payments
(AP.30.20.00) form to enter the prepayment. Then the prepayment
is paid in full by an AP check in the same currency as the default
cash account. If the payment method associated with the default
cash account requires printing a check, print it and release the AP
check, which changes its status to Closed and creates a payment
of the Prepayment type with the reference number of the original
prepayment request. After that, you can apply the prepayment to bills
and adjustments. See also Accounts Payable, module.

price list A list of sales prices that is set for goods sold in a specific currency,
offered to customers of a particular customer price class, and specified
with respect to various units of measure available for the items. In
Acumatica ERP, you can maintain multiple price lists. See also sales
price, customer, customer price class.

Purchase Orders An Acumatica ERP module that provides functionality for efficient
management of your company’s supply chain and optimization of the
cost of acquiring materials or services. See also module.



 | Appendix | 463

Purchase Requisitions An Acumatica ERP module that allows you to streamline and customize
the process of requesting needed items. You can request goods and
services, approve requests, and prevent cost overruns. See also
module.

R

reason code A code used to provide additional information regarding transactions
in the system. When you configure a reason code via the Reason
Codes (CS.21.10.00) form, you can specify whether this code is used
in the Inventory module and, if so, how it is used. Inventory-related
reason codes allow you to post transactions related to direct inventory
operations (such as receipts, issues, transfers, adjustments, and
physical inventory counts) to specific accounts and assign particular
subaccounts to them to allow for more detailed reporting. See also
reason code, Inventory, module, account, subaccount.

reconciliation The process of matching the cash transactions recorded in Acumatica
ERP against those presented on a bank statement. Theoretically,
the balance of the cash account associated with the bank should
reconcile to the balance of the bank statement, but there may be some
discrepancy between account balances. The goal of reconciliation is
to find discrepancies and determine whether each is due to error or
timing. In Acumatica ERP, you mark documents as cleared as you
receive preliminary information from the bank. Later, when you have
received the bank statement, you reconcile transactions with the bank
statement.

recurring GL transactions GL transactions that repeat regularly. To automate the entering of
recurring transactions, such as depreciation transactions, allows you
to create schedules for them. A schedule defines how many times and
how often specific batches should be repeated. One or several batches
can be assigned to a schedule, but only batches with the Balanced
status can be scheduled. Once a batch is assigned to a schedule, its
status changes to Scheduled. To create schedules, use the Recurring
Transactions (GL.20.35.00) form. See also schedule, batch.

replenishment policy Settings that define how automatic replenishment for the inventory
item is initiated, as well as its source, quantity, and time intervals,
including low seasons, during which replenishment is initiated in smaller
quantities. See also inventory item.

restriction group A set of objects (such as users, accounts, and subaccounts) of two
or more types created to, if the group includes users, restrict users'
access to only objects in the same group; if the group doesn't include
users, the restriction group relates its objects in a way that limits their
use. For instance, one restriction group may include two users and a
number of special-use accounts that only these two users can update,
and another restriction group may include several GL expense accounts
and a subaccount that should be used only with these particular
accounts. If a restriction group is defined as inverse, the objects in the
group instead cannot be used with one another. To learn more about
restriction groups, see the Overview of Restriction Groups section in
User Guide.

Retained Earnings
account

A special system-maintained accounts that is of the Liability type
and must be created before any actual data is entered. The Retained
Earnings account accumulates the company’s net income (or loss)



 | Appendix | 464

after the dividends have been paid. Retained earnings are summarized
over the years since the first year of company operations. During
the financial year closing, this account is updated by the amount
accumulated on the YTD Net Income account. See also YTD Net
Income.

revaluation The process of revising the value of AP, AR, or GL accounts that are
maintained in a foreign currency. For more information, see Overview of
Revaluations.

role A set of access rights to certain system objects—such as specific
Wiki articles, forms, form elements, and toolbar actions—to which
you assign users. When you define roles, give only the access rights
necessary to perform typical tasks. Sets of access rights by different
roles should not intersect. We recommend that you assign to a user
several roles rather than creating a more complicated role with the
same privileges as multiple already-defined roles. Acumatica ERP has
several preconfigured roles. For more information about roles, see Role-
Based Security.

S

Sales Orders An Acumatica ERP module with the functionality required to manage
sales-related activities, such as maintaining multiple price lists,
configuring the system to calculate discounts, entering quotes, fulfilling
sales orders, generating pick lists, creating shipments, and adding
landed costs. See also module.

sales price A price you set for a particular item that you sell in a specific currency,
offer to customers of a particular customer price class, and specify
with respect to an appropriate unit of measure. Sales prices can be
maintained with regard to items' sales units or base units. See also
customer, customer price class, sales unit, base unit.

sales unit The unit of measure in which a particular item is sold to a customer.
See also customer.

schedule A definition in Acumatica ERP of how many times and how often
specific AP batches, AR documents should be generated for recurring
transactions. Once a batch or a document is assigned to a schedule, its
status changes to Scheduled. The system uses the original documents
or batches as templates to generate similar documents or batches with
only transaction dates being changed as dictated by the schedule. See
also batch.

Search text box A text box, located on the top of the navigation pane on any page,
that allows you to perform a quick search in the entities. You can click
the Search icon to open the Search form, which offers more extensive
capabilities to search the wikis, files, or entities in the system. See also
navigation pane.

segment 1. In Acumatica ERP, one of the parts of an identifier of an entity
—such as account, subaccount, inventory item, subitem,
warehouse or location reserved to carry special meaning.
Segments should be populated with values before entities are
created. Segment values are alphanumeric strings of the fixed
length, and one of the segments may be assigned a numbering
sequence. Several input validation options can be used to verify
the segment values when users create new entities of the type.



 | Appendix | 465

2. To break the identifier into segments (as described above).

See also account, subaccount, inventory item, location, warehouse.

segmented key A system entity that lets you define the structure of identifiers
for a certain type of object and then serves as a template when a
user creates an identifier for a new object. The current version of
Acumatica ERP provides the following segmented keys: ACCOUNT,
for GL accounts; SUBACCOUNT, for GL subaccounts; BIZACCT, for
vendor and customer accounts in the Accounts Payable and Accounts
Receivable modules; INVENTORY, for inventory items; and SALESPER,
for salesperson accounts. For more detailed information, see Identifier
Segmentation in the Acumatica ERP User Guide. See also General
Ledger, account, subaccount, vendor.

standard cost method A method for inventory item valuation in which standard cost is
calculated outside the system using company-specific policies. With this
method, the currently effective standard costs are assigned to inventory
items on their receipt, issue, adjustment or transfer, regardless of their
actual costs. When items assigned to this method are received at the
warehouses, any differences between the actual and standard costs are
recorded to the specified standard cost variance accounts and posted
to the General Ledger. Standard costs can be updated as often as is
needed. See also inventory item, warehouse.

stock item An inventory item stored and maintained in steady volumes at some
warehouse. For each stock item, Acumatica ERP tracks a basic set of
item properties, such as the item's identifier, description, price, cost,
units of measure, and default warehouse and vendor information.
Stock items can have many additional properties, known as attributes
in Acumatica ERP, that do not affect item processing but may be
important for analyzing the stock movements or item sales. See also
inventory item, attribute.

statement cycle The schedule for customer statements. You can also set up four aging
periods that sort open documents by days past due. You can use the
aging periods to prepare an AR aging schedule at the end of each
month, which you can analyze to identify potential cash flow problems.
Statement cycles can be assigned to customer classes and to individual
customers. See also customer statement, aging period, customer class,
customer.

subaccount A subcategory of the account that carries identifying information;
in Acumatica ERP, you use subaccounts with accounts to virtually
split accounts into smaller, more specific ones. This gives you finer
classification within the account for reporting and internal management
purposes. While account identifiers carry the information about the
account type along with the actual account number, subaccount
identifiers can provide such information as the division, department,
and cost center. Each journal entry is recorded with the appropriate
account and subaccount combination. See the Hierarchy of Accounts
and Subaccounts article for more details. See also account, journal
entry.

subitems Codes that allow further categorization of an inventory items. Subitems
are used in the system if you have otherwise-identical products with
different colors, sizes, or other properties tracked because of their
importance to customers. Thus, under the same inventory ID, there
may be a number of subitems—records about products that share all



 | Appendix | 466

settings of the inventory item record but have additional properties
that differ. If your site uses subitems, they should be specified for each
inventory ID related to a stock item. See also inventory item, customer,
stock item.

Management An Acumatica ERP module that lets you define users, roles, and
restriction groups for security management. It also provides site
management, Wiki management, task management, customization
management, and file management capabilities, as well as integration
services. See also module, user, role, restriction group, integration
services.

T

table An arrangement of similar objects or details, each displayed with the
same number of properties, on many forms. In a details table, each row
represents an object or detail (for example, an account, subaccount,
document line, or journal entry) and its properties; elements specifying
properties are grouped into columns.

table toolbar A toolbar on most forms, located above (and sometimes above and
below) the Details table, that allows you to perform detail-related
actions, including the following: add, edit, or delete details; filter
details; perform custom actions; and rearrange details by changing the
order of values in any column.

task An activity that you have to complete before a due date but that
doesn’t have a specific time or duration. By default, you create tasks
for yourself, but you also can create tasks and assign them to other
employees.

tax A compulsory financial contribution imposed by a government. In
Acumatica ERP, you can configure taxes of the following major
types: Sales, Use, VAT, and Withholding. The definition of each tax
includes the tax rate (used to calculate the tax amount), the method
of calculation, the effective date, and the accounts to which the tax
amounts are posted. Each tax is reported to a specific tax agency and is
paid to or claimed from the agency. See also account, tax agency.

tax agency A tax authority, defined in as a vendor, that requires tax reports to be
filed regularly. For your convenience, you can create a vendor class for
tax agencies (local and federal). Each tax agency requires tax reports to
be filed regularly. See also vendor, vendor class.

tax category A list of taxes associated with a product or a service when it is
purchased or sold. See also Taxes.

Taxes An Acumatica ERP module that stores definitions of taxes, tax
categories, and tax zones that are used across Acumatica ERP for
automatic tax calculation for every document and transaction. See also
module, Taxes, tax category, tax zone.

tax reporting group An entity used to accrue taxable amounts and tax amounts charged on
GL, AP, and AR transactions for tax reporting purposes. For example,
a VAT requires two groups (input and output): one for tax amounts
charged on sales, and another for tax amounts charged on purchases.
A sales tax requires one output group for taxes on sales. Tax reporting
groups are used to calculate the report lines for a report to a tax
authority. For more information, see Tax Report Configuration in the
Acumatica ERP User Guide.



 | Appendix | 467

tax report lines Lines configured for a tax agency as a combination of output and input
reporting groups for various taxes associated with the same tax agency.
See also tax agency, Taxes.

tax zone An area or tax jurisdiction where the same taxes are enforced. In
Acumatica ERP, a tax zone includes a list of taxes to be applied to a
customer's invoice or a vendor's bill depending on the location. Tax
zones are used in other modules, such as General Ledger, Accounts
Payable and Accounts Receivable.

U

user A person who uses the ERP system. Once a user has been
authenticated, the system checks the user's membership in roles. Users
can view only the forms, articles, and elements authorized by their
roles, and can perform only the actions permitted by these roles. Users
may be members of restriction groups, which let them access specific
entities included in the groups. See also role, form, restriction group.

V

vendor One of your company’s trade creditors. For ease of use, you can set
up default values for vendor classes, individual vendors, and vendor
documents. When users enter new bills, they must specify a vendor for
each bill. Once they choose the vendor, certain elements on the form
will be automatically populated with the vendor’s default values. The
due date and available discount are calculated automatically, based on
the vendor’s credit terms. See also vendor class, credit terms.

vendor class A group of settings that provides default values when users create
new vendor accounts. Divide vendors into classes based on the types
of goods they sell or services they provide. For details, see Vendor
Defaults and Overrides. See also vendor.

W

warehouse A place where goods are stored. A warehouse in Acumatica ERP does
not necessarily represent one physical building where your inventory
is stocked; you can divide a large physical storage space into several
areas and define each as a warehouse in Acumatica ERP. A warehouse
can even be virtual: For example, all goods that are on the way to you
from the supplier can be considered as located in the virtual goods-in-
transit warehouse.

warehouse location An actual or virtual place in a warehouse that can be used to receive,
store, or issue specific goods or all goods. Each warehouse can
include several locations. Warehouse location IDs are defined with the
INLOCATION segmented key.  See also warehouse.

wiki article An entity that consists of digital content on a particular topic and, along
with other articles, makes up a wiki. Articles can be organized in folders
in ways that best fit your needs.

wiki editor The form, invoked when you click Edit for an open wiki article, that lets
you edit both the article text and its properties.

wiki markup 1. The syntax used to create wiki articles. Using wiki markup, you
can create articles, add headings, tables of contents, hint boxes,
and warning boxes.



 | Appendix | 468

2. A mode in which you can edit wiki articles, which lets you view
the wiki markup.

Wiki toolbar A toolbar, appearing below the main menu when you open a wiki article,
that provides a variety of actions you can use as you browse the wiki
and work with articles. These actions include creating a new article,
moving to the previous or next article in the wiki tree, and printing or
deleting the current article.

Y

YTD (Year-to-Date) Net
Income account

A special account, automatically maintained by the system, that records
the net income (the difference between the amounts posted on income
and expense GL accounts) accumulated since the beginning of the
financial year. This difference is updated by every transaction posted.
During closing of the financial year, the balance of the YTD Net Income
account is transferred to the Retained Earnings Account and is reset
to zero for a new financial year. The YTD Net Income account should
be of the Liability type and must be created before any actual data is
entered. See also account, financial year.


	Contents
	Copyright
	About the Guide
	Introduction
	Acumatica Customization Platform
	Customization Project
	Types of Items in a Customization Project
	Deployment of Customization
	Simultaneous Use of Multiple Customizations
	Customization of a Multi-Company Site

	Customization Tools
	Customization Projects Form
	Published Customization Page

	Customization Menu
	Select Customization Project Dialog Box
	New Project Dialog Box

	Element Inspector
	Element Properties Dialog Box

	Customization Project Editor
	Layout Editor
	ASPX Editor

	Data Class Editor
	Create New Field Dialog Box
	Change Existing Field Dialog Box
	Customize Selector Columns Dialog Box
	Add Columns to Selector Dialog Box

	Customize Attributes Dialog Box

	Code Editor
	Create Action Dialog Box
	Select Methods to Override Dialog Box
	Move to Extension Lib Action

	File Editor
	SQL Script Editor
	XML Editors
	Project XML Editor
	Item XML Editor


	Source Code Browser

	Customization Framework
	Changes in Webpages ASPX
	Changes in the Application Code C#
	DAC Extensions
	Access to a Custom Field
	From a Method
	From a BQL Statement
	From a Field Attribute

	Customization of Field Attributes in DAC Extensions
	Supported DAC Extension Formats

	Graph Extensions
	Event Handlers
	Customization of a Data View
	Customization of an Action
	Override of a Method

	Run-Time Compilation
	Extension Library
	Extension Library DLL Versus Code in a Customization Project


	Changes in the Database Schema
	Custom Processes During Publication of a Customization


	Performing Customization
	To Assign the Customizer Role to a User Account
	User Access Rights for Customization

	To Detect Whether a Customization Project Is Applied to the Application
	Exploring the Source Code
	To Explore the C# Code of a BLC
	To Explore the C# Code of a DAC
	To Explore the ASPX Code of a Page
	To Find a Customization of the ASPX Code
	To Find Source Code by a Fragment

	To Develop a Customization Project
	To Perform Final Testing of a Customization
	To Deploy a Customization Project

	Managing Customization Projects
	To Create a New Project
	To Select an Existing Project
	To Open a Project
	To Update a Project
	To Delete a Project
	To Export a Project
	To Import a Project
	To Replace the Content of a Project from a Package
	To Merge Multiple Projects
	To Manipulate Customization Projects from the Code
	GetPackage Method
	PublishPackages Method
	UnpublishAllPackages Method
	UploadPackage Method


	Publishing Customization Projects
	To Prepare a Project for Publication
	To Publish a Single Project
	To Publish Multiple Projects
	Performing the Publication Process
	Validating Customization Code

	To Publish the Current Project
	To Publish the Current Project with a Cleanup Operation
	To Publish a Customization for a Multi-Company Site
	To View a Published Customization
	To Unpublish a Customization
	Unpublishing Customization Projects


	Managing Items in a Project
	Customized Screens
	To Add a Page Item for an Existing Form
	To Delete a Page Item from a Project
	To Add a New Custom Form to a Project
	To Delete a Custom Form from a Project
	To Delete Items from the Project on the Edit Project Items Page

	Customized Data Classes
	To Add a DAC Item for an Existing Data Access Class to a Project
	To Delete a DAC Item from a Project
	To Convert a DAC Item to a Code Item
	To Upgrade Technology for Legacy DAC Customization
	Using the Upgrade Wizard


	Code
	To Create a Custom Business Logic Controller
	To Create a Custom Data Access Class
	To Customize an Existing Business Logic Controller
	To Customize an Existing Data Access Class
	To Add Custom Code to a Project
	To Add a Customization Plug-In to a Project
	To Delete a Code Item From a Project
	To Move a Code Item to the Extension Library

	Custom Files
	To Add a Custom File to a Project
	To Update a File Item in a Project
	Detecting the Project Items Modified in the File System

	To Delete a Custom File From a Project

	Generic Inquiries
	To Add a Generic Inquiry to a Project
	To Delete a Generic Inquiry from a Project
	To Update Generic Inquiry Items in a Project
	To Redirect to the Generic Inquiry Form
	Limiting the List of Tables Available for Generic Inquiries


	Custom Reports
	To Add a Custom Report to a Project
	To Delete a Custom Report from a Project
	To Update a Custom Report in a Project

	Site Map
	To Add a Site Map Node to a Project
	To Delete a Site Map Item from a Project
	To Update a Site Map Node in a Project
	To Redirect to the Site Map Form

	Database Scripts
	To Add a Custom Table to a Project
	To Update Custom Tables in the Project
	To Add a Custom SQL Script to a Project
	Creating a Custom SQL Script
	Using the SQL Script Attributes
	Writing Custom SQL Scripts for Interpretation

	To Edit a Custom SQL Script
	To Delete an Sql Item From a Project

	System Locales
	To Add a System Locale to a Project
	To Delete a System Locale from a Project
	To Update a Custom System Locale in a Project
	To Redirect to the System Locales Form

	Import and Export Scenarios
	To Add an Integration Scenario to a Project
	To Delete an Integration Scenario from a Project
	To Update an Integration Scenario in a Project
	To Redirect to the Import Scenarios Form

	Shared Filters
	To Add a Shared Filter to a Project
	To Delete a Shared Filter from a Project
	To Update a Shared Filter in a Project
	To Redirect to the Filters Form

	Access Rights
	To Add Access Rights to a Project
	To Delete Access Rights from a Project
	To Update Access Rights in a Project
	To Redirect to the Access Rights by Screen Form

	Wikis
	To Add a Custom Wiki to a Project
	To Delete a Custom Wiki from a Project
	To Update a Custom Wiki in a Project
	To Redirect to the Wiki Form

	Web Service Endpoints
	To Add a Custom Web Service Endpoint to a Project
	To Delete a Custom Web Service Endpoint from a Project
	To Update a Custom Web Service Endpoint in a Project
	To Redirect to the Web Service Endpoints Form

	Analytical Reports
	To Add a Custom Analytical Report to a Project
	To Delete a Custom Analytical Report from a Project
	To Update a Custom Analytical Report in a Project
	To Redirect to the Report Definitions Form


	Customizing Elements of the User Interface
	Custom Form
	To Develop a Custom Form
	To Create a Custom Form Template
	To Delete a Custom Form from a Project

	Existing Form
	To Start a Customization of a Form
	To Delete a Customization of a Form
	To Add a Form Container
	To Add a Grid Container
	To Add a Tab Container
	To Add a New Tab Item to a Tab

	To Add a Dialog Box
	To Delete a Container

	Form Container PXFormView
	To Open a Container in the Layout Editor
	To Set a Container Property
	Using the DataMember Property
	Using the Caption Property in the Mobile Site Map
	Using the SkinID Property
	Using the SyncPosition Property

	To Add a Nested Container
	To Add a Box for a Data Field
	Using Multiple Data Views for Boxes in a Container

	To Add a Layout Rule
	To Add Another Supported Control
	To Reorder Child UI Elements
	To Delete a Child UI Element

	Grid Container PXGrid
	To Add a Column for a Data Field
	Using the Type Property of PXGridColumn
	Using the DisplayMode Property of PXGridColumn
	Providing Hyperlinks for a Grid Column

	To Add a Control to the Form View of a Grid

	Tab Container PXTab
	Tab Item Container PXTabItem
	To Conditionally Hide a Tab Item

	Dialog Box PXSmartPanel
	To Open a Smart Panel in the Layout Editor

	Box Control for a Data Field
	To Select a Box in the Layout Editor
	To Set a Box Property
	Using the CommitChanges Property

	To Change the Type of a Box

	Layout Rule PXLayoutRule
	To Select a Layout Rule in the Layout Editor
	To Set a Layout Rule Property
	Using the StartRow and StartColumn Properties
	Using the ColumnWidth, ControlSize, and LabelsWidth Properties
	Using Predefined Size Values
	Using the ColumnSpan Property
	Using the Merge Property
	Using the GroupCaption, StartGroup, and EndGroup Properties
	Using the SuppressLabel Property


	Panel PXPanel
	Group Box PXGroupBox
	To Open a Group Box in the Layout Editor
	To Create a Group Box for a Drop-Down Field
	To Set a Group Box Property
	Using the DataField Property
	Using the Caption Property
	Using the RenderStyle Property


	Label PXLabel
	Radio Button PXRadioButton
	To Bind a Radio Button to a Value in the List of a Data Field

	Button PXButton
	To Use a Button in a Dialog Box
	To Use a Button to Invoke a Method

	Java Script PXJavaScript
	Toolbars, Action Buttons, and Menus
	Other Control Types

	Customizing Business Logic
	Data Access Class
	To Start the Customization of a Data Access Class
	Usage Entity Attributes Instead of Custom Fields

	To Add a Custom Data Field
	To Create a New DAC
	To Create a DAC Extension

	Data Field
	To Customize a Field on the DAC Level
	To Customize a Field on the Graph Level
	To Set a Default Value
	To Change the Label of a Field
	To Make a Field Mandatory
	To Customize the Table of a Selector Field
	To Add an Event Handler for a Field
	To Provide Multi-Language Support for a Field

	Graph
	To Start the Customization of a Graph
	To Create a Custom Graph
	To Add a New Member
	To Add an Action
	To Add an Event Handler
	To Override an Event Handler
	To Override a Virtual Method

	Data View
	To Override a Data View
	To Add a Data View Delegate
	To Override a Data View Delegate

	Action
	To Start the Customization of an Action
	To Override an Action Delegate Method
	To Rename an Action Button
	To Disable or Enable an Action
	To Hide or Show an Action


	Customizing the Database Schema
	To Create a Custom Table
	To Create a Custom Column in an Existing Table
	To Create an Extension Table
	Requirements for an Extension Table Schema
	DAC Extension Mapped to an Extension Table

	To Add a Custom SQL Script to a Customization Project

	Integrating the Project Editor with Microsoft Visual Studio
	To Work with a Code Item
	To Work with Data Access Classes
	To Debug the Customization Code
	To Synchronize Code Changes with the Customization Project

	Integrating the Project Editor with a Version Control System
	To Save a Project to a Local Folder
	To Update the Content of a Project from a Local Folder
	To Configure a Connection String
	To Integrate the Customization Project Editor with TFS
	To Integrate the Customization Project Editor with Git

	Troubleshooting Customization
	To Discover the Method That Has Thrown an Exception
	To Write to the Trace Log from the Code
	To Log All Exceptions to a File
	To Debug the Customization Code
	To Validate a BQL Statement
	To Measure the Execution Time of a BQL Statement
	To Discover the Cause of Performance Degradation
	To Force the Platform to Execute Database Scripts
	To Resolve Issues While Upgrading a Customized Website
	To Validate the Compatibility of the Published Customization with a New Version Before an Upgrade
	To Resolve an Issue Discovered During the Validation
	Messages for Validation Errors

	To Use the Technical Release Notes to Find the Breaking Changes
	To Use an Ignore List for the Validation Errors


	Examples
	Examples of User Interface Customization
	Dragging, Moving, and Deleting UI Controls and Grid Columns
	Adding Input Controls
	Adding Advanced Controls
	Adding Columns to a Grid
	Modifying Columns in a Selector
	Adding PXLayoutRule Components

	Examples of Functional Customization
	Adding Data Fields
	Customizing DAC Attributes
	Modifying a BLC Action
	Modifying a BLC Data View
	Declaring or Altering a BLC Data View Delegate
	Extending BLC Initialization
	Altering the BLC of a Processing Form
	Adding or Altering BLC Event Handlers
	Altering BLC Virtual Methods


	Appendix
	Reports
	Report Form
	Report

	Form Toolbar
	Table Toolbar
	Glossary


