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Acumatica Unit Tests Framework Progress

• We introduced unit testing of reusable business objects concept a year ago

• While widely used in Acumatica, reusable business objects are still a new technology for partners

• Partners usually create customization around Acumatica regular business objects

• Sometimes partners create their own separate graphs

• All of this code will benefit from the unit tests framework

• The tests will become less dependent from the Acumatica code than any kind of integration tests 

involving user interface and database

• In the future we may consider ability to include unit tests into customization package to execute 

during validation process
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Design and Operation Principles

• Unit test code is kept very similar to the code of Acumatica business logic, using same API

• Unit test initiates CRUD operations like conventional work via user interface

• CRUD operations raises all events connected to them in the common way

• Events invoke different parts of code connected to them

• Database is not accessible in any way

• Strictly required definitions like dimensions are provided via Service Locator

• Any other object that is needed for the operation, should be created by unit test code in advance

• The code may populate only desired object content leaving everything other in its default state

• Ones created objects are accessible in database queries
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Access to Acumatica Unit Tests Framework

• Everything bellow is actual for Acumatica distributives starting 2019r1 update 5

• Base objects are include into PX.Data.Unit namespace what is a part of PX.Data.dll

• You should inherit your test class from TestBase, then it will be possible to user its protected 

methods like Setup, Tail, RegisterServices

• TestBase also provides default services registered with ServiceLocator, including Licensing mock, 

Dimensions, Access provider, etc.

• The same namespace contains basic classes for testing reusable business objects, 

DocumentMockBase, DetailMockBase, GraphMockBase

• PX.Objects.dll includes PX.Objects.Unit namespace that currently consists of 2 useful services: 

FinPeriodServiceMock required for most Acumatica graphs involving financials part, and 

CurrencyServiceMock required to test our new multi currency feature implementation
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Configuring Unit Tests Solution

• Create a library and reference PX.Common.dll, PX.Data.dll and PX.Objects.dll from Acumatica 

installation, add any your own libraries with business logic

• Add Nuget packages, you may find list of them in the SampleTest solution

• Inherit from PX.Data.Unit.TestBase, write your tests

• Start them from the test explorer

• xUnit runner is also supported of course
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Most important API Calls

• Override RegisterServices if you want to provide a mock via ServiceLocator, 

FinPeriodServiceMock is a good example

• Call Setup before graph creation to provide preferences to graph constructor

• Cache.Insert should be used to instantiate referenced objects, like accounts/sibs, 

customers/vendors, locations

• Be aware of basic classes used as references, for example, BAccountR should be used in most 

places instead of customer/vendor

• The framework will provide default empty content for right tables in case of database queries 

containing joins, use Tail method if you want to substitute with your own implementation
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