
Acuminator and other Developer Tools

Developer productivity, static analysis of code, and solution quality

validation

Evgeny Afanasiev

Technical Account Manager, ISV Team

Sergey Nikomarov

System Developer, Platform Team

2

Agenda

• Quality Validation & Productivity Tools

• Acuminator Overview & New Features

• Acumatica Built-in Validations

• The new Requirement Validation Tool (RVT)

• Integration of Quality Validation Tools into the Development process

3

Acuminator

4

New Features Overview

• Code Map which displays the structure of DACs, Graphs, and their extensions

• Error suppression functionality

• New code analysis diagnostics

• New settings for Acuminator in Visual Studio

• Performance improvements & bugfixes

5

Acuminator: Code Map

6

Code Map

Code Map is a tool window in Visual Studio which displays class
members in a tree structure.

Code Map is a blend of three technologies: Roslyn, WPF and VS
SDK.

Similar generic solutions are present in Visual Studio and
other IDEs and productivity tools (Solution Explorer, Object
Explorer, etc).

Code Map displays important Graph/DAC members specific for
Acumatica Framework.

Code Map supports DACs, Graphs, and their extensions.

Code Map enhances developer productivity.

7

Key Features

Quick overview of the code structure

Grouping of class members together in categories

Easy navigation to the highlighted code with mouse double
click

Extra information collected by Acuminator

Ability to sort tree nodes alphabetically or in declaration
order

Synchronization with code changes

Tooltip with extra information on mouse hover

8

Use Cases

1. Code Navigation

• Transfer between related code parts during development

2. Code Investigation

• View DAC primary keys.

• View Declared Attributes of a DAC property or Cache Attached Graph event

• View DAC property information: its type, whether it is it bound to DB table column or not,

etc.

• Check if a particular action or view has a corresponding delegate

• Look for a specific event in a Graph

• Investigate unfamiliar code

9

Acuminator: Error Suppression

10

Why Suppress Errors?

There are three common & valid situations when you need to Suppress an Error from the static

analyzer:

1. Analyzer is not sophisticated enough, and you know that you can safely violate the static analyzer

rule.

2. Code is correct, but the Analyzer gives you a false positive error

3. Stuck with a large legacy codebase – But, you would like to check that the new code is correct

These cases result in two different approaches to error suppression:

• First & second cases - local suppression

• Third case – global suppression

11

Visual Studio Suppression Functionality

Visual Studio provides its own integrated suppression mechanisms:

• Pragma directives like #pragma warning disable PX****

• The System.Diagnostics.CodeAnalysis.SuppressMessage attribute

• Special .ruleset file

• Suppression in the project settings file.

Acuminator supports all of these, but the available mechanisms cannot fully satisfy our

needs.

You cannot conveniently suppress an error for a specified location inside a

particular method

https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.suppressmessageattribute?view=netframework-4.7.2

12

Acuminator Error Suppression

Acuminator has error suppression functionality integrated in Visual Studio to suppress its own

errors for specified locations:

• Local error suppression with a comment. You can replace [Justification] with a justification for

suppression

// Acuminator disable once PX1092 IncorrectAttributesOnActionHandler [Justification]
public IEnumerable voidInvoice(PXAdapter adapter)
{

yield break;
}

• Global error suppression in the Acuminator suppression file. It is a special file which keeps

suppressed errors in the XML format. Its name should be <Project Name>.acuminator

• Acuminator supports one suppression file per project and will generate a new suppression file if it

does not exist

13

Acuminator: Settings

14

Acuminator Settings

Acuminator provides configuration options. To access them in Visual Studio click

Tools > Options > Acuminator.

15

Acuminator Settings

• Syntax highlight settings

• Enable syntax highlighting

• Highlight only BQL expressions

• Allow highlighting of Graphs or actions

• Outlining settings (collapse/expand BQL expressions)

• Enable BQL expressions outlining

• Allow to collapse parts of BQL expression

• Code analysis settings

• Enable code analysis

• Enable additional diagnostics for ISV solution certification. This mode will also make analysis stricter by

increasing severity of some diagnostics

• Suppress selected diagnostic. If set to false, all errors suppressed in the suppression file will be shown

16

Acuminator: Miscellaneous

17

Miscellaneous

• New Diagnostics — You can find the list of all diagnostics in the Acuminator GitHub repository:

https://github.com/Acumatica/Acuminator/blob/dev/docs/Summary.md

You can also navigate to the diagnostic documentation from the link in the Error List window in

Visual Studio.

• Bugfixes & performance improvements — If you find a bug in Acuminator you can create an

issue on GitHub:

https://github.com/Acumatica/Acuminator/issues

• Acuminator can be installed as a NuGet package Acuminator.Analyzers.

This makes Acuminator checks mandatory for the whole team. However, you need to install VSIX

to use the Code Map, BQL Formatter and suppression in the suppression file.

https://github.com/Acumatica/Acuminator/blob/dev/docs/Summary.md
https://github.com/Acumatica/Acuminator/issues

18

Acumatica Built-in Validations

19

Acumatica Built-In Validations

• Project Validation — The validation of the single highlighted project or multiple projects content

• DAC Field Types Validation

• DAC Attributes Validation

• Lookup Definitions Validation

20

Acumatica Built-In Validations Tips

• Project Validation is not the so-called process that triggered prior to

publishing

• Project Validation should be performed before publishing

• Runtime Validations will include the solution related results ONLY after its

publishing and will always include validation of the entire Acumatica

instance.

• Lookup Definitions Validation results are pointing on the issue with

attributes that decorates selector fields (often due to the application of

Segmented Keys)

*Some more information about you might find in official help here: Validation of a Customization Project

https://help-2020r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=f048f674-63dc-4ad4-b2ba-4b7ec43cfc95

21

Requirement Validation Tool (RVT)

22

RVT: Requirement Validation Tool

RVT is a standalone configurable tool that allows to perform various validations of embedded and

composite ISV solutions in the context of the Acumatica ERP local instance.

The following validations are currently available:

• Acuminator Validation

• Screen Schema Validation

• Translation Validation

23

RVT: Key Parts

24

RVT: Acuminator Validation

Project validation with Acuminator's analyzer — designed to work within Continuous Integration and

has following features/requirements:

• Requires source code in form of Visual Studio Project (*.csproj)

• Project should have all the dependencies linked and compilable

• RVT Acuminator Validation is enabled to generate suppression files and use them for further

iteration

25

RVT: Screen Schema Validation

Validates the screenInfo of Acumatica screens, customized and new screens.

The screenInfo is used in all Acumatica APIs: Contract-based, Screen-based, Import/Export,

Mobile.

Screen Schema Validation checks the following:

• screenInfo is available and is generated without errors

• PrimaryView is bound to single container control

• BLC (Graph) type is used by a single page

26

RVT: Translation Validation

Validates that Acumatica can be translated using the built-in localization mechanism.

*Unbound strings are not covered by this validation and could be checked by Acuminator instead.

Collecting

strings

Translating

Acumatica

Activating

translation

warnings

Checking

warnings

on screens

Deactivating

warnings

and

Removing

Translation

28

RVT: References

Download is available here:

Requirements Validation Tool v. 2.4

Documentation

Please give us your feedback on certification@acumatica.com

http://acumatica-builds.s3.amazonaws.com/builds/tools/RequirementsValidation/2.4.0.0/2.4.0.0.zip
http://acumatica-builds.s3.amazonaws.com/builds/tools/RequirementsValidation/2.4.0.0/RVT%20documentation.pdf

29

RVT Integration into Development Process

30

Acumatica Development Process and RVT

Developer
commits a

change
Unit Tests

Pull Request in global
repository with code

review

Automatic Build
Integration Tests

with Test SDK and
Performance Tests

Merge

RVT executes

Acuminator

validation

31

How Acuminator Validation by RVT Works

Stable code version Modified code versionOriginates from

Project suppression file Project suppression file
Is inherited from

RVT

Collects errors

Check if new unsuppressed

errors were added

32

Integration with RVT for Acuminator static analysis

RVT can be simply integrated into your automated testing with a script:

• RVT has a console runner RequirementsValidation.exe

• The runner reads settings from a standard configuration file RequirementsValidation.exe.config

• To perform RVT Acuminator check you need to:

1. Make sure that the environment is configured on the test machine

2. Place the code to be validated in a prepared location used by test

3. Build the prepared solution or restore NuGet packages and place all external DLLs to their

expected locations

4. Make sure that RVT is present on the test machine and configure it

5. Run RVT and check the process exit code. If it equals 0, then the validation is passed.

6. Process the results

33

Configuration Example

var rvtConfigPath = <provide path to config file here>;
var rvtConfig = XDocument.Load(rvtConfigPath);
XElement appSettings = rvtConfig.Root.Element("appSettings");

SetAcuminatorSetting("AcuminatorRequirement_Validate", true);
SetAcuminatorSetting("AcuminatorRequirement_ProjectPath", <path to project>);
SetAcuminatorSetting("AcuminatorRequirement_IsvSpecificAnalyzersEnabled", true);
SetAcuminatorSetting("AcuminatorRequirement_PX1007DiagnosticIsEnabled", false);
SetAcuminatorSetting("AcuminatorRequirement_GenerateSuppressionBase", true);
SetAcuminatorSetting("AcuminatorRequirement_ValidateSuppressionBaseDiff", true);
rvtConfig.Save(rvtConfigPath);

//---------------Local Function---------------
void SetAcuminatorSetting(string name, object value) =>

appSettings.Elements("add")
.Single(e => e.Attribute("key").Value == name)
.Attribute("value")
.SetValue(value);

34

RVT integration with the Test SDK

35

Using RVT with the Test SDK

You can write an integration test using the Test SDK which will run RVT validation.

Create a new class derived from the Check class of the Test SDK and override the Execute method.

Then you can prepare environment as necessary:

public class AcuminatorValidation : Check
{

public override void Execute()
{

//You can prepare environment from the test if needed
InstallMSBuildIfNotInstalled();
string dotnetPath = InstallDotNetRunTimeIfNotInstalled();
InstallGitIfNotInstalled();

//prepare code repository
string codeRepoPath = PrepareCodeRepository(dotnetPath);
string projectPath = GetValidatedProject(codeRepoPath);
string rvtPath = ConfigureRVT(projectPath); //see previous example

RunAcuminatorValidation(rvtPath, dotnetPath);
//You can optionally process results after the validation

}
}

36

Code Repository Preparation

public override void PrepareCodeRepository(string dotnetPath, bool buildSolution = true)
{

string codeRepoPath = CloneCodeRepository();
string solutionPath = GetSolutionPath(codeRepoPath);

// You can either build solution or just restore nuget packages and copy external DLLs
if (buildSolution)
{

BuildSolution(solutionPath);
}
else
{

//restore nuget packages by running nuget CLI (see next slide)
RestoreNugetPackages(solutionPath, dotnetPath);

//Copy external DLL dependencies to prevent compilation errors
CopyExternalDLLsToExpectedLocations(solutionPath);

}

return codeRepoPath;
}

37

Restore Nuget Packages

public override void RestoreNugetPackages(string solutionPath, string dotnetPath)
{

const string nugetPath = <path to nuget command line tool>;

//restore nuget packages by running nuget CLI in a process
using (var process = new Process()) {

process.StartInfo =
new ProcessStartInfo(nugetPath, "restore " + solutionPath)
{

UseShellExecute = false
};

process.StartInfo.Environment["MSBuildSDKsPath"] = dotnetPath;
process.Start();
process.WaitForExit();

if (process.ExitCode != 0)
throw new AutotestException("Failed to restore nuget packages");

}
}

38

Run RVT Validation

public override void RunAcuminatorValidation(string rvtPath, string dotnetPath) {
using (var process = new Process())
{

process.StartInfo =
new ProcessStartInfo(rvtPath)
{

WorkingDirectory = Path.GetDirectoryName(rvtPath),
UseShellExecute = false,
RedirectStandardOutput = true

};
process.StartInfo.Environment["MSBuildSDKsPath"] = dotnetPath;

process.Start();
var output = process.StandardOutput.ReadToEnd();
process.WaitForExit();

if (process.ExitCode != 0 || output.Contains("Error"))
Log.Error(output);

else
Log.Information(output);

}
}

39

Sumary

Tools that simplify the development with Acumatica & ensure the quality of the product:

• Acuminator – new features to boost programmer productivity and help with code analysis in

Visual Studio.

https://github.com/Acumatica/Acuminator

• Project Validations – a set of powerful run-time validations embedded in the Acumatica site:

https://help-2020r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=f048f674-63dc-4ad4-b2ba-

4b7ec43cfc95

• Requirement Validation Tool — a new instrument to perform the validation of the entire solution.

It can be integrated into your automated testing.

http://acumatica-

builds.s3.amazonaws.com/index.html?prefix=builds/tools/RequirementsValidation/2.4.0.0/

https://github.com/Acumatica/Acuminator
http://acumatica-builds.s3.amazonaws.com/index.html?prefix=builds/tools/RequirementsValidation/2.4.0.0/

40

Thanks for hard work and help

Big thanks to the team of contributors:

• Vladimir Panchenko

• Vyacheslav Yakutenko

• Dmitry Naumov

• Andrey Budaev

• Kseniya Popova

• Ekaterina Androsova

41

Questions?

▪

Sergey Nikomarov

snikomarov@acumatica.com

Evgeny Afanasiev
evgeny.afanasiev@acumatica.com

