
Integration: How It’s Done
Let’s Integrate Acumatica with the World!

Sergey Marenich

Commerce Edition Architect & Team Lead

2

Marenich Sergey

13 years of experience at Acumatica

• Build Engineer

• System Developer

• Product Engineer

• Solution Architect

• Team Lead

• Commerce Edition Architect

@: smarenich@acumatica.com

P: Commerce Edition Architect & Team Lead

U: http://asiablog.acumatica.com

mailto:smarenich@acumatica.com
http://asiablog.acumatica.com/

3

Integration: Is there something unsaid yet?

4

5

Plug & Play

Develop Fast

Low Cost

What Clients Want from “Integration”?

Reliable & Consistency

Notifications on Issues

Ability to Solve Problems

Choose what to Sync

Adjust Workflow

Conflict Resolution

Close to Realtime

Run Fast

6

Each system supports

own version cycle

which significantly

increases the

complicity of

integration project

with any addition

system

Integration is Easy, Right? Not Quite…

Each system designed

in the different ways

and approaches.

This leads to

challenges with:

• Data flow

• Data mapping

• Actions calling

• Custom fields

handling

Data Structures &

Business

Logic

Versions Hell

Each system protects

own resources and

applies license.

As a result integration

suffers from very

different limit of

resources.

API Limits &

Throttling

Each system relies on

different technologies

and even changes in a

while:

• REST

• Graph QL

• SOAP

• gRPC

• JSON-RPC

• Thrift

API Technology

Evolution

7

8

Integration Platforms – Solution?

Complexity of implementation is shifted from developer to the engineer
through configurationsComplicated

Development and Code Maintenance effort of API clients is still requiredAPI Clients

Applying of the same use-case to multiple clients requires special
deployment proceduresProductizing

Upgrade requires abstraction level between core integration and
customer specific customizationUpgrade

Complicated systems like ERP with designed business flow (Order-
Shipment-Invoice) adds extra complexity

Business Logic
Flow

9

Idea: Acumatica Commerce Edition

10

Commerce Enabled ERP – Vision

BigCommerce

Connector

Shopify

Connector

Amazon

Connector

Connector

Foundation

Customers

External Systems Acumatica

Products

Stock Levels

Prices

Taxes

Orders

Shipments

Payments

Discounts

POS Connector

11

Commerce Enabled ERP – System Requirements

Plugin-like Architecture with the same Infrastructure

Interaction Abstraction on Acumatica Screens

Processing Queue to Spread out Peaks Load

Parallel Processing of the Queue

Push and Scheduled Synchronization

User Defined Fields Mapping (with Formulas)

User Define Conditions (Filters) for Synchronization

Synchronization Algorithm, Status and Conflict Resolutions

Tools: Logging, Monitoring, Issue Handling

Duplicates Merge

Specialized API Endpoints: Taxes, Availability, CC Tokens

12

Plugin-like Architecture

13

Screens

Connector Architecture

B
ig

C
o

m
m

e
rc

e

C
o

n
n

e
c
to

r

B
ig

C
o
m

m
e

rc
e

External Systems

S
h

o
p

if
y

Customers

Products

Orders

Customers

Products

Orders

S
h

o
p

if
y

C
o

n
n

e
c
to

r

Acumatica

Connection &

Default Settings
Customers Processor

Products Processor

Orders Processor

Customers Processor

Products Processor

Orders Processor
Acumatica

Customers

Products

Orders

Mapping &

Filtering

Prepare Data

Process Data

Status Data

Monitoring

SharedPlugins

Connector

14

Abstraction on Acumatica Screens

15

Saving Data to Acumatica

Direct to Database

• Pros

• Very Fast

• No need to learn BQL

• Cons

• Need to know SQL

• Bypassing business
logic

• High change to make
a mistake

• Affected by upgrades

• Does not work on
SaaS

Graph Program API

• Pros

• Fast

• Flexible

• Cons

• Need to learn BQL and
Event Model

• Logic requires
emulation of user
interface

• Affected by Upgrades

Import Scenarios
with Data Provider

• Pros

• User configurable
mapping

• Great business logic
abstraction

• No need to learn BQL

• Less code needed

• Cons

• Hard to implement
data flow

• Hard to do data
queries

• Hard to run in parallel

• Hard to upgrade

Contract Base API

• Pros

• Contracts are
protected from
upgrades

• Great business logic
abstraction

• No need to learn BQL

• Easy Data Queries

• Easy Parallel
Processing

• Endpoint is an
extension point

• Documentation

• Cons

• API Calls Limits

16

CB API Adaptor

Read/Save Abstraction

External

System

External

API

Adapter

CB API

Engine

REST API

Get

Screens

Graphs

DACs

Put

Processor

Invoke

GetList

External Systems AcumaticaConnector

xPort Engine

17

Processing Queues with Parallel Processing

18

Processing Queues

Queues help us to:

• Withstand the load

• Spread Peaks

• Splitting of fetching and saving logic

• Dedicated Processing Node

External

System
Acumatica

Web Hook

Handler

Push

Notification

Destination

MSMQ

(Fast Queue)

DB Table

(Slow Queue)
Triggered

Fetch

Triggered

Fetch

Parallel Processing / Processing Server

Connector

19

Handling of Real-Time Sync

Webhook Handler Push Notification Destination

20

Filtering & Mapping

21

Filtering & Mapping

External

System
Acumatica

API Client

Mapping

Engine

Connector

REST Classes CB Classes

API Client

Customer

Product

Order

Customer

Product

Order

Processor

ORM ORMReflection

Filtering

Engine

22

Synchronization Algorithm and Status

23

Synchronization Algorithm and Status
e
C

o
m

m
e
rc

e

A
c
u
m

a
ti
c
a

Push Notifications Engine

E-Com

API

Adaptor

AC API

Adaptor

Web Hook
Push Notifications

Subscriber

E
v
e
n
ts

B
u
s
in

e
s
s

E
v
e
n
ts

MSMQ

Queue

Processor

Connector Plugins

Sync Status Table

Get

Put

Get

Put

Local ID Extern ID

Local TS Extern TS

Customer Processor

Push Push

Update Status

Scheduled Fetch

Full / Incremental

Pending

Sync

Scheduled Fetch

Full / Incremental

Pickup

Records

with

Pending

Sync

• Dispatch Message

• Pull Record Details

• Filter Record

• Update Sync Status

• Get Acumatica Entity with API

• Get eCommerce Entity with API

• Define sync direction

• If new – check for duplicates

• If existing – check timestamps

• If conflict – use primary system

• Map Source to Destination

• Save Record to Destination

• Update Timestamps and IDs
Order

Processor

…

…

…

Processors

Connector FoundationMapping Logging Configurations

ExportImport

Start Sync

P
ro

d
u
c
ts

C
u
s
to

m
e
rs

O
rd

e
rs

C
u
s
to

m
e
rs

In
v
e
n
to

ry
O

rd
e
rs

24

Synchronization Status

Identity, Primary KeySync ID

Current Status of the record: Synchronized, Pending, Failed, Skipped,
Deleted, …Status

Note ID from Acumatica. Starting from Acumatica 2019R2 you can use
Note ID as permanent Key for API Calls.Local ID

Date & Time when record was Last Modified at AcumaticaLocal Time Stamp

ID of the record from External System External ID

Date & Time when record was Last Modified at External SystemExternal Time Stamp

Last Synchronization Error if record is in Failed StatusLast Error

25

Synchronization Algorithm

Operation Status LocalID LocalTS ExtenID ExternTS

1
New Customer created Externally

at 1:23PM 1/1/2020
Pending 1

1:23PM

1/1/2020

2
Synchronization of Customer

at 1:31PM 1/1/2020
Synced

5819C47C-

1DCC-…

1:31PM

1/1/2020
1

1:23PM

1/1/2020

3
Customer has Updated Locally

At 1:44PM 1/1/2020
Pending

5819C47C-

1DCC-…

1:31PM

1/1/2020
1

1:23PM

1/1/2020

4
Synchronization of Customer

at 1:49PM 1/1/2020
Synced

5819C47C-

1DCC-…

1:44PM

1/1/2020
1

1:49PM

1/1/2020

5
Customer has Updated Externally

At 2:01PM 1/1/2020
Pending

5819C47C-

1DCC-…

1:44PM

1/1/2020
1

1:49PM

1/1/2020

6
Customer has Updated Locally

At 2:07PM 1/1/2020
Pending

5819C47C-

1DCC-…

1:44PM

1/1/2020
1

1:49PM

1/1/2020

7

Synchronization of Customer in favor

of Primary System at 2:10PM

1/1/2020

Synced
5819C47C-

1DCC-…

2:10PM

1/1/2020
1

2:07PM

1/1/2020

26

Synchronization Algorithm

Save Changes

• Update Time
Stamps

Map Data

• External to Local
or Local to
External Depend
on Direction

• Apply User
Mapping

Define
Direction

• Compare Time
Stamps and
define what
record has
changed since
last time

• In case of
conflict solve in
favor for primary
system

Check for
Duplicates

• Only if record is
new, try to
merge by ID

Get

• Get Object from
Local System

• Get Object from
External System

• Apply Filtering
Conditions

27

Development

28

Implementing of New Connector

• <Connector> : IConnector

• PXGraph

• Connection Settings

• Navigation to Records

• Realtime Subscription &

Processing

• Sync Processing

• <Processors> : IProcessor

• PXGraph

• Fetching of Records

• Getting of Local and External

Records

• Default Mapping Logic

• Export and Import Logic

• Sync Processing

• Libraries:

• PX.Commerce.Core

• PX.Commerce.Objects

29

Implementing of New Processor

Description Import Export

Fetch changed records

Update BCSyncStatus

void GetBucketsForImport(
DateTime? lastModifiedDateTime,
PXFilterRow[] filters)

void GetBucketsForExport(
DateTime? lastModifiedDateTime,
PXFilterRow[] filters)

Get entity (with all details)

bool GetBucketForImport(
BCSalesOrderBucket bucket,
BCSyncStatus syncstatus)

bool GetBucketForExport(
BCSalesOrderBucket bucket,
BCSyncStatus syncstatus)

Map single entity between

systems

void MapBucketImport(
BCSalesOrderBucket bucket,
IMappedEntity existing)

void MapBucketImport(
BCSalesOrderBucket bucket,
IMappedEntity existing)

Save entity to destination system

(with all details)

void SaveBucketImport(
BCSalesOrderBucket bucket,
IMappedEntity existing,
String operation)

void SaveBucketImport(
BCSalesOrderBucket bucket,
IMappedEntity existing,
String operation)

Pull primary entity only.

For push notificaitons

MappedOrder PullEntity(
String externID,
String jsonObject)

MappedOrder PullEntity(
Guid? localID,
Dictionary<String, Object> fields)

30

Summary

31

Acumatica Integration - Expectations

Framework

Requires Coding: API Clients, Mapping, Logic

Experimental Model

Commerce focused (Shipping Cards, POS)

Documentation is in the Roadmap

Time to Complete

32

Code Example – Trello Connector

Git Hub Project: https://github.com/smarenich/TrelloConnector

Simplifications:

• API URLs Hardcoded

• API Credentials Hardcoded

• Only Cards Import (No boards, No lists)

• No Push Notifications

https://github.com/smarenich/TrelloConnector

33

Fall 2020

34

Open Architecture and Rapid Integration

Thank You!

Sergey Marenich

smarenich@acumatica.com

