
Updating your Codebase with FBQL

Kensium Solutions

Yuriy Zaletskyy

2

FBQL is awesome, but not backward compatible

If you have hammer, everything else look like

a nail.

FBQL is not backward compatible.

Fix applicable to 2019 R1 will not be

applicable to previous versions

(not to 2017, 2018)

That’s why DAC Schema browser is not upgraded

3

4

How Acumatica team uses FBQL?

14 out of 2459 *.cs files has FBQL statements, which shows that Acumatica team gradually

introducing FBQL (demo with TC)

It’s like you have old bridge, use it until a new bridge built

5

Before you Proceed

•Make sure that the application database has the database tables

•Add references to PX.Data.dll and PX.Data.BQL.Fluent.dll in the

project.

•Add the following using directives to your code.

–using PX.Data.BQL.Fluent;

–using PX.Data.BQL;

6

Simpler Where2

Compare

but one grain of salt

if somebody used for Where2 <--> OR combination,

then he may skip OR condition during debugging

with

7

Initially you may be tempted to write code like this:

While correct way is this:

Potential pitfalls

Compiler will not allow you to compile BQL code in FBQL statement, but some initial

learning curve may happen. This is the case when junior developers are in better

position

8

AggregateTo<> and OrderBy<> Sections
•Accept non-empty arrays of the specific base type

•The AggregateTo<> section can also include an optional

Having<> subsection

•In this subsection, you can include fields with fields with

.Averaged, .Summarized, .Maximized, .Minimized, or .Grouped

.AggregateTo<Sum<field1>, GroupBy<field2>, Max<field3>, Min<field4>,

Avg<field5>, Count<field6>>. Having<field5.Averaged.IsGreater<Zero>>

.OrderBy<field1.Asc, field2.Desc, field3.Asc>

9

Mix of BQL with FBQL classes in filtering

How to have in one BQL query old and new DAC class?

with help of Use

Contact is new FBQL class, and Student1 as you remember is BQL.

What is more important, even after Student1 will be upgraded, usage of Use will not cause any harm!

10

How Having look like in code?

In Acumatica code base it is not yet presented, so you can try to pioneer in it’s usage.

11

Data Views in Fluent BQL

•Use the PXViewOf<> class before the fluent BQL query

PXViewOf<Product>.BasedOn< SelectFrom<Product>.

Where<Product.isActive.IsEqual<True>>>.ReadOnly ActiveProducts;

•You can omit .BasedOn<> if you want to declare a view that selects all

records from one table

•You append .ReadOnly to the view definition if you need to define a read-

only data view.

•Append .View to the fluent BQL query, as shown in the following code

example

SelectFrom<Product>. Where<Product.isActive, Equal<True>>.View.ReadOnly ActiveProducts;

12

Samples:

Which one is more convenient:

way 1:

way 2:

Try to guess what Acumatica team chosen?

13

Search Commands

•Use the SearchFor<> class before the fluent BQL

query
SearchFor<Product.productId>.In< SelectFrom<Product>.

Where<Product.isActive.IsEqual<True>>>

•Append .SearchFor<> to the fluent BQL query
SelectFrom<Product>.

Where<Product.isActive.IsEqual<True>>.SearchFor<Product.productId>

14

Data Access Classes in Fluent BQL

•DACs that are used in fluent BQL differ from the DACs that are used in traditional BQL

–Not from the IBqlField interface

–But from the specific fluent BQL classes

// The class used in BQL statements to refer to the AvailQty column

public abstract class availQty : PX.Data.BQL.BqlDecimal.Field<availQty> { }

// The property holding the AvailQty value in a record

[PXDBDecimal(2)]

public virtual decimal? AvailQty { get; set; }

•The DAC fields declared in fluent BQL style can be used in traditional BQL queries without

any modifications.

15

Constants in Fluent BQL
Constants (such as integer Zero, datetime Now, Today, and MaxDate, string StringEmpty,

and the Boolean values True and False) in fluent BQL queries without any changes

public class decimal_0 : PX.Data.BQL.BqlDecimal.Constant<decimal_0>

{
public decimal_0()

: base(0m)

{

}

}

These constants can also

be used in traditional BQL

without any changes

16

Parameters in Fluent BQL

•Use of the Current Value of the Field from PXCache

–append .FromCurrent to the field name

–append .FromCurrent.NoDefault to the field name

•Insertion of a Specific Value into the Query

–Use the @P.As[Type] classes, where [Type] corresponds to the C# type of the parameter

–@P.As[Type] is the equivalent of the Required parameter in traditional BQL

•Insertion of an Optional Value into the Query

–append .AsOptional to the field name

–If not value passed, it takes the value from .FromCurrent

–append .AsOptional.NoDefault

•Insertion of a Value from the UI Control into the Query

–use the Argument.As[Type] classes, where [Type] corresponds to the C# type

17

Constructing F-BQL
SQL

SELECT Product.CategoryCD, MIN(Product.BookedQty) FROM Product

INNER JOIN SupplierProduct

ON SupplierProduct.ProductID = Product.ProductID

INNER JOIN Supplier

ON Supplier.AccountID = SupplierProduct.AccountID

WHERE (Product.BookedQty IS NOT NULL

AND Product.AvailQty IS NOT NULL

AND Product.MinAvailQty IS NOT NULL

AND(Product.Active = 1

OR Product.Active IS NULL)

AND(Product.BookedQty > Product.AvailQty

OR Product.AvailQty < Product.MinAvailQty))

OR Product.AvailQty IS NOT NULL

GROUP BY Product.CategoryCD

ORDER BY Product.UnitPrice, Product.AvailQty DESC

F-BQL
SelectFrom<Product>.

InnerJoin<SupplierProduct>.

On<SupplierProduct.productID.IsEqual<Product.productID>>.

InnerJoin<Supplier>.

On<Supplier.accountID.IsEqual<SupplierProduct.accountID>>.

Where<

Brackets<Product.bookedQty.IsNotNull.

And<Product.availQty.IsNotNull>.

And<Product.minAvailQty.IsNotNull>.

And<Product.active.IsEqual<True>.

Or<Product.active.IsNull>>.

And<Product.bookedQty.IsGreater<Product.availQty>.

Or<Product.availQty.IsLess<Product.minAvailQty>>>>.

Or<Product.availQty.IsNotNull>>.

AggregateTo<GroupBy<Product.categoryCD>,

Min<Product.bookedQty>>.

OrderBy<Product.unitPrice.Asc, Product.availQty.Desc>

18OFS International

Acumatica Customer Since 2014

What is faster: BQL of FBQL?

19

BQL may be faster

Each FBQL statement is converted into

BQL and then converted into SQL Query

20

Testing methodology

21

Classical BQL Declaration FBQL Declaration

22

Random BQL Search

23

Random FBQL Search

24

There is no clear winner in case of caching of graph

25

But in non Caching scenario BQL ~3% faster than FBQL

26

As you see, cached BQL is 3 times faster

27

Similar stats are true for FBQL

28

Random search+Persist

Cached vs non Cached

29

BQL

30

FBQL Search and Save

31

Uncached persist BQL is faster. But not on small dataset.

32

BQL vs FBQL cached persist. FBQL may be faster!

33

Summary

● On big amounts of data use caching

● In our measurements time to production is 15 - 20% faster

● In scale of one week you get 1 more day in the sprint

● Easier maintainability (easier to read/modify) i.e. fixing of bugs

● Potential 3% slowdown will not be noticed, but new features which you’ll implement customer will

notice immediately

