
Push Notifications & Webhooks

Synchronizing changes between Acumatica Instances

Marco Villaseñor
CTO 

*interastar



2

Agenda

• Importance of webhooks and notifications

• How to configure a webhook in Acumatica

• How to configure a push notification to a webhook in Acumatica

• Live demo with code!

push

notifications



3

• Instant notifications

• Simple to implement

• Composable

• Are widely supported around the web

Why are webhooks awesome?



4

• Instant notifications

• Simple to implement

• Composable

• Are widely supported around the web

• Available now in Acumatica 2020R1 !

Why are webhooks awesome?



5

It is an integration mechanism that…

…works like a (POST) REST web service 

endpoint

…lets external applications notify our app when 

something happened,

so no more polling!

...accepts the caller’s format

Basically “just send the data to this URL”

But what is a webhook?



6

Feature was first introduced in 2017R2

Push notifications are notifications in 

JSON format that are sent by 

Acumatica ERP to notification 

destinations when specific data 

changes occur in Acumatica ERP.

Support webhooks as a destination!

About Acumatica push notifications

push

notifications



7

Webhooks and Push Notifications in Acumatica

Webhooks

• Inbound
Push 
notifications

• Outbound



8Curran Young Construction Company

Acumatica Customer Since 2018 

OK, so let’s build something!



9

Sync non-stock items between 2 

Acumatica instances

1. When a new item is created

2. Tell the other instance

3. Create the item

A simple example…

Item Item



10

Sync non-stock items between 2 

Acumatica instances

1. Push notifications trigger when there 

are changes

2. Subscribe to a webhook to change 

item data

3. Implementation class creates the 

item

A simple example…

Item Item



11

Demo



12

Creating webhooks in Acumatica

1. Get the structure of the notification we will 

handle

2. Create an implementation class using the 

IWebhookHandler interface

3. Register class as a webhook in Acumatica

4. Save the generated URL to 'subscribe' the 

external system to that webhook

(Screen SM304000)



13

Example notification

{
"Inserted": [{

"InventoryID": "ITEMCD ",
"Description": “My item’s description",
"Type": "Non-Stock Item",
"PostingClass": "FDI",
"ItemClass": null,
"TaxCategory": "EXEMPT",
"RequireReceipt": true,
"RequireShipment": true,
"BaseUnit": "ITEM",
"PurchaseUnit": "ITEM",
"SalesUnit": "ITEM" }],

"Query": "IN-PushItem",
"CompanyId": "Company",
"Id": "5ec9ca1b-7348-4c98-89c2-fb4743d54d9b",
"TimeStamp": 637276282861245200,
"AdditionalInfo": { "PXPerformanceInfoStartTime": "06/13/2020 06:58:05"}

}



14

Push Notification fields

Inserted – new rows in query. New updated values.

Deleted - rows that were present in a query but were removed. Old modified rows.
Comparing deleted and inserted sets will show updated fields.

Query - name of source definition (class name for Built-In definitions or

Generic Inquiry name for GI definition).

CompanyId - login name of company.

Id - transaction identifier generated on DB level. Guarantees at least

one delivery, so ‘Id’ and ‘Query’ fields can be used for deduplication.

TimeStamp - value that is guaranteed to increase with every

transaction. Can be used to define order.

push

notifications



15

Webhook handler implementation

public class TestWebhookHandler : IWebhookHandler
{
public async Task<System.Web.Http.IHttpActionResult> ProcessRequestAsync(HttpRequestMessage request, CancellationToken cancellationToken)
{
using (var scope = GetAdminScope())
{
// Deserialize JSON into our Notification class
var notification = JsonConvert.DeserializeObject<Notification>(await request.Content.ReadAsStringAsync());

// We will use this Graph to insert our new item
var graph = PXGraph.CreateInstance<NonStockItemMaint>();
foreach (var item in notification.Inserted)
{ 

InventoryItem newItem = graph.Item.Search<InventoryItem.inventoryCD>(item.InventoryID.Trim());

newItem = graph.Item.Insert(new InventoryItem() 
{ 
InventoryCD = item.InventoryID, 
Descr = item.Description, 
ItemType = item.Type 

});

// Simple way for us to track automatic inserts
graph.Item.Cache.SetValueExt(newItem, "NoteText", "Created by Webhook"); 

} 
graph.Actions.PressSave(); 

} 
return new OkResult(request);

}
}



16

Recommendations for Webhooks

• Keep the handler as simple as possible

• Handle possible errors and reply accordingly

• It’s better to have some security, many webhook subscribers allow adding 

authentication headers like Basic or Bearer (tokens)

• Add code in your handler to verify the header before processing the request



17

1. Define GI for records we need to 

“monitor”

2. Select webhook as destination type

3. Set URL address where Acumatica will 

send the notification

4. Add GI we defined to the notification 

definition

(Screen SM302000)

Configuring push notifications in Acumatica push

notifications



18

Recommendations for Push Notification Data Queries

• Use as a simple data query if possible

• Do not use aggregation and grouping in the query

• Do not use joins of multiple detail tables (like Sales Order – Shipments –

Shipment lines, i.e. several many-to-many relationships)

• Inner joins in queries may work a bit slower than left joins

• For generic inquiries, do not use formulas on the Results Grid tab of the 

Generic Inquiry (SM.20.80.00) form

*Tips by Vladimir Perov (thanks!)

push

notifications



19

Summary

• Webhooks are awesome

• Simple and composable integrations

• Widely supported around the web

• Available in Acumatica 2020R1

• Push notifications are 

• Easy to configure by using Generic Inquiries

• Can be used to send data to webhooks in any web app, including Acumatica

• We configured webhooks and push notifications in Acumatica

• Code available here: https://github.com/markoan/acumatica-webhook-example

https://github.com/markoan/acumatica-webhook-example


20

Q & A



Marco Villasenor
marco@interastar.com


