
Mike Chtchelkonogov
Founder & Chief Technology Officer

Acumatica

Acumatica Developer Roadmap

2

Agenda

• Core Platform Priorities

• Work-in-Progress

• The Future – 2021 & Beyond

• Questions & Answers

3

Core Platform Priorities

4

Core Platform Priorities

Continuous platform technology advances

Improved UI and usability

Non-programming customization

Dashboard and reporting enhancements

Machine learning and artificial intelligence

Performance and scalability

5xByte Technologies

Acumatica Customer Since 2014

Work in Progress (2020-2021)

6

Replacement of the Web.Forms Technology

What…

• Replace the legacy Web.Forms technology with a new template-based browser-based engine.

• Unifying API for the Web & Mobile clients.

• Migrate existing web forms and customizations to the new technology.

Why…

• Eliminate legacy technology and implement support for .NET Core

• Improve application performance

• Unify the communication layer API

• Enable custom visualizations for the 3rd-parties

7

Current Frontend Architecture

Web.Forms technology is legacy

and going to be obsolete in 2-3

years

Web.Forms technology is heavy; it

consume up to 30% of CPU time

and request execution time

Datasource and Import/Export

Engine provide two alternative

options to access API

Meta data generated out of ASPX

form is used for other API’s

Browser

Web.Forms

Graph

Mobile Client

Mobile API

Import/Export

Engine

Screen Based API
Contract based

API

Screen Based API

Client

Contract Based

API Client

POST + XML

Graph API

Graph API

IMPORT/EXRPOT API

Screen Schema

Un- typed REST SOAP or RESTSOAP

Graph API

Data Source

DATA SOURCE API

Mobile

Screen

Definition

ASPX
End Point

Defintion

8

Future Frontend Architecture

Web.Forms technology replaced

with modern web API technology

Mobile and Web API are uniform

and can be unified as a single

component

Public graph API does not depend

on UI definition and uniform for all

external access introducing a public

contract

Public graph API creates a point for

implementing simplified integration

tests against the business object

Browser

Web API

Business Object

Mobile Client

Screen Based API
Contract based

API

Screen Based API

Client

Contract Based

API Client

JSON + XML

Graph Public API

Un- typed REST
SOAP or RESTSOAP

Graph API

Mobile

Screen

Definition
Web Form

Definition
End Point

Defintion

Graph Public API

Internal API

Extensions

9

Frontend Architecture – Migration Path

Step 1 – Modify Mobile API to

handle HTTP requests from browser

and modify JS to bypass web forms

and work though Web API.

Step 1 – Work on Import/Export

Engine to expose public graph API

that will be uniform for all frontend

engines.

Step 2 – Replace Web Forms with

new rendering engine based on

aurelia.io

Step 3 – Convert old forms to the

new format

Browser

Web API

Graph

Mobile Client

Screen Based API
Contract based

API

Screen Based API

Client

Contract Based

API Client

JSON + XML

Internal API

Graph Public API

Un- typed REST
SOAP or RESTSOAP

Graph API

Mobile

Screen

Definition
ASPX

End Point

Defintion

Graph Public API

Web.Forms

HTML

Internal API

Data Source

10

Match Mobile UI functionality to Browser

What…

▪ Implement Workspaces support on mobile devices

▪ Implement support for secondary containers (adding lines to the grid)

▪ Implement popup support

Why…

▪ With more mobile usage, we need to optimize the mobile interface for more efficient data entry and data

access. Right now, some of the functions available in the browser are still superior to the mobile application

and the mobile application does not provide the same experience as the browser.

▪ Some operations on mobile work different on the mobile interface than on the browser due to the form factor.

Adoption is required for these functions to provide a similar user experience.

11

New State Automation Engine

What…

▪ Setting the properties of the business object based on the evaluation of the object state

▪ Gradual completion of the business object fields based on the object state

▪ Triggering the business events based on the object state

▪ Enabling and disabling the actions on the business object based on the object state

▪ Defaulting and restricting the field values based on the other field values

▪ Configurable in the code with the base object and extendable in customization

Why…

▪ 80% of the UI programming or customization is managing enabled/disabled/required properties of the business

object fields and actions depending on the entered information or the object state.

▪ Support of these actions through the state automation engine will not involve programmers for customizing the

form behavior which will reduce the qualification requirements to perform customization and reduce the

customization cost.

Is this what you are trying to say

12

Extending User Defined Fields fields functionality

What…

▪ Support of lookup functionality for the UDF field definition

▪ Managing UDF fields properties by means of state automation

▪ Defaulting and restricting UDF fields by means of state automation

▪ Support for copy of UDF field values during a new record creation

▪ Configuration of the different UDF fields sets for the different types of record

Why…

▪ UDF Fields are the simplest way to extend the business logic and it is very stabile on upgrades.

▪ Extending this functions will extend use of these fields for basic customization will reduce the need for a

programmer and will speed up customization and the implementation cycle.

13

Improve Generic Inquiry Usability and Functionality

What…

▪ Automatically suggest links when designing inquiry

▪ SQL like syntaxis for advanced users

▪ Use GI on top of GI

▪ Improve UI for GI configuration

▪ Add charts

▪ Implement subtotals

▪ Improve filtering and tabs behavior.

▪ Implement report designer on top of GI

Why…

▪ Reporting is the core function of the ERP solution and the better the reporting tools are, the better the ERP

▪ Need to convert GI to the full functioning online reporting tool

14

Replacement of the legacy notification mechanism with the Business Events

What…

▪ Implement support for the quick notification configuration using Business Events

▪ Implement self subscription function to subscribe to watch for record changes

Why…

▪ This option will give a user an option to be notified about the changes on a specific entity or about a specific

event though notification mechanisms.

▪ Right now, to configure a notification on top of a business event the user must configure the push notification

inquiry for this event, configure the event, and then link the notification though the event handler. This is

complicated for the user compared to the legacy notification mechanism and prevents us from dropping it.

15

Improve system troubleshooting

What…

▪ Provide a central screen to view the system events and errors that occurred during unattended operations like

scheduled processes or detected system performance or stability issues.

▪ Provide a central notification mechanism for the administrator to be notified on such events.

Why…

▪ Right now, detections and troubleshooting of these events is complicated and results in an excessive support

payload.

▪ Additionally, it is often considered a distraction by clients.

16Cherrylake, Inc.

Acumatica Customer Since 2013

The Future – 2021 & Beyond

17

Scripting Customization Layer

What…

▪ Implement a new customization layer between the UI and business logic, where alterations to the business

logic can be implemented by means of a basic scripting language using the public business object API

Why…

▪ Security isolation of customization from code

▪ A more simplistic language that lowers entry barrier and can be learned by consultants

▪ Higher customization stability on upgrades due to the use of a public API vs the internal programming API by

custom code

18

Replace ARM with Pivots In Memory Engine

What…

▪ Extend the Pivot engine functionality to replace the existing ARM engine

▪ Eliminate historical records and use pre-aggregated transactional data

Why…

▪ Improve system throughput by eliminating the locks on historical tables during the release

▪ Improve system responsiveness by storing the pre-aggregated data required for the reporting and appending

them with transactional data during the report execution

▪ Provide daily balances in ARM

19

Dimensional Analysis

What…

▪ Option to represent a subaccount as a set of independent or inter-related controls during data entry

▪ Option to indicate what segment is and is not required and hide any controls not required

▪ Option to select multiple values of these segments in reports and inquiries

▪ Modify the configuration screens to configure the dimensions in a user-friendly form

Why…

▪ Dimensions are more convenient then subaccounts from the user’s perspective

20

On-screen Content Help

What…

▪ Implement context help for screen elements

▪ Eliminate the complex screen description context help that explains the screen elements in place

Why…

▪ Currently discovering the meaning of functions of a specific screen element is cumbersome and requires

additional efforts. Implementing context help will shorten the education cycle and as a result, will accelerate

system implementation and adoption by end-users

21

Moving Acumatica to .NET Core

What…

▪ Move Acumatica libraries to .NET core technology

▪ Make Acumatica run on .NET Core inside Docker containers

Why…

▪ Remove dependencies from the legacy components of the .NET Framework

▪ Run on Linux

▪ Better performance and application density

22

Questions?

Thank You

Mike Chtchelkonogov

