Q Acumatica

| Contents | 2

Contents

L0003V T« | 3 10
About the Customization Guide........c.cciiiiiririiarr s s v s s s a s rnnmnana 11
3 1 g T [T ot o o T 12
Getting Started........ccccviiii i a s r A, 14
KNOWIEAGE Pre-REGUISITES. . ittt i et e et e e et et e a e e aaeaaeeanes 15

To Prepare an ENVIrONMENt. ... 16

To Assign the Customizer Role to @ User ACCOUNE.....iiiiiiiiiii i 17

User Access Rights for Customization..........o.oiiiiiniiii e 18

EXPIOring the SOUNCE COde. . ittt e et a et rereaans 19

To Explore the C# Code Of @ BLC....iuiiieiiiiie i e et e e e e e e e e nenens 20

To Explore the C# Code Of @ DAC .. ittt et e e ananaeas 20

To Explore the ASPX Code Of @ Page.....ouiuiiiieiiiii e 21

To Find a Customization of the ASPX COde.....iuiiiiiiiiiiiiiiiiiiii e e aeraeeas 22

To Find Source Code by @ Fragment.o e 24

To Develop a Customization ProjecCh.....cciiiiiiiii i e ae s 25

To Perform Final Testing of @ Customization...... ..o e 26

To Deploy @ CUuStomMization ProjeC....iiuiiiiiiii i e e e e 27

ASKING QUESTIONS. ettt ettt e 27
Acumatica Customization Platform........ccciierimmrirsmsernmerimsmsassssssersnsessssassasansasassassnnasnnnas 28
Customization Projech.......coiiii i e 28

Types of Items in a Customization Project.......ccciiiiiiiiiiiiiii e 30
Deployment of CUuStOMIZatioN......o.ieiii e aa 34
Simultaneous Use of Multiple Customizations.......ccvviiiiiiiiiii i e 35
Customization of @ Multitenant Site......c.cviiiiiiiiii s 35

Validation of a Customization Project.......cciiiiiiiiiiiii e 37
(G113 o] oY= | o o W Ko Yo 0P 39
Customization Projects FOrm ..o e e 40
(G113 o] Y= [o N = 1 P 41

(= 1=]0 =T 0 Ll N g Y oY=t o] o PP 44
Customization Project Editor.......oiiiiiiii i 47

1Yo 101 ol @e Yo [Tl 2 o) =T =T PP 91
(G113 o] g oY= [To) o T ol =T 0 0 =111V o] f PP 93
Changes in WebPages (ASPX) . uiiiiiiiii i i i r e e a e et e e e aneaaeens 95

Changes in the Application Code (CH#) .. 96

Changes in the Database Schema......cciiiiiiiiii e 127

Custom Processes During Publication of a Customization...........ccocvviiiiiiiiiiiiiiiiieens 128

Managing Customization Projects.......cciciiciiimimimiiiesmmn i s s s ssa s ssssssnssassassansanssnnsannas 129
TO Create @ NEW ProJeCE. ...t e e aes 130

To Select an EXiSting ProjeC. ...t e et aas 132

TO OPEN @ PrOJeCE. . e ettt 133

TO UpPdate @ PrOjeCt. et et e 134

TO Delete @ ProjecCh. ... 135

| Contents | 3

TO EXPOrt @ ProjeCt. . vt e 135
Lo T L 0] oo] g =T d o [P 137
To Replace the Content of a Project from a Package.......cooovviiiiiiiiiiiiiic i 138
To Build a Package Based on EXiSting Files......ciiiiiiiiiiii i e 141
To Merge MUILIPIE ProjeCts. ... e e 143
To Manipulate Customization Projects from the Code......ccoviiiiiiiiiiiiiiiii e 143
GetPackage() Method.o 145
PublishPackages() Method.ciiiiiiiiiiiii i e a e eeaneaas 146
UnpublishAllPackages() Method. ..o e 147
UploadPackage() Method......ccoiiiiii i e e 147

To Detect Whether a Customization Project Is Applied to the Application....................eee. 148
To Manage Prefixes in @ Customization Projectcocoviiiiiiiiiiii s 150
To Add a Custom Feature SWItCh..... ..o 151
Custom Feature SWItChes. ... e 152
The Features. XMl File. ..o et r e e r e e e e rnnenneannanes 153
Publishing Customization Projects......ccccuiciiiiciiimimimiesrasms s i s s s ssassasssnssnsssnsanssnssnsnas 155
To Prepare a Project for PUbliCation....... oo e 155
To Publish @ Single ProjeCl.....ci i e et r e aeaes 156
To Publish Multiple Projects......o.veiiii e 157
Performing the Publication ProCESS.ciiiiiiiii i e e aaeas 157
Validating Customization Code........coouiiiiiiiiiiii e 158
To Publish the Current ProjecCt. ... e s 159
To Publish the Current Project with a Cleanup Operation.........cocviiiiiiiiiiiiiie s 159
To Publish a Customization for a Multitenant Site........coviiiiiiiiiiii e 161
To View a Published Customization.......cooeiiiiiiiii e e nennens 162
To Unpublish @ Customization......c.iiiiiiiii i e e e aaaea 163
Unpublishing Customization Projects........covuiiiiiiiiiiiiii e 164
Managing Items in @ Project.......cciiciiiiiiiiminic i sn s sr s s s ra s ra s n s s r s r s nnnnnnnnannn 165
(O o] T2 =To I Yol ¢ == 1= PP 166
To Add a Page Item for an EXiSting FOrm.....ccoiiiiiiiiii e e 167
To Delete a Page Item from @ Project........oiieieiiiii e ee e 169
To Add a New Custom Form to @ Project.....ccciiiiiiiii e 169
To Delete a Custom Form from @ Project.......o.oeiiiiini e 171
To Delete Items from the Project on the Edit Project Items Page........cccvevvviviiiiiiiinnnns 172
Lo 02 o I= I e T 1[0 o PP 172
Creating WorK I OWS. . e e 174
OISy o] g aTV4=Te BB =) = I O = 1 200
To Add a DAC Item for an Existing Data Access Class to a Project.........ccvevviivinninnnnnn. 200
To Delete @ DAC Item from @ ProjeCt......ccic e e e e 202
To Convert @ DAC Item t0 @ Code Ttem...iiiiiiii i e ae e ees 203
To Convert a DAC Item to an Extension Library........ccooooviiiiiiiiiiiici e 205
To Upgrade Technology for Legacy DAC Customization........ccevviiiiiiiiiiiiciicicieene 206
o T [P 210

| Contents | 4

To Create a Custom Data ACCESS Class......coiviiiiiiiiiiiiiiiiii e naas 211
To Customize an Existing Business Logic Controller........ccvviiiiiiiiiiiiiiiiiie i 213
To Customize an Existing Data AcCess Class......ccvoviuiiiiiiiiiiiiiii e 216
To Add Custom Code t0 @ ProJeCE...ciiuiiiiiii it it a e e aneaeaaes 217
To Add a Customization Plug-In to @ Project........ccoviiiiiiiii e 218
To Delete a Code Item From a ProjecCt....ccciiiiiiiiiiiii i e 220
To Move a Code Item to the Extension Library.......cocoviiiiiiiiiiiii e 220
(OB 1] o] o T 1 == PP 221
To Add a Custom File t0 @ ProjecCt.....coiuiiiiiiiiiiiii e 221
To Update a File Item in @ ProjeCt....ciiiiiiiiiii i i aaeas 222
To Delete a Custom File From @ Project.......cccoviiiiiiiiiiiii e 224
LCT=T o T=T o Tol o 1 1 =T P 225
To Add a Generic Inquiry t0 @ Project......ccoiiiiiiiiiiii 225
To Delete a Generic Inquiry from a Project.....ccooiiiiiiiiii e 227
To Update Generic Inquiry Items in @ Project......coooviiiiiiiiiii s 228
To Navigate to the Generic INQUIry FOrM ..ot e e e s 228
LOU TS} o] 0 0 T =T 0T o 230
To Add a Custom RepOrt £0 @ ProjeCt....ciiiiiiiiiii i i e ae e 230
To Delete a Custom Report from @ ProjeCt.......c.ocieieiiiiiiie e e e 231
To Navigate a Custom Report in @ ProjecCt....ocviiiiiii i e 232
[1= 1=] 0T o = e =S 232
To Add a Dashboard t0 @ ProjecCt....cciiiiiiiiii i e 232
To Delete a Dashboard from @ Project.......coooieiiiiii e 233
To Update Dashboard Items iN @ ProjeCt.....iiiiiiiiiiii i e eae s 233
To Navigate to the Dashboard FOrm.......ccoiiiiiiiiii e 234
1T L= 1 = o N 234
To Add a Site Map Node to @ Project......ccoiiiiiiii s 234
To Delete a Site Map Node from @ Project......cccviiiiiiiiii e 235
To Update a Site Map Node in @ Project.......coooiiiiiiii e 236
To Navigate to the Site Map FOrmM .o s aaeas 236
Database SO PES. .ttt 236
To Add a Custom Table t0 @ ProjecCh...ciciiiiiii i e 237
To Update Custom Tables in the Project........ccoovuiiiiiiiii s 238
To Add a Custom Column to an Existing Table......ccooiiiiiiiiii e 239
To Increase the Size of a Column in an Existing Table........ccocoiiiiiii e 239
To Add a Custom SQL Script to @ Project....ccciiiiiiiiiiii i e 240
To Edit @ Custom SQL SCHiPt. e e 245
To Delete an Sql or Table Item From @ ProjecCt......cciiviiiiiiiiiiiiii i i nie e 246
SY S M LOCAIES . .ttt 246
To Add a System Locale to @ ProjecCt....cciiiiiiiiiiii i 246
To Delete a System Locale from @ Project......co.ouiiiiiiiii e e 248
To Update a Custom System Locale in @ Project.....cccciiiiiiiiiiiiiicici e 249
To Navigate to the System Locales FOrm......ocoviiiiiiiiiiiiii e 249

I Raa]o]o] aulir=TaTe I s To] g Wl Yel=] o =1 To 1 PP 249

| Contents | 5

To Add an Integration Scenario to @ Project......cocoiiiiiiiiiiii 250
To Delete an Integration Scenario from a Project.....ccoviviiiiiiiiiiiiiiiiciici e 251
To Update an Integration Scenario in @ Project......cocviiiiiii i e 252
To Navigate to the Import SCenarios FOrM ..oiiiiiiiiiiiiici i e aeeas 252
1Y 1= L =0 I = =P 252
To Add a Shared Filter t0 @ Project.....cciiiiiiiii i e 253
To Delete a Shared Filter from @ ProjecCt... ..o ieiiiiie i e 255
To Update a Shared Filter in @ ProjeCt....ciiiiriiiiiii i e 256
To Navigate to the Filters FOrm ..o e 256
ACCESS RIGNES. .t e e 256
To Add Access Rights to @ Project......ccoiieiiiiiii 257
To Delete Access Rights from @ ProjeCt......cciveiiiiiiiiiiiiii i i aaees 259
To Update Access Rights in @ Project.......cccoviiiiiiii e 260
To Navigate to the Access Rights by Screen FOrm ...c.ooiiiiiiiiiiiiiiii i 260
L L= PP 260
To Add a Custom WIiKi £0 @ Project....cciiciiiiii i e 261
To Delete a Custom Wiki from @ Project.......o.oiiiiiiiiii e e 263
To Update a Custom Wiki in @ Project.....cciiiiiiiiii e 264
To Navigate to the Wiki FOMM ... 264
N]IS =T VA Tl T = g o o Yo [) = PP 264
To Add a Custom Web Service Endpoint to @ Project.........ccooviiiiiiiiiiiieee 265
To Delete a Custom Web Service Endpoint from a Project.......cccocviiiiiiiiiiiiiiiiiininennnn, 266
To Update a Custom Web Service Endpoint in @ Project..........coovviiiiiiiiiiniiinn 266
To Navigate to the Web Service ENdpoints FOrM......cooviiiiiiiiiiiii i aaeas 267
ANAIYEICAl REPOIES. . et 267
To Add a Custom Analytical Report to @ Project.....ccoviviiiiiiiiiiic e 268
To Delete a Custom Analytical Report from a Project.......c.coovieiniiiiii e 269
To Update a Custom Analytical Report in @ Project.......ccoiviiiiiiiiiiiiiiiiiic i 270
To Navigate to the Report Definitions FOrMouiiiiieiiii e e e 270
(U E=] o I AT}) Tot= Ll T o = P 270
To Add Push Notification Definitions to @ Project.........c.coovieiiiiiiiiiii e 271
To Delete Push Notification Definitions from a Project........cccvviiiiiiiiiiiiiiiiiiiiciiens 271
To Update Push Notification Definitions in @ Project........cccoviiiiiiiiii e 272
To Navigate to the Push Notifications FOrmM......ccciiiiiiiiiiii e 272
BUSINESS VNS . .ot ettt et ettt aaeeaans 273
To Add Business EVENtS t0 @ ProjeCl....iiiiiiiiiiii i it aa e raea s 274
To Delete Business Events from @ ProjecCt........o.oiiiiiniiiiiii e e e 274
To Update Business Events in @ Project......c.coviiiiiiiiiiiii i 275
To Navigate to the Business EVents FOrm.......cioiiiiiiiiiiiiii e 275
1) oY T=IAN o] o] [Tt o (o] 1S RP 275
To Add a Form To Mobile Site Map.....ccouiiiiiiiiiiiii e a s 276
To Update Main Menu of @ Mobile ApP. ..o e 277
To Update a Mobile APP SCrEEN ...c.viiiiiiiii e 278

To Remove a Screen of @ Mobile AP D it e as 279

| Contents | 6

To Reverse Changes Made to Mobile App.....coiiiiiiiiii e 279

U T=T ot BT Y T T=Ta I =] o PP 279
To Add a User-Defined Field to a Customization Project..........ccovvvieiiiiiiiiiiiiiieeeees 280

L L] 0] o o <= PP 282
To Add @ Webhook t0 @ Project......ccovieiiiiiiii e 283
Customizing Elements of the User Interface.......cciciiiiiiiini i insmmi s s s s s s ssassnnssannas 285
L@ 1= o o W o o o o 1P 288
To Develop @ CUSTOM FOrmM. . i i et r et a e e e e e aanens 289
To Create a Custom Form Template.. ..o e 290
To Delete a Custom FOrm from @ ProjeCt.....icciiiiiiiiii i e e aeaes 294
YU o1y L I oY o PP 294
SUDSEITULES fOr ENTry FOMmMS. .ttt aneaaaaes 295
To Replace an Entry Form with @ Custom FOrm.......coooiiiiiiiiiii e 297
To Activate the Replacement of an Entry FOrm......coooiiiiiiiiiiiiiic e 297
To Cancel the Replacement of @an Entry FOrM.......oieiiiiiii e ee e 297
=3 o 1 T oY o 1 298
To Start @ Customization Of @ FOrmM.. it 299
To Delete a Customization Of @ FOrM.....uiuiiiiiii e e e 299
Lo Yo o Ir= T oo T o o 0 I e o1 =1 =T o 300
Lo T AV [o - T € o I @] o) = Y1 o U= PP 300
oo o I= T =1 o T @0 o =11 =T ol 301
ol e Lo - T D 1= (o Yo N = To) PPN 304
oI D1 1t o = T e = [=T 305
Form Container (PXFOrmMViEW). . ittt e e e reeaes 305
To Open a Container in the Screen Editor.......covvviiiiiiii s 307
Lo I Y= = R Oo] g} =11 g =T ol = o] 0 1= Y 307
Lo Yo o = T A= =T B @] o) =1 1= o PP 308
To Add a Box for @ Data Field......oouviiiiiiii i ae e 309
To Add @ Layout RUIE..... e e 311
To Add Another Supported CONTrOl. . .c.viuiiiii i e et rae e 313
To Reorder Child UL Elements. ..o it e e e ee s e en e s e e e snesnneseannerneans 314
To Delete @ Child UL El@mMENnt....ouiiriieiiiiii it et e e e e nas e s e nae e eees 314
(€] e I Oo] a1 w=1 1 o 1= ol (€ C] 5 [) 315
To Add a Column for @ Data Field.....cooviiiiiiii e 317
To Add a Control to the Form View of @ Grid.......ccoeiniiiiii e 318
To Provide Hyperlinks for @ Grid Column......iociiiiiiiii i aae e 320
Tab Container (PXTab) ... e e 321
Tab Item Container (PXTabItem) .. c.oi i e e aea s 323
Dialog BoX (PXSMartPanel)......oiuiiiiiiiiiiiiii e e 324
To Open a Smart Panel in the Screen Editor......ccoviiiiiiiiiiii e 326
Box (Control for @ Data Field)cocie e et e e e e 326
To Select a Box in the Screen Editor.....cooviiiiiiiiii e e e 328

B Lo Y=t A= T = To) Qo 01T o 328

To Change the Type Of @ BoOX..uiiiiiiiiiiiii i e aneas 328

| Contents | 7

Layout Rule (PXLAYOULRUIE)....cuieiiiiiii ittt st e ae e s e e s 330
To Select a Layout Rule in the Screen Editor....ccoccviiiiiiiiiiiicc e 334
To Set @ Layout RUle Property.....ccviiiii i 334

L L= I 2 =T A =T I P 335

Group BOX (PXGIOUPBOX) ... uiueueiuiititiueitatitiaeisessesaersssstsssesssasassesasasaesaesranarnernss 336
To Open a Group Box in the Screen Editor......coviiiiiiiiiiiii e 337
To Create a Group Box for @ Drop-Down Field.........coeiuiiiiiiiiiii e 337
TO Set @ Group BoOX Prop ety ..ot i e e et e e raneeas 339

Label (PXLAbEI) ... e 339

Radio Button (PXRadioBULLON) .. .uiiiiiii i et e e e aeanes 340
To Bind a Radio Button to a Value in the List of a Data Field...........c.ccoiiiiiiiiiiiiinns 341

10 o] I 20 q = T Lo o) PSP 341
To Use a Button in @ Dialog BOX......iuuiuiuiueiiiiiiiiiieii st riirss s es s sesen s e saenans 342
To Use a Button to Invoke @ Method........covviiiiiiiiiiii e e 344

Java Script (PXJIavaSCripl) ... e 345

Toolbars, Action BUttons, and MENUS......iiiiiiiiiiiii i i it raa e raaeernaeens 345

(@ 1o aT=T ol @00} o) o /o] B Y7 o =N 346

Customizing BusSiNeSS LOGIC . iiuiumiumiiatimmsmmanmiesiasmssmssmsassassssmssssassassssssssssssasssnssnssansanssnssnsnns 347

(D= Lo A ool = G = 1= 347
To Start the Customization of @ Data AcCesS Class.....ccvvviiiiiiiiiiiiiiiiiiine e 348
To Add a Custom Data Field.....cioeiieiiiii it eaneneannens 350
TO Create @ NEW DAC. . i et s st a e e s e e ae s 352
TO Create @ DAC EXEONSION. ..ttt e e e e s e e e s e s e seannereeaneaneannens 353

[= T =] o PP 354
To Customize a Field on the DAC LeVel.. ..o e e e 356
To Customize a Field on the Graph Level......coiiiiiiiiii s 357
TO Set @ Default ValUe. ..o e 358
To Change the Label of @ Field. ..o e 360
To Make a Field Mandatory.......coviiiiiii e e 362
To Customize the Table of a Selector Field.......coviiiiiiiiiii e 363
To Add an Event Handler for @ Field......ccoiiiiiiiiii e 364
To Provide Multi-Language Support for @ Field......ccoiiiiiiiiiiiici e 365

L] =T o1 368
To Start the Customization of @ Graph.....ccoiiiii i s 370
To Create @ Custom Graph......oco i 373
TO Add @ NEW MEM DI . ettt et e s s e s e e e e s e s e aeeernenens 374
Lo 22 [a = T X [o 374
To Add an Event Handler. ..o e e e e e s e nees 376
To Override an Event Handler.....ovui i e e s e e s e e e e ennens 378
To Override a Virtual Method.o e 379

L= o= YA T 383
TO OVerride @ Data VieW. ..o et e s e e s e s e e e e e e e e rananens 384
To Add a Data View Delegate......coouviiiiiiiiiii e 384

To Override a Data View Delegate......cciiiiiiiiiiiiiiiii e e eaea 386

| Contents | 8

2 o o T o 386

To Start the Customization of @an ACHION......ociiiiii e 387

To Override an Action Delegate Method.........coooiiiiiiiiii 389

To Rename an Action BUttON......ccviuiiiiiiii i 390

To Disable or ENable @n ACHiON....c.viiiiii i e e e e e e e nnennens 391

TO Hide OF ShOW @n ACHION. ..ttt e e e et e e ae e eeerees 392
Customizing the Database Schema.........c.cciciiiirirrs e s v s s e s e a 395
To Create @ CUSTOM Table. .. s r e e e e anans 395

To Create a Custom Column in an Existing Table.........ccooviiiiiiiie 397

To Create an EXEension Table.......ooiiiiiii e 397
Requirements for an Extension Table Schema.........cocoiiiii i 398

DAC Extension Mapped to an Extension Table......cccoiiiiiiiiiiiic e 399

To Add a Custom SQL Script to a Customization Project..........cccoviiiiiiiiiiiiiiiiees 406
Integrating the Project Editor with Microsoft Visual Studio........cccvimimiciiiiiisnicnie i v nnannes 408
TOo WOrk With @ Code Tem. ..t e e s e s e r e rnn e e e e rnennes 409

To WOrk with Data ACCESS ClasSES....uiuiiuiitiiiiitiit ittt seaeaae e raaaeenereaesaereaens 409

To Debug the Customization Code.......ouiiiiiiiiiiiii e 410

To View and Debug Acumatica Source COde. . ..iiuiiiiiiiiiiiiii i i e e naeaas 411

To Synchronize Code Changes with the Customization Project..........ccooviiiiiiiiiiiinienns 413

To Create an EXtension Library.....ccoooiiiiii i e 414

L0 Y= 1 I T =P 414
Integrating the Project Editor with a Version Control System..........cccccviiminiciisnsnn e snanns 416
To Save a Project to @ Local FOIer.....cuiiiniiiii e 416

To Update the Content of a Project from a Local Folder.......cociiiiiiiiiiiiiiiicicii e 418

To Configure @ CoNNECLION StriNG.....o.iuii i e e e e e e aenenens 418

To Integrate the Customization Project Editor with Source Control.........ccooovviiiiiiiinnnen, 419
Troubleshooting Customization......c.cvciiiiriii i v s s s r i n s 420
To Discover the Method That Has Thrown an EXception.......ccoveiiiiiiiiiiiic i 420

To Write to the Trace Log from the Code.......ouiuiiiiiiiiii e ee e 421

To Log All EXCEPLIONS T0 @ Fil..iiiriiiii i e e e aeaas 424

To Debug the Customization Code.......ouiiiiiiiiiiiii e 425

To Validate @ BQL Statement. ..o e 426

To Measure the Execution Time of @ BQL Statement.......ccoovvviiiiiiiiiiiiiiiiii e 430

To Discover the Cause of Performance Degradation........ccooviiiiiiiiiiii i 434

To Force the Platform to Execute Database SCriptS........cciieiiiiiiiniiiiiii e e 438

To Resolve Issues While Upgrading a Customized Website........ccooiiiiiiiiiiiiiiiiiciiciea 439

To Validate the Compatibility of the Published Customization with a New Version Before an

L7 o | = T'c [= 440

To Resolve an Issue Discovered During the Validation.........ccoooiiiiiiiiiiiiiiiiiccis 442

To Use the Technical Release Notes to Find the Breaking Changes............ccovviviinnnnn. 445

To Use an Ignore List for the Validation Errors.......cciiiiiiiiiii i 446

o 10T 5 = 448
Examples of User Interface Customization.......ccviiiiiiiiiiiiiiiii e 448

Dragging, Moving, and Deleting UI Controls and Grid Columns..........cocvviviiiiiiiinnnnnnne, 448

| Contents | 9

Adding INPUEL CONErOlS. ... i e a e aeeas 455
YXe o[1aTe IVANa V=] i< I o] o) o] [T PR 458
Adding Columns t0 @ Grid.....oiuiiiiiiii e 465
Modifying Columns iN @ SeleCEOr. . ..ot e 468
Examples of Functional Customization.........ocoe i e ee e 472
Adding Data Fields. .ot i et 473
Customizing DAC AttribULES.uee i e 483
MOodifying @ BLC ACKION. ...ttt e 486
Modifying @ BLC Data@ ViEW. ...ceiiiiie it r e e e e e e e e e e e e e e e nenanens 489
Declaring or Altering a BLC Data View Delegate.......c.cciiiiiiiiiiiiiiiiiiiicic e 491
Extending BLC Initialization........ooviiiiiiii e 493
Altering the BLC of @ Processing FOrmM....c.ciiiiiiiii i e aae e aes 496
Adding or Altering BLC Event Handlers........cooviiiiiiiiiii e 498
Altering BLC Virtual Methods......cciiiiiiii s 508
Customizing the Release Process for CA DOCUMENTS....o.iitiiiiiiiiiiie i ieieeieeeaeanens 514
Defining @ WoOrK IOW. .. i e e e 520

L] Lo Tt T 541

| Copyright | 10

Copyright

© 2020 Acumatica, Inc. ALL RIGHTS RESERVED.

No part of this document may be reproduced, copied, or transmitted without the express prior consent
of Acumatica, Inc.
11235 SE 6th Street, Suite 140 Bellevue, WA 98004

Restricted Rights

The product is provided with restricted rights. Use, duplication, or disclosure by the United States
Government is subject to restrictions as set forth in the applicable License and Services Agreement
and in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 or subparagraphs (c)(1) and (c)(2) of the Commercial Computer Software-Restricted
Rights at 48 CFR 52.227-19, as applicable.

Disclaimer

Acumatica, Inc. makes no representations or warranties with respect to the contents or use of this
document, and specifically disclaims any express or implied warranties of merchantability or fitness for
any particular purpose. Further, Acumatica, Inc. reserves the right to revise this document and make
changes in its content at any time, without obligation to notify any person or entity of such revisions or
changes.

Trademarks
Acumatica is a registered trademark of Acumatica, Inc. HubSpot is a registered trademark of HubSpot,
Inc. Microsoft Exchange and Microsoft Exchange Server are registered trademarks of Microsoft

Corporation. All other product names and services herein are trademarks or service marks of their
respective companies.

Software Version: 2020 R2

| About the Customization Guide | 11

About the Customization Guide

This guide describes the scope of the Acumatica Customization Platform and provides guidelines on
how to use the platform capabilities for the customization of Acumatica ERP.

The guide is intended to answer the following questions:

How to start developing a customization project? (Getting Started)
How does the Acumatica Customization Platform work? (Acumatica Customization Platform)

How to create, open, update, delete, publish, unpublish, export, and import a customization
project? (Managing Customization Projects)

How to create, add, update, and delete each type of item (such as screens, data access classes,
code, files, and reports) in a customization project? (Managing Items in a Project)

How to publish a single customization project or multiple project for a site with single tenant or
multiple tenants? (Publishing Customization Projects)

How to create a custom form and customize the look and behavior of an existing form of
Acumatica ERP? (Customizing Elements of the User Interface)

How to create custom code or extensions for an existing data access class or business logic
controller? (Customizing Business Logic)

How to customize an existing table or create a custom table in the database? (Customizing the
Database Schema)

How to use Microsoft Visual Studio to develop the customization code? (Integrating the Project Editor
with Microsoft Visual Studio)

How to integrate with TFS, Git, or another version control system? (Integrating the Project Editor with a
Version Control System)

What can I do to solve an issue that occurs while I am developing or applying a customization?
(Troubleshooting Customization)

Which examples can I use to enhance my understanding of the customization tasks I will perform?
(Examples)

| Introduction | 12

Introduction

By using the tools and capabilities of the Acumatica Customization Platform, you can change the user
interface and business logic of Acumatica ERP, as well as build custom application modules that can
be added to the system. The following diagram illustrates the different types of changes that you can

make to the system within the scope of the customization process.
27
1 :]

Consultants Developers

Customization Tools

- Configuration forms

e e E = Y [e " [o N
: . . ' | = Customization | Visual Studio :
1 @ Visual designer tools:] : . ‘o Dd i
|k) P i templates

i -Web-based Gl buider | | Project Editor P e e ;
! - Acumatica Report Designer: D pmmm e -
i P i

1 1 1 1

1 1 1 1

Customization Items

non-programming objects programming objects

Generic

User-Defined

Fields Code libraries

Business Events

i Inquiries Site map Access Rights . . ASPX pages .
! ImportIE)_(port Mobile site map Langugge b Business logic !
] Scenarios translations = controllers !
! Wikis Web se_rwce Dashboards oo Data Access :
] endpoints | Classes [
| Reports Shared filters B o LRl i
| notifications ' ! objects :

Figure: Customization of Acumatica ERP

As a value-added reseller (VAR), you can deliver end-user customization that might be very specific
to each particular customer. At this level, you might want to add custom reports and data filters, and
configure generic inquiries for users. These changes do not involve programming unless you also want
to modify the business logic and the user interface of the application. For more information on the
web-based Generic Inquiry builder and the Acumatica Report Designer, see Managing Generic Inquiries
and Acumatica Report Designer Guide.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5737bca9-aebb-446d-9e1a-bc5fcfad6797
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=24b77bbe-0eb3-4d37-9350-071ae5743571

| Introduction | 13

As an independent software vendor (ISV), you can develop vertical solutions and add-ons to the core
functionality of the system. At this level, you might want to modify the business logic and the UI of
the application, which you can do by using the Acumatica Customization Platform. To develop custom
application modules, you can use the API that is provided by the Acumatica Framework.

As an original equipment manufacturer (OEM), you can build your own cloud ERP products based on
high-level application objects of Acumatica ERP and the underlying Acumatica Framework technology.
This type of customization may involve intensive changes at all levels of the system: modifications of
the business logic and UI, development of custom modules, and report building.

| Getting Started | 14

Getting Started

This chapter explains how to start developing a customization project and guides you to various useful
chapters about the developing process.

Before you start developing a customization project, we strongly recommend to take
the T300 training course. There you will learn how to set up and start using Acumatica
Customization Platform.

To Start Developing a Customization Project:

1.

2.

Make sure you have the prerequired knowledge described in Knowledge Pre-Requisites.

Review System Requirements for Acumatica ERP 2020 R2 in the Acumatica ERP Installation Guide.
Prepare your operating system according to Preparing for Installing Acumatica ERP in the same guide.
Prepare the environments as described in To Prepare an Environment.

In the application instance, assign a Customizer role to those who will work on the customization
project. See To Assign the Customizer Role to a User Account for details.

If you haven't used version control, set up version control as described in Integrating the Project Editor
with a Version Control System. If your team already has a customization project and uses version
control:

a. Create an empty customization project with predefined name.

This step is needed because you can load customization project files from version control only
in scope of an existing project.

b. Download the project from version control.

You are ready to develop your customization project.

Implementing Customization
As a rule, the process of resolving a customization task includes the following steps:

Explore the original code of your Acumatica ERP application instance. This step is executed in the
development environment, which must be the same as the production environment. See Exploring
the Source Code for details.

Develop the customization project. This step is also executed locally in the development
environment, which must include all customizations that are included in the production
environment. See To Develop a Customization Project for details.

Perform final testing. In this step, you test the newly developed customization project in the
staging environment, which can be a local copy of the customized production environment. The
staging environment must include a copy of the production database. See To Perform Final Testing of
a Customization for details.

Deploy the customization project. This step must be executed in the production environment. See
To Deploy a Customization Project for details.

https://openuni.acumatica.com/courses/development/t300-acumatica-customization-platform/
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=a8d5d39d-513a-4f93-b484-a95eb33103a1
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=146f817e-8d83-4022-bee3-df2fcd1bfa05

| Getting Started | 15

The version number of Acumatica ERP used in the development, staging, and production
environments should be the same. If they are not, before deploying and publishing

a project on the production instance, you should update the application instances to

the same version. If the production application instance has been updated (or will

be updated soon) to a particular version, you should update the development and
staging instances to the target version and repeat all testing steps. Then, if the tests
are successful, you should again create the deployment package to upload it to the
production environment.

Also, keep in mind that to carry out the final testing (with the production database) and
deployment stages, you must be registered as an internal user with the Customizer role
assigned.

In this part

Knowledge Pre-Requisites

To Prepare an Environment

To Assign the Customizer Role to a User Account
Exploring the Source Code

To Develop a Customization Project

To Perform Final Testing of a Customization

To Deploy a Customization Project

Asking Questions

Knowledge Pre-Requisites

To be able to work on a customization of Acumatica ERP, you should have the following knowledge of
technology used in Acumatica Customization Platform.

Knowledge of technology and programming language used in Acumatica
Customization Platform

You should have the following knowledge of technology and programming language:

Proficiency with C# language, including but not limited to the following language features: classes,
OOP, custom attributes, generics, delegates, anonymous methods and lambda expressions.

Knowledge of the main concepts of ASP.NET and Web Development: application state, debugging
ASP.NET applications using Visual Studio, client and server-side development, Web Forms
structure, Web Services.

Experience with SQL Server: SQL queries (where clause, aggregates, sub-queries), database
structure (primary keys, data types, denormalization).

Experience with IIS: configuration and deployment of ASP.NET websites, configuring and securing
I1S.

| Getting Started | 16

The following courses might be useful to get the required knowledge:
® Programming in C#

® Querying Microsoft SQL Server 2014

® Developing Microsoft SQL Server 2014 Databases

® Visual Studio 2017: Web Development

Prepare an Environment

As you perform a customization task, you usually need to use three different sites:

o A development environment: Your local environment, on which you program and debug the
customization code.

e A production environment: The target environment of the customer's system that must be
customized.

e A staging (or pre-production) environment: A copy of the production environment, in
which you will test the solution before applying it to the production environment. The staging
environment can be created on your local system.

All environments are prepared in the same way as described in the following instruction.
To prepare an environment:
1. Install Acumatica ERP.

2. In the Acumatica ERP Configuration Wizard that appears, select Deploy New Application
Instance to create a local instance of Acumatica ERP for the development environment.

3. On the Database Configuration page (Step 2 of 8 of the process of deploying a new instance),
create a new database for the development environment.

4. On the Company Setup page (Step 3 of 8), specify the desired settings for the company.

5. On the Instance Configuration page (Step 6 of 8), as the Local Path of the Instance, specify
a path outside of the C:\Program Files (x86) and C:\Program Files folders to avoid an issue
with permission to work in these folders. For example, you could enter C:\AcumaticaSites
\MyProject.

The system creates a new Acumatica ERP instance, adds a new company, and loads the selected
data. Use the following initial credentials to log in to the new company:

e Login: admin

e Password: setup
Change the password when the system prompts you to do so.

6. Log in to Acumatica ERP.

| Getting Started | 17

To Assign the Customizer Role to a User Account

Specialists who will work on customization projects should be assigned the Customizer role in the
application instance that is to be customized and tested, as well as in the production application that
should be updated with the customization project. With this role assigned, the specialists can use the
customization tools and facilities of the Acumatica Customization Platform, and upload and publish
customization projects.

A user with the Administrator role has full access rights in the system and can assign the Customizer
role to the needed users by using the Users (SM201010) form.

The default admin user has the Administrator role.

If you have the Administrator role, do the following to assign the Customizer role to a user account:
1. Navigate to Configuration > User Security > Manage > Users.
2. In the Login box, select the user account to which the Customizer role should be assigned.

3. Make sure the user account is not a guest account (in the Summary area) and is not assigned to a
guest role (on the Roles tab).

4. On the Roles tab, select the check box for the Customizer role, and click Save on the form toolbar.

The screenshot below shows the Johnson user account assigned to the Customizer role. The
account is not a guest account and is not assigned to any guest roles.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=834cc181-97fa-4db4-a7e0-3eaba142c166

| Getting Started | 18

o Acumatica ORGANIZATION FINANCE DISTRIBUTION CONFIGURATION _

Commeon Settings User Security Row-Level Security

User Security 4« & NewVYork ~ Users

Document Management

Email

Search Ca) =+ [} 1€ 4 > p| LOGIN AS USER MEMBERSHIF
+ MANAGE ADD ACTIVE DIRECTCRY USER
I Users
User Roles * Login I Johnson pl Statu:
User Types Guest Account
Access Rights By Screen
Access Rights By Role Roles | Statistics | IP filter | External Identities | Personal Settings
-~ EXPLORE & = x]
Access History
e E Selected Role Name Role Description
MR O Administrator System Administrator
Certificate Replacement 0 Ancnymous Anonymous
~ PRIN Consultant Consultant
User List > I Customizer System Customizer I
Role List Employee Employee
Access Rights By Screen Entry Entry Clerk
Access Rights By Role Field-Level Audit Role that can access Field-Level Audit
» CONFIGURE Financial Financial Controller
Security Preferences Guest External Guest Role

Internal User
MAIN Users
Management
OfficeAdministrator
Portal Admin
Portal User

Encryption Certific ates

ReportDesigner

Allows the user to change personal settings, a...
MAIN Users

General Management

Office Administrator

Access to portal configuration

Portal user

Report Designer

0000 dodOdEOOOO RO

Sales Sales Manager
Wiki Admin Wiki Administrator to set other users access ri...
Wiki Author Role provides access rights for creating Wiki a...

Figure: Assigning the Customizer role to a user account

After you save your changes, the user gets full access for customization of the system as soon as the
user refreshes a form in the web browser.

User Access Rights for Customization

A user account must be granted the Customizer role to have the appropriate access needed for
customization of Acumatica ERP.

The default admin user account is granted this role. Therefore, if you are a developer who is going to
work with a customization project, you can install an application instance of Acumatica ERP on the local
computer and use the admin user account to start doing the customization. For testing and deployment
of the customization, you should also assign the Customizer role to the appropriate user accounts on
the test instance of the application and on the production instance. On the production instance, only
the users who manage the deployment of customization packages should be granted the Customizer
role.

The users who will be granted the Customizer role must be Acumatica ERP internal users. You cannot
assign the Customizer role to a user if either of the following conditions is true (or if both are true):

| Getting Started | 19

The user has a guest account—that is, the user account has the Guest Account check box
selected on the Users (SM201010) form.

The user is assigned to a guest role. A guest role has the Guest Role check box selected on the
User Roles (SM201005) form. The default guest roles are Anonymous, Guest, and Portal User.

A user account that is assigned to the Customizer role has access to the following objects of the
system:

The Customization Menu and Element Inspector, which give this user the ability to inspect the element
properties on every form of Acumatica ERP and to add items to a customization project.

The Customization Projects (SM204505) form, which is used to manage and publish multiple
customization projects. (See also Customization Projects Form.)

The Customization Project Editor, which is used to manage and develop the content of a selected
customization project.

Exploring the Source Code

Before you start to customize an Acumatica ERP application instance, you should analyze your business
requirements to identify the changes in business processes that must be done and to identify the
application objects for the customization. We recommend that you learn about the structure of the
involved webpages by exploring the .aspx pages, the code of the business logic controllers (BLCs), and
the data access classes (DACs) that are used within the BLCs.

You can use the Source Code (SM204570) form (see also Source Code Browser) to explore the original
source code of the application for the following purposes:

To learn about the structure of the webpages involved in the customization

To understand which data views are bound with the customized form areas

To analyze the code that provides the business logic for a form to be customized
To find and analyze the data views used on a customized webpage

To understand which data access classes the form being customized is based on

To learn the attributes of the DAC fields and the relations between DACs

This section contains instructions on how to do the following:

To Explore the C# Code of a BLC

To Explore the C# Code of a DAC

To Explore the ASPX Code of a Page

To Find a Customization of the ASPX Code

To Find Source Code by a Fragment

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=834cc181-97fa-4db4-a7e0-3eaba142c166
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c2879f3c-3739-430a-b02b-c225f5480966
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2e58bb02-40c0-47c6-8cea-78607cccc4e1

| Getting Started | 20

To Explore the C# Code of a BLC

If you need to customize the business logic for a form of Acumatica ERP, you have to explore the
original source code of the business logic controller (BLC) that provides the business logic for the form.
The goal of exploring the code is to discover the data views, methods, and event handlers of the BLC.

To do this, perform the following actions:

1. On a selected form, click Customization > Inspect Element, as item a of the screenshot below
shows, to activate the Element Inspector.

2. Click a control or area of the form to open the Element Properties Dialog Box for the control or area.
See item b on the screenshot.

3. In the dialog box, click Actions > View Business Logic Source (item c).

£ Yogifon - Invoices [NOTES ~ ACTMITIES FILES HELP ~

- 4+ - W K < > 3 Acw_,‘{}; REPORTS ~

Inspect Element({Ctr+Atl+Click)

ype Invoice - * Customer SUB1 - Subscriber 1 £
Reference Nbr.: | 000004 o * Terms 30D - MNet 30 days o]
Status Balanced * Due Date 8/29%/2015 ~
Hold Element Properties

Credit H
Control Type Data Source

* Date 7/30/201}

Data Class
* Post Period 07-2015
) Business Logic: SOlnvoiceEntry
Customer Order
Document Details | Tax Detai CUSTOMIZE | ACTIONS ~ CANCEL Billing Address | Applications | Totals
Customize Business Logic
c + £ X rooorwoo e oTTTET T
Customize Data Fields
B O *Branch sim Phone Shipment Order (o] uantity UOM Unit Discount 0
Card ID Number Nbr. Type N View Aspx Source Price Percent
> 0 YOGIFON 000004 S0 0 1.00 PIE... 10.000C 0.000000
0] YOGIFON 000004 S0 o 2.00 | HO... | 0.0000 | 0.000000

Figure: Selecting the grid container for the customization

4. In the Source Code (SM204570) form (see also Source Code Browser), which opens for the BLC, view
the source code in the work area, and use the navigation pane to find a method or event handler
by its name and open it.

Also, you can open the original BLC code in the Source Code browser in the following ways:

e From the Code Editor, by clicking View Source on the page toolbar

® From the Screen Editor, by clicking View Source on the toolbar of the Events tab

To Explore the C# Code of a DAC

If you need to customize the attributes of a data field for an existing control or create a new field for a
custom control on a form, you may need to explore the original source code of the appropriate DAC.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2e58bb02-40c0-47c6-8cea-78607cccc4e1

| Getting Started | 21

To do this, perform the following actions:

1. On the selected form, click Customization > Inspect Element, as item a of the screenshot
below shows, to activate the Element Inspector.

2. Click a control or area of the form to open the Element Properties Dialog Box for the control or area.
See item b on the screenshot.

3. In the dialog box, click Actions > View Data Class Source (item c).

£ Yogifon ~ Invoices [NOTES ~ ACTMITIES FILES HELP ~

~ 4+ ®§ B~ IK < > 3 ACTIONS~ REPORTS~ Q VIEED) Select Project
§ Inspect Element (Ctri+Ati+Click)
Invoice -

Type ¥ * Customer o £ B Edit Project
Reference Nbr: | <NEW> £; * Terms o A Man
Status On Hold * Due Date - Cash Discount 0.00
¥ Hold Element Properties b4
Credit Hold
* Date 6I7/2016 - Caontrol Type: Drop Down
i 06-2016 fo] Data Class: ARlnvoice
Customer Order. Data Field: DocType
O)) “iew Marne: Docurment o _
Document Details | Tax Details | Commi idress | Applications | Totals
Business Logic: SOlnvaiceEntry
(& ADD ORD
B O * Branch SIM Card 1D F SIIETTAIEZE | AETTONE CrEEL nventory Transaction Descr.
[

Customize Business Logic

View Data Class Source...

Figure: Selecting the grid container for the customization

4. On the Source Code (SM204570) form (see also Source Code Browser), which opens for the DAC,
view the data field declarations in the work area.

Also you can open the original DAC code in the Source Code browser in the following ways:
e From the Data Class Editor, by clicking View Source on the page toolbar

e From the Screen Editor, by clicking View Source on the toolbar of the Attributes tab

To Explore the ASPX Code of a Page

If you need to look closely at the data views that provide data for control containers on a form or to
see the corresponding webpage structure—that is, the layout of the containers and the types and
properties of the controls—you may need to explore the original ASPX code of the webpage.

To explore this code, perform the following actions:

1. On the selected form, click Customization > Inspect Element, as item a in the screenshot
below shows, to activate the Element Inspector.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2e58bb02-40c0-47c6-8cea-78607cccc4e1

| Getting Started | 22

2. Click a control or area of the form to open the Element Properties Dialog Box for the control or area.
See item b on the screenshot.

3. In the dialog box, click Actions > View ASPX Source (item c).

£ Yogifon - Invoices [NOTES ~ ACTMITIES FILES HELP ~
o + § D K < > > ACTIONS- REPORTS- QVIE[Q) Select Project
Inspect Element (Ctri+Atl+Click)

Type Invoice - * Customer Lo £ B Edit Project
Reference Nbr: | <MEW> 0 * Terms o A ar s
Status On Hold * Due Date - Cash Discount 0.00
@ «_ [@Hold * Cash Discount... -
v < Credit Hold * Project X - Non-Project Code. P
* Post Period 06-2016 2
Customer Order Caontrol Type: Form Wiew
m Tax Details | Comn pata Class ARInvoice f\ddress | Applications | Totals
Wiew Marne: Docurment
c A 21 Business Logic: SOlnvoiceEntry
B O * Branch SIM Card 1D Inventory Transaction Descr.

CUSTOMIZE [ACTIONS~ | CANCEL D

o™

Figure: Selecting the grid container for the customization

4. On the Source Code (SM204570) form (see also Source Code Browser), which opens for the form,
view the original ASPX code of the page in the work area.

5. If you need to look closely at the data views that provide data for control containers on the current
form, perform a browser search to find the DataMember string. The DataMember property is used to
bind a control container of a form to a data view defined in the business logic controller (BLC) of
the form. The property value is the name of the data view.

Each DataMember property value can correspond to any data view name of the BLC. Any
container (for example, PxTab, PXGridLevel, Or PXFormView) must be bound to a data
view declared within a BLC. Any data view except for the main data view can be used
by an unlimited number of containers. The main data view must be bound to a single
container.

To Find a Customization of the ASPX Code

If the ASPX code for a form is customized, to explore changes in the code, you use the Screen Editor of
the Customization Project Editor, which you access by using the Customization Projects (SM204505) form.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2e58bb02-40c0-47c6-8cea-78607cccc4e1
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5

| Getting Started | 23

The Source Code browser can display only the original ASPX code of a webpage.

To detect whether a form is currently customized, do the following:

1. Open the form in the browser.

2. Click Tools on the title bar of the form.
If the form has been customized, the screen ID has the CST. prefix.

Once you know the form has been customized, to find the customization of the ASPX code of the form,
perform the following actions:

1. Determine the published customization projects that contain changes for the form as follows:

b.

Navigate to System > Customization > Manage > Customization Projects

On the form, view the list of the customization projects (see the following screenshot)

Q Acumatica oreanization Finance pistRiBuTion IRl 11/3/2016 6:48AM ADMIN
IManagement ntegration Automation Customization
Customization 4 © Revision Two HQ ~ Customization Projects CUSTOMIZATION ~ HELP =
Search C Ll + X * UNPUBLISH ALL IMPORT » EXPCORT VIEW PUBLISHED
IANAGE B [| Publist * Project Name Leve | Screen Names Description grea[eu Last
» WIANALC y Modified
I Customization Projects on
. . >] EcommerceSe. .. IN202500 admin 1072712016
Generic Inguiry . . e
Liste 22 Entrv Porme O HideSSN CR303010 admin 7/18/2014
Iste s Eniry 0 POstatus PO301000 admin | 7M18/2014
Pivot Tables
O Stocklmage admin 8/13/2014
D_aShdes O Stockltemimages AR303000]S0301000,50303000 admin 10/27/2016
Site Map O YogiFon AR303000]AR 409001 $0301000.S0303000 admin 117312016
Portal Map

Filters
Figure: Viewing the list of customization projects

In the Screen Names column, for the published customization projects (those for which the
Published check box is selected), scan the form IDs to identify the projects that contains
changes for this form.

2. To explore a published project that contains changes for this form, perform the following actions:

Click the name of the project to open it in the Customization Project Editor.
In the navigation pane of the editor, click Screens to open the Customized Screens page.

On the page (see the screenshot below), click the form ID in the Screen ID column to open
the Screen Editor for the form.

| Getting Started | 24

File Publish Extension Library Source Control

YogiFon 4 Customized Screens

» SCREENS c = X + V4 ADD SCREEN ~

Data Access

E Screen 1D Title Is New Last Modified By Last Modified
Code Oon
Files (5) >[AR3030.00 | Customers admin 10/27/2016
Generic Inquiries (1) AR 40.90.01 Subscription Usage Details v admin 10/27/2016
Reports (1) 50.30.10.00 | Sales Orders admin 11/3/2016
Site Map (3) S50.30.30.00 | Invoices admin 127/2016

DE Scripts
System Locales

Impot/Frpot Seenarins (1)
Figure: Viewing the Customized Screens page of the Customization Project Editor

d. In the Screen Editor, select the View ASPX tab item to view the customized ASPX code of the
node that is currently selected in the Control Tree

e. Explore each node of the tree to find the changes, which are highlighted in yellow, as the
following screenshot shows.

Screen Editor: AR303000 (Customers)

& B PREVIEWCHANGES — ACTIONS ~

(& -~ MAIN PROPERTIES LAYOUT PROPERTIES ATTRIBUTES EVENTS ADD CONTROLS VIEW ASPX
» DataSource: CustomerMaint

» 3 Form: BAccount . R _ .
<px:PXTabItem Text="Billing Settings">
- @ Tab: CurrentCustomer <Template>
a6 I Inf <px:PXRadioButton runat="server" ID="CstRadicButtond" />
e eneral ino <px:PXLabel runat="server" ID="CstLabel3" />

~ [@ Billing Settings <pxz:PXCheckBox CommitChanges="True" SuppressLabel="True" ID="chkIsBillContSameAsMain" runat='

<px:PXButton runat="server" ID="CstButton2" Text="Test Button" />

~ 3 Column : A o . B " N eponn:
<px:PXFormView Caption="Test Caption" ID="BillContact" runat="server" DataMember="BillContact
& RadioButton: CstRadioE <Template>
9 Label: CstLabel3 <px:PXLayoutRule runat="server" ControlSize="XM" LabelsWidth="SM" StartColumn="True" ></g
’ i <px:PXTextEdit ID="edFullName" runat="server" DataField="FullName" ></px:PXTextEdit>
5 Same as Main <px:PXTextEdit ID="edAttention" run ' DataField="Attention" ></px:PXTextEdit>
(9 Button: Test Button <px:P¥MaskEdit ID="edPhonel" runat= DataField="Phonel" ></px:PXMaskEdit>
X <px:PXMaskEdit ID="edPhone2" runat= DataField="Phone2" ></px:PXMaskEdit>
~ [Form: BillContact <px:PXMaskEdit ID="edFax" runat=" DataField="Fax" ></px:PXMaskEdit>
» (& Column <px:PXMailEdit ID="edEMail" runat DataField="EMail™ CommitChanges="True" ></px:}
<px:PXLinkEdit ID="edWebsSite" " DataField="WebSite" CommitChanges="True" ><,
» B Group </Template>
» (3 Group </px:PXFormView> N
&6 <px:PXLayoutRule runat="server" GroupCaption="Bill-To A s" StartGroup="True" ></px:PXLayc
roup <px:PXCheckBox CommitChanges="True" SuppressLabel="True "chkIsBillSameAsMain" runat="ser:
» [E Column <px:PXLayoutRule runat="server" ></px: youtRule>
<px:PXFormView ID="BillAddress" runat="server" DataMember="BillA " RenderStyle="Simple"
(P Column = -

- <Temnlate>

Figure: Viewing the customization of the ASPX code

To Find Source Code by a Fragment

In an instance of Acumatica ERP, a repository with the original C# source code of the application
is kept in the \App Data\CodeRepository folder of the website. You can use the Source Code
(SM204570) form to find the source code within the repository by a code fragment. (For more
information, see also Source Code Browser.)

To do this, perform the following actions:

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2e58bb02-40c0-47c6-8cea-78607cccc4e1

Click the File in Files tab item.

Click Find to start the procedure.

| Getting Started | 25

Navigate to System > Customization > Explore > Source Code.

In the Find Text box, enter (by typing or by copying and pasting) a code fragment.

The results of the code search are displayed on the form, as the following screenshot shows.

Q Acumatica

ORGANIZATION

FINANCE

DISTRIBUTION

SYSTEM 6/23/2016 3.22PM ADMIN@COMPANY

Management

I‘IEQ\GUCI‘
Customization

Search

- MANAGE
Customization Projects
Generic nquiry
Lists as Entry Points
Pivot Tables
Dashboards
Site Map
Portal Map
Filters

- EXPLORE

4

|| Source Code

Customization

Automation

Yogifon ~ Source Code

CUSTOMIZATION HELF +

|

(5]
Screen Aspx | Business Logic | Data Access | Find in Files | Website Sources
Find Text PXGenericIngGrph
Bl Name Line | Content

PX.Data\Cache\Model.cs
PX.Data\DescriptorAttributes\SelectorA ..
PX.Objects\CM\DescriptoriAttribute.cs
PX.Objects\CM\Descriptor\Attribute.cs
PX.Objects\CM\DescriptoriAttribute.cs
PX.Objects\CR\Descriptoriindexer.cs
PX.Objects\CS\DescriptoriAttribute.cs
PX.Objects\CS\DescriptoriAttribute.cs

i

3120

|| _Graph.GetType() == typecf(PXGraph) || _Graph.GetType{) == typecfiPXGenericlnqGrph) || _Graph....

1578 [if (sender. Graph. GetType() == typeof(PXGenericIngGrph)) |

TIT i

sender. Graph. GetType{) == typecfiPXGenericIngGrph) || sender.Graph.GetType() == typecf(PXGrap...

if (
if (sender. Graph. GetType{) == typecf(PXGenericIngGrph) || sender. Graph.GetType() == typeof(PXGrap...
if (sender. Graph. GetType{) == typecfiP XGenericIngGrph) || sender. Graph GetType() == ty peof(PXGrap
if {

sender. Graph. GetType{) I= typeof(PXGraph) && sender.Graph.GetType() |= typeof(PXGenericIngGr..
if (sender Locate(e Row) == null && I(sender. Graph is PXGenericIngGrph))
sender. Graph. GetType() == typeof(PXGenericingGrph)) retum;

w, sender.Rowld):

tValue (key, out pair))

else
{

row = =.Raw;

Ainnikev] = new XevValusFair<nhient. honlwirvaw. falss=):

Figure: Viewing the results of the code search in the Source Code browser
The form displays the results in the following elements:

e A list of the locations of the specified code fragment in the repository files

e A text area with the source code of the location selected in the list

and scrolling the code in the text area.

Explore the use of the code fragment in the original source code by selecting a location in the list

To Develop a Customization Project

During the development stage, you develop the customization, which involves implementing your
planned changes by using the framework and tools provided by the Acumatica Customization Platform.

To

| Getting Started | 26

We recommend that a separate application instance be used for each developer working on
a single project or group of projects. Multiple developers should not work simultaneously
with the same project or projects. The customization scope should be divided among

the developers on a separate areas so each developer works with a separate application
instance. The created customization projects can be sequentially imported into the
customer's production environment and applied as if all the divided tasks had been resolved
as a single common one.

Follow this recommended workflow during the development process:
1. In your application instance, create a new customization project or select an existing one.
2. Open the project in the Customization Project Editor.
3. Perform the customization steps, such as:
e Add a Ul element. See Customizing Elements of the User Interface for details.

e Extend the business logic. See Customizing Business Logic and Customizing the Database Schema for
details.

e Customize the database. See Customizing the Database Schema for details.
After completing each step, validate the changes you have performed.
4. Debug your customization project. See To Debug the Customization Code for details.
5. Publish the project. See Publishing Customization Projects for details.
6. Test the customized application instance.

You develop and maintain customization projects by using the Customization Tools of Acumatica
Customization Platform. The platform provides the mechanisms to develop and publish customization
projects. After the customization project is ready, you prepare the deployment package to distribute
the customization project to the staging or production environment (see Deployment of Customization for
details).

Perform Final Testing of a Customization

After you finished developing your customization, you test it in the staging environment, which can
be a local copy of the production environment. The staging environment must include a copy of the
production database.

To apply the customization to the staging environment, you have to do the following:

1. Export the deployment package of the customization project in the development environment. See
To Export a Project for details.

2. Prepare the staging environment in accordance with System Requirements for Acumatica ERP 2020 R2.

3. In the staging environment, install a version with the same Acumatica ERP version humber that
is used in the production environment (see Installing Acumatica ERP for details). All further actions
must be performed in the staging environment.

4. Copy the deployment package file to the system where the staging environment was prepared.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=a8d5d39d-513a-4f93-b484-a95eb33103a1
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=7ec733ea-ffe6-4dd8-b5fd-2526beb5d4ef

8.

9.

| Getting Started | 27

Start the application instance.

Import the project. See To Import a Project for details.

Explore the project content. Ensure that the project items contain appropriate data.
Publish the project. See Publishing Customization Projects for details.

Test the customization.

If you have developed a complex project for an application with multiple customization projects
published and you can't address some issues that have emerged during this stage, try to perform the
original installation with all previous updates, and then upload the saved content of the current project
to the staging environment.

To Deploy a Customization Project

After you tested your customization project, you deploy it to the production environment.

To apply the customization to the production environment, perform the following actions:

1.

Export the deployment package of the customization project in the development environment. See
To Export a Project for details.

Copy the deployment package file to the file system where the production environment is located.
Import the project in the production environment, as described in To Import a Project.

Publish the project in the production environment to apply the customization. See Publishing
Customization Projects for details.

Related Links

To Detect Whether a Customization Project Is Applied to the Application

Asking Questions

Acumatica provides several pages, where you can ask your questions about customization process.

Where To Get Support

Stack Overflow - Use it to ask all possible question and share your knowledge.
Git Hub - Check Acumatica Git Hub to get free examples.
Technical Blog - Google topics and questions that has been answered already.
Partner Portal - Access portal to get updates and support.

Your Acumatica support provider.

http://stackoverflow.com/questions/tagged/acumatica
https://github.com/acumatica
http://asiablog.acumatica.com/
https://portal.acumatica.com/

| Acumatica Customization Platform | 28

Acumatica Customization Platform

To customize Acumatica ERP, you can use the following parts of the Acumatica Customization Platform:

e The web-based Customization Tools to customize the UI and business logic and to gather the
changes into a distributable package that can be deployed to and applied on a target system

e The Customization Framework to develop customization code that changes the business logic of
Acumatica ERP

Since an instance of Acumatica ERP consists of the website and the database, you can use the platform
to customize both of these components. The website customization can include custom DLLs, custom
and modified ASPX files, and files with custom C# code that modifies the UI and business logic of the
product. The database customization can include changes in both the data and the schema of the
database.

This part describes in detail the technologies implemented in the Acumatica Customization Platform.
In This Part

® Customization Project

® Customization Tools

® Customization Framework

Customization Project

When you use the tools provided by the Acumatica Customization Platform, the platform uses a
customization project as a container that holds each change you make during the customization.

An Acumatica Customization Project is a set of changes to the user interface, configuration data, and
functionality of Acumatica ERP. As the following diagram shows, a customization project might include
any of the following:

e New custom forms and modifications to the existing forms of Acumatica ERP
e Custom C# code
e Custom database scripts

e Custom or modified reports (Acumatica Report Designer reports, generic inquiries, and analytical
reports)

e Changes in the application configuration (site map changes, new system locales, integration
scenarios, shared reusable filters, access rights of roles to forms, changes of wikis) that are saved
in the database for the current tenant

e Additional files that you need for Acumatica ERP customization

| Acumatica Customization Platform | 29

Database File System
Schema = Custom files —
. - -~ new DLLs, custom ASPX pages, and other
new tables, new columns in existing tables, =™, files required for the customized product

and other new database objects

' ASPX file changes -

Data | | Customization | changes in the look and behavior of the user
project interface

custom or modified reports and T
changes in the application configuration

(modified site map, user access roles, | | C# files with customization code |-
locales, and other new items stored in the
database) - changes in the business logic

Figure: Content of a customization project

You develop and maintain customization projects by using the tools of the Acumatica Customization
Platform (see Customization Tools for details). This platform provides the mechanisms to develop,
upgrade, publish, unpublish (that is, cancel publication), export, and import a customization project.
The content of a customization project is stored in the database of the Acumatica ERP instance.

To perform any customization of the UI or to extend the business logic, you have to create a new
customization project or modify an existing one. (See To Create a New Project and To Select an Existing
Project for details.)

Once you have selected a customization project for development, the customizations you perform
will be added to this project. The customization project holds each change you make during the
customization; however before the project is published, the changes exist only in the project and are
not yet applied to the product. To apply the content of a customization project to Acumatica ERP, you
have to publish the project.

When you need to apply the developed customization to a target environment, you should add all
the changes and additional files to the customization project and export the project as a deployment
package—a complete redistributable customization package. Then in the target environment, you
import the package and publish the project.

You can create as many customization projects as you need and independently develop and maintain
each customization project for a specific customization task.

In This Chapter

® Types of ltems in a Customization Project

® Deployment of Customization

® Simultaneous Use of Multiple Customizations

® Customization of a Multitenant Site

| Acumatica Customization Platform | 30

Types of Items in a Customization Project

When you customize an instance of Acumatica ERP by using the Customization Project Editor, the platform
keeps all items of a customization project as records in the custObject table of the database. Each
record in this table keeps the data of an item, including the XML code of the item in a specific field.
When you add an item to the customization project, the platform adds the new record to the table,
creates the XML code of the item, and stores the code within the content field of the record.

You can view the content of an item of a customization project by using the Iltem XML Editor of
the Customization Project Editor.

XML Code of the Items

Different item types have XML code that is structured differently. For example, if you create the
UsrPersonallID bound custom field in the CR.Contact DAC (which is mapped to the soorder table)
and the control for the field on the Customers (AR303000) form, the customization project might
contain the following new objects:

e An item with the following XML code to add the column to the DB table.

<Table TableName="Contact">
<Column TableName="Contact" ColumnName="UsrPersonalID" ColumnType="string"
AllowNull="True" MaxLength="15" DecimalPrecision="2"
DecimalLength="15" IsNewColumn="True" IsUnicode="True" />
</Table>

e An item with the following XML code to add the field to the DAC.

<DAC type="PX.Objects.CR.Contact">
<Field FieldName="UsrPersonalID" TypeName="string" MapDbTable="Contact"
TextAttributes="#CDATA" StorageName="AddColumn">
<CDATA name="TextAttributes">
<! [CDATA[[PXDBString (15)] [PXUIField (DisplayName="Personal ID")]]]></CDATA>
</Field>
</DAC>

e An item with the following XML code to add the control to the form.

<Page path="~/pages/ar/ar303000.aspx" ControlId="5"
pageSource="...binary content of the page...">
<PXFormView ID="DefContact" ParentId="phG tab Items#0 DefContact"
TypeFullName="PX.Web.UI.PXFormView">
<Children Key="Template">
<AddItem>
<PXTextEdit TypeFullName="PX.Web.UI.PXTextEdit">
<Prop Key="Virtual:ApplyStylesheetSkin" />
<Prop Key="ID" Value="CstPXTextEdit2" />
<Prop Key="DataField" Value="UsrPersonalID" />
<Prop Key="CommitChanges" Value="True" />
</PXTextEdit>
</AddItem>
</Children>

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=652929bc-9606-4056-aa6e-0c2d1147171b

| Acumatica Customization Platform | 31

</PXFormView>
</Page>

Note that the items in these code blocks differ by type (Table, DAC, and Page) and structure.
Item Types Within a Customization Project
All the possible types of items in a customization project are summarized in the following table. The

value in the Can Be Unpublished column identifies whether the changes introduced by the item type
are reversed when you unpublish the customization project. For details on which changes are reversed,

see Unpublishing Customization Projects.

Item Type Object Description Form for Edit- | Can Be Un-
(XML Tag, if ing published
differs)
Page A custom form, [@ For a custom form, the con- | Screen Editor Yes
or changes tent of the form, and the
to an existing path to the .aspx file of the
form form (the path is required for
the system to detect changes
of the file on the file system
in the development environ-
ment and to deploy the file
while publishing the project)
e For an existing form, the lay-
out change instructions and
the action change instruc-
tions that have to be applied
by the platform to the ASPX
code of the form during the
project publication
Automa- A condition A data set containing a list of Condition Editor | Yes
tionScreenCon- | that changes conditions for a customized
dition the business screen
logic of a cus-
tomized screen
AUScreenAc- An action that [A data set containing the prop- | Screen Editor Yes
tion changes the erties of an action
business log-
ic of a cus-
tomized screen
AUScreenNavi- | An action that | A data set containing the prop- | Screen Editor Yes
gationAction changes the erties of an action
business log-
ic of a cus-
tomized screen
and navigates
to another
screen

| Acumatica Customization Platform | 32

Item Type Object Description Form for Edit- |Can Be Un-
(XML Tag, if ing published
differs)
Automa- A field to which | A data set containing the prop- | Screen Editor Yes
tionScreenField | conditions are |erties of a field
applied
DAC Changes to an | The data required to create the | Data Class Editor | Yes
existing data corresponding extension for the
access class original data access class
Table Changes to the | A definition of the custom Table Editor No
schema of an columns added to a table for
existing data- |bound custom fields created in
base table the appropriate DAC
Code (Graph) |Custom C# e A custom DAC, which has the | Code Editor Yes
code PX.Data.IBqulTable base
class
e A custom BLC, which has the
PXGraph<> base class
e An extension for an existing
DAC, which has the pxcache-
Extension<> base class
o An extension for an exist-
ing BLC, which has the px-
GraphExtension<> base
class
® A customization plug-in,
which has the Customiza-
tionPlugin base class
e Any custom class, which has
no or any base class
File Custom file The path to a custom file and File Editor Yes
the GUID of the file content in
the file storage of the database.
The path is relative to the web-
site folder; new custom forms
are added to the project as cus-
tom files.
Genericln- Custom or cus- | A data set of a custom or cus- Generic Inquiry No
quiryScreen tomized gener- | tomized generic inquiry form (SM208000)
ic inquiry form
Report Custom A data set of a custom report Acumatica Re- [No

Acumatica Re-
port Designer
report

created by using the Acumatica
Report Designer

port Designer

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5388c653-eac4-4f43-b769-163cd037ab09

| Acumatica Customization Platform | 33

Item Type Object Description Form for Edit- |Can Be Un-
(XML Tag, if ing published
differs)
Dashboard Custom or cus- | A data set of a custom or cus- Dashboards No
tomized dash- |tomized dashboard (SM208600)
board form
SiteMapNode Custom or cus- | A data set of a custom or cus- Site Map No
tomized site tomized site map node (which (SM200520)
map node includes information about the |form
location of the custom form or
report); you should create a
custom site map node for each
custom form or report included
in the customization project
Sql Custom SQL A custom database table defin- | SQL Script Editor | No
script ition or custom SQL script that
has to be executed while the
customization project is pub-
lished
Locale Custom locale |[A data set of a custom system | System Locales |No
locale, which is a set of para- (SM200550)
meters that defines the lan- form
guage and other local prefer-
ences—such as how to display
numbers, dates, and times in
the user interface—for a group
of users
XportScenario | Custom inte- A data set of a custom export Import Scenar- No
gration sce- or import scenario used to per- |ios (SM206025)
nario form data migration between a |form and Ex-
legacy application and Acumati- | port Scenarios
ca ERP (SM207025)
form
SharedFilter Custom shared | A data set of a custom reusable | Filters No
filter shared filter created on a pro- (CS209010)
cessing or inquiry form form
ScreenWith- Custom ac- A data set of the custom access | Access Rights No
Rights cess rights to a | rights of roles to a form, down | by Screen
form to the control of form elements, | (SM201020)
such as buttons, text boxes, form
and check boxes
WikiArticle Custom wiki A data set of a custom wiki and | Wiki No
module all the articles created within (SM202005)
this wiki form
EntityEndpoint | Custom web A data set of a custom web ser- | Web Service No
service end- vice endpoint Endpoints
point (SM207060)

form

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=04a14a8d-72c8-47b7-9da6-0722c561e7df
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=44b364ef-7810-400b-b1c6-8f471c249401
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6b40927b-3288-4ccd-bd7f-786fb246b9ac
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=254e8347-6bac-469d-8f14-dbe383740475
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=254e8347-6bac-469d-8f14-dbe383740475
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=deef5450-afa4-41bf-9eb6-9c47eeca0336
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=deef5450-afa4-41bf-9eb6-9c47eeca0336
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ed46ae19-b15e-4383-87de-2f068f42ef2d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=8ee2b0b2-2d66-4e0c-80ce-ac825690c36a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=8ee2b0b2-2d66-4e0c-80ce-ac825690c36a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=99e5f44c-69b3-469f-857a-a333882d110b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c620452-c947-4bd6-a9eb-2a8fc04226be
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c620452-c947-4bd6-a9eb-2a8fc04226be

| Acumatica Customization Platform | 34

Item Type Object Description Form for Edit- |Can Be Un-
(XML Tag, if ing published
differs)
ReportDefini- Custom analyt- | A data set of a custom analyt- | Report Definitions | No
tion ical report ical report, including the data (CS206000)
of the predefined sets of rows, |[form
columns, and units
PushNotifica- Push notifica- [A data set that includes the Push Notifications | No
tion tion configura- | push notification destination (SM302000)
tion and the data query that defines | form
for which data changes Acumat-
ica ERP sends notifications
BpEvent Business event | A data set of a business event Business Events | No
(SM302050)
form
MobileSiteMap | Mobile app A script for adding or changing | Mobile App Editor | Yes
screen a mobile app screen
CSAttribute User-Defined A data set of a user-defined User-Defined Yes
Field field with a list of screens on Fields Editor
which the field is displayed

Deployment of Customization

Once you have finished a customization project, you can export the project as a deployment package
that can be then imported and published as a customization on the end-user systems, as shown in the
following diagram.

Developer System Target System

Acumatica ERP Acumatica ERP

Result of the
Customization

Result of the
Customization

4 4

= Customization Platform :
i

Deployment
Package

Customization Platform

~EE

Customization
Project

Customization
Project

v

Copy

Deployment
Package

Figure: Deployment of customization to target systems

A deployment package is a redistributable . zip file that includes the full content of a customization
project. A deployment package consists of the project.xml file and any custom files that you have
added to the project, such as external assemblies and custom ASPX pages. You can manually edit the
project.xml file in an XML Editor in the file system. However we recommend that you modify the
project items in the easiest and most reliable way: by using the Customization Project Editor.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=3ab2cb25-bcec-4a3e-b095-e4ce351875b5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ba35054f-3485-415e-9785-da1195cb708b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d83a15de-e962-4b94-9f5f-51f501a96b47

| Acumatica Customization Platform | 35

When the project is finished, you can download the deployment package to deploy the customization to
the target system (see To Export a Project for details). If you have finished the project, we recommend
that you publish the project and test the customization before downloading the deployment package,
to ensure that you have no issues. Also, you can download the package to have a backup copy of the
customization project you are working on.

You can import a deployment package to work with the customization project or to publish the final
customization on the target website (see To Import a Project for details).

In MySQL, the maximum size of one packet that can be transmitted to or from a server
is 4MB by default. If you use MySQL and want to manage a customization project

with the size that is larger than the default maximum value, you have to increase the
max_allowed packet variable in the server. The largest possible packet size is 1GB.

Simultaneous Use of Multiple Customizations

With the Acumatica Customization Platform, you can simultaneously manage multiple customizations
by using the Customization Projects (SM204505) form, also described in Customization Projects Form. You
can publish multiple customization projects to an Acumatica ERP instance at once.

When you publish more that one customization project, the platform merges the content of all projects
into a single customization project. If different projects include customization for the same object, the
platform tries to merge the changes by using the following approach:

e If the changes can be merged, the platform merges them. For example, the platform can merge
different properties of the same control in an ASPX page.

e If the changes cannot be merged, as with the same report being in different customization
projects, the platform stops the process and displays an error message.

On the Customization Projects form, you can specify an optional number (level) for each customization
project, assigning the highest number to the most important change. The level can be used to resolve
conflicts that arise while you are publishing customization projects if multiple modifications of the same
objects of an Acumatica ERP instance are merged. As a result, the customization from the project with
the highest level is added to the merged project.

Multilevel customizations might be required when you develop an off-the-shelf customization solution
that is distributed in multiple editions, or applications that extend the functionality of Acumatica ERP or
other software based on Acumatica Framework in multiple markets. You may have a customization that
contains a solution common to all markets as well as multiple market-specific customizations, each of
which is deployed along with the base customization. Moreover, you can later apply a high-level project
to customize deployed solutions for the end user.

However if you have multiple customizations of the same object and have no market requirements
to keep multilevel customizations, we recommend that you merge the customizations into a single
customization project, as described in To Merge Multiple Projects.

Customization of a Multitenant Site

The data of each tenant that uses the same instance of Acumatica ERP is isolated in the database.

Because a customization project is stored in the database, by default, the project data belongs to the
tenant in which the project is created or imported. When the project is published, the customization

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5

| Acumatica Customization Platform | 36

applies to both the website files and the database. Because a customization project can contain
different types of items, the platform uses a specific approach to apply each type of items to the
website, database schema, and database data.

Initially the Page, DAC, Table, SQL, and Code items of a customization project are stored in the
database for a single tenant. However, while the project is being published, the platform creates
certain files for these items in the website folder or changes the database schema, if required. The new
files and the changed database schema are available from other tenants. As a result, the listed item
types are applied for multiple tenants.

During the publication of the project, for each File item, the platform creates the file in the file system,
so File items are shared for multiple tenants as well.

For example, suppose you have logged in to the MyTenant tenant and have a customization project
that contains only items of the Page, DAC, Table, Code, and File types. After you have published
the project, the customization is applied to each tenant in the instance of Acumatica ERP. But the
customization project data is still available only in the MyTenant tenant.

However if you publish a customization project that contains items of other types (such as generic
inquiries and access rights of roles to forms), the customization does not apply to the website files

or to the database schema. This data is stored only in the database, and the application server uses
the data from the database at run time. Because this data is tenant-specific, it is available in only the
tenant where it was published. Moreover, for all tenants that use the same site, on the Login form
and in the About Acumatica box, you can see that the website is customized, but you won't see

any published project on the Customization Projects (SM204505) form. This form, also described in
Customization Projects Form, displays the customization projects that have been uploaded to the current
tenant; therefore, no projects are displayed if they have been uploaded and published under another
tenant.

You can publish multiple customization projects for multiple tenants at once. On the Customization
Projects form, you can select the customization projects that you need to publish for multiple tenants
and use the Publish to Multiple Tenants action to open the Publish to Multiple Tenants dialog
box. You then select the required tenants and apply the selected customization projects to the selected
tenants. (See To Publish a Customization for a Multitenant Site for details.)

The following table shows the differences in applying a customization to a multitenant website if the
customization that has been published from another tenant is shared or not shared for your tenant.

Question Customization Customization
published for a published for a
multitenant site | multitenant site
from another from another
tenant is shared |tenantis NOT
for your tenant |shared for your

tenant
Is the customization applied to the application instance (see | Yes Yes
To Detect Whether a Customization Project Is Applied to the Appli-
cation for more information) for your tenant?
Do changes in the file system (Page, DAC, and Code items) |Yes Yes
exist for your tenant?
Do changes of the database schema (Table and SQL items) |Yes Yes

exist for your tenant?

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5

| Acumatica Customization Platform | 37

Question

Customization
published for a
multitenant site

Customization
published for a
multitenant site

from another
tenant is NOT
shared for your

from another
tenant is shared
for your tenant

tenant
Do custom reports and configuration (such items as Report, | Yes No
SiteMapNode, and SharedFilter) exist for your tenant?
Does the project list on the Customization Projects form con- | No No
tain the project? (That is, can you access the customization
project data from your tenant?)
Is it necessary to import the customization package to ac- Yes Yes
cess the customization project data from your tenant?
After the customization package is imported for your ten- Yes No

ant and added to the list on the Customization Projects form,
is the project displayed in the list as an already published
one?

Validation of a Customization Project

A customization project must meet various technical requirements to integrate with and operate within
the Acumatica ERP application.

Acumatica ERP Capabilities to Validate and Check Customization Project
Items

To help to develop a customization project that complies with this technical requirements and to help
to check the project for compliance with this requirements Acumatica ERP and Customization Project
Editor provide the following functionality:

1. Definition of a prefix for the project. All project item names must start with this prefix. You can
define this prefix in the Customization Project Editor. For details on defining the project prefix, see
To Manage Prefixes in a Customization Project.

2. Validation of one customization project or multiple customization projects, causing the platform to
check the following criteria:

e The database schema changes included in a customization project are valid

e The customization project doesn't replace or modify the files distributed as part of the standard
Acumatica ERP application.

e The data types of a custom database column correspond to all data access class (DAC) fields
bound to it.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5

| Acumatica Customization Platform | 38

These types of validations should be applied to ISV solutions only.

You can perform this type of validation on the Customization Projects (SM204505)
form by using the Validations menu on the form toolbar. In the menu, you

select the Validate Highlighted Project or Validate Multiple Projects menu
command, depending on whether you want to validate one project or multiple projects
correspondingly.

3. Validation of the data consistency in published customization projects, which verifies the
correspondence between the data types of DAC fields and field states generated by field attributes
at run time. To perform this validation, you invoke the menu commands on the Validations menu
on the form toolbar of the Customization Projects (SM204505) form as follows:

e To verify that the data type of a DAC field matches with the field states generated at run time,
select Validations > DAC Field Types.

e To determine whether there are any PxAttributeFamilyAttribute violations on a DAC field,
select Validations > DAC Attributes.

e To verify that DAC fields with lookup boxes defined for a segmented key properly handle
foreign key segments by means of pXDimensionAttribute, select Validations > Lookup
Definitions.

4. Analysis of custom files included in the customization project.

You can analyze custom files (assemblies) included in the customization project to verify that the
customization project doesn't replace or modify files that are distributed as part of the standard
Acumatica ERP application. To do this, in the main menu of the Customization Project Editor, select
Extension Library > Analyze Referenced Assemblies. A CSV is downloaded with all references
made in the project's custom files.

5. Generation of a Workbook with Project Items in Excel format. You can generate this workbook,
which is in Excel format, in the Customization Project Editor by selecting File > Export Project
Items Workbook.

The generated workbook contains a list of solution objects and integration scenarios grouped by
the following types:

e Site map nodes
e Mobile site map nodes
e BLCs and BLC extensions
e DACs and DAC extensions
e Push notifications
e Import or export scenarios
Customization as Part of an ISV Solution

The validation of a customization project is especially important when a customization project is part of
an independent software vendor (ISV) solution.

| Acumatica Customization Platform | 39

To see technical requirements for a project in the ISV Software Certification Program guidelines, go
to Acumatica Partner Portal, open the Partner Program section, and click the Acumatica ISV Solution
Certification link in the left pane.

Format of the Validation Results

If any errors or warnings have been detected during project validation, the validation results have the
following format:

® <CustomizationProjectName>
® <CustomizationRuleName>
® <PathToTheDLL> | <ProjectltemType> | <NameOfTheProjectltem>

List of rules broken by the specified item.

The <PathToTheDLL> field is optional. It appears only if a d11 file included in
the project is analyzed.

Customization Tools

Depending on the complexity of the particular customization task, you can employ any the tools
implemented in the Acumatica Customization Platform.

For every type of customization, you can use the tools described in the following topics:
® Customization Projects Form
® Customization Menu
® Element Inspector
® Customization Project Editor
® Screen Editor
e ASPX Editor
® Data Class Editor
® Code Editor
® File Editor
® SQL Script Editor
e XML Editors
® Project XML Editor
® /tem XML Editor

® Source Code Browser

| Acumatica Customization Platform | 40

Customization Projects Form

The Acumatica Customization Platform stores the data of the customization projects that were created
or imported in the database of the instance of Acumatica ERP.

You can manage customization projects on the Customization Projects (SM204505) form, which is shown
in the following screenshot.

o Acumatica ORGANIZATION FINANCE DISTRIBUTION SYSTEM B 11/11/2016 4:03 AM ADMIN
Management ntegration Automation Custemization
Customization 4 & Revision Two HQ - Customization Projects CUSTOMIZATION HELP =
Search (& L + X * UNPUBLISHALL IMPORT » EXPORT VIEW PUBLISHED
P — E [] | Published * Project Name Level Screen Description Created By Last

~ MANAGE Names Modified On

|| Customization Projects | 0 EcommerceSept17 IN202500 admin 1002712016
Generic Inguiry O HideSSN CR303010 admin 7/18/2014
Lists as Entry Points O POstatus PO301000 admin 7182014
Pivct Tables O Stocklmage admin 8/13/2014
Dashboards O Stockltemlmages AR303000 admin 10/27/2016
Site Map O v YogiFon AR303000... admin 11/3/2016
Portal Map
Filters
Pivet Tables

~ EXPLORE
Source Code

Figure: Viewing the Customization Projects form

On this form, you can add a new customization project, open a customization project for editing

in Customization Project Editor, publish any number of customization projects, cancel the publication

of customization projects, export a customization project as the deployment package, import a
customization project from an existing deployment package, and delete a customization project. (See
Managing Customization Projects for instructions.)

Published Customization Page

The Published Customization page of the Customization Projects (SM204505) form shows the merged
XML code of the customization projects that are currently published. On the Published Customization
page, you can:

e View the code.
e Download the deployment package that contains the code.

The following screenshot shows the merged project, which contains customizations introduced by two
different projects for the forms with the CR303010 and PO301000 identifiers.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5

| Acumatica Customization Platform | 41

ORGANIZATION FINANCE DISTRIBUTION CONFIGURATION SYSTEM HELP 3 414/2015 5:09AM ADMIN

Customization 4 0 * 0
Published Customization
Search
| Save lo database | | Download Package | Upload Package || Choose File | No file chosen

<Customization level="g" description="">
<Page path="~/pages/cr/cr3@3010.aspx"| pageSource="1Vrrbos4Ev+cAvafBEFdT3dxHulur+cU58hxa2uehud2xRE0BNDXN ey qF JUEL+H+8£3ht5D]
PXTextEdit Datarield-"TaxRegistrationID” ParentId="phG_tab_Items#0_edTaxRegistrationID" TypeFullName="PX.Heb.UI.PXText

<Prop Key="TextMode" Value="Password” />

Generic [nquiry

Lists as Entry Points </PXTextEdit>
- </Page>
Pivat Tables [<Page path="~/pages/po/poseleee.aspx"| pagesource="7T1rbts2spIbyYP+D4ENTLACSZqNNZOMKmzh ITIAS3NEILTbiIngs] 1EjS265nMdeTP3L1E0H
Dashboards <PXTab ID="tab" Parentld="phG_tab" TypeFullliame="PX.Web.UI.PXTab">
<Children Key="Ttems">
Site Map <AddItem>
Portal Map <PXTabItem TypeFulllame="PX.Web.UI.PXTabItem">
<Prop Key="Text" Value="Shipping Status® />
Filters <Children Key="Template">
. EXPLORE <AddTtem>
<PXLayoutRule TypeFulllame="PX.Web.UI.PXLayoutRule">

Source Code <Prop Key="Virtual:ApplyStylesheetSkin" />

<Prop Key="ID" Value="Rule&" />

<Prop Key="LabslsWidth" Value="M" />

<Prop Key="CantrolSize" Value="M" />
</PXLayoutRule>

</AddItem>

<AddItem>

Figure: Viewing the merged XML code of the published customization projects

The Published Customization page includes a toolbar and a text area for viewing XML code. The text
area displays the XML content of a merged customization project. This area is not used for editing the
XML code.

The toolbar buttons of this page are described in the following table.

Button Description

Save to database | Is not used.

Download Pack- |Downloads the customization.zip file, which includes the full content of the
age merged customization project. You can use this file as a joint deployment pack-
age to work with the customization project or to publish the final customization
on the target website. See To Merge Multiple Projects for details.

Upload Package |Is not used.

Choose File Is not used.

Customization Menu

You can access the Customization menu on the form title bar of an opened Acumatica ERP form if you
have the Customizer role. (For details, see To Assign the Customizer Role to a User Account.)

You click Customization on the form to access the customization-related menu commands associated
with the form, as shown in the following screenshot.

| Acumatica Customization Platform | 42

Yﬁ? Favorites

Q?D Data Views

@ Time and Expenses
Finance

S Banking

@ Payables

@ Receivables

Sales Orders

Shipments 3 NOTES ACTIVITIES ~ FILES BUSINESS EVENTS TOOLS ~
“ o) + | 1< ¢ N 51 Select Project ..
Inspect Element (Ctri+Alt+Click)
ACTIONS ~ REPORTS ~
Manage User-Defined Fields
Shipment Nbr: <NEW> o Customer: Edit Project..
Type: Shipment . = Warehouse ID: Manage Customizations...
Status: On Hold Workgroup: Show state diagram
Operation: - Qwner: je]
= Shipment Date: 8/24/2020 ~ Shipped Quant... 0.00
Control Quantity: 0.00
Shipped Weight: 0.000000
Shipped Volume: 0.000000
Packages: 0
Package Weight: 0.000000
Diescription:
DOCUMENT DETAILS ORDERS SHIPPING SETTINGS PACKAGES

Figure: Customization menu commands

You can use the following customization-related menu commands.

Command

Description

Select Project

Opens the Select Customization Project Dialog Box, which you use to select an exist-
ing customization project or to specify the name of a new project for all modifi-
cations that you are going to perform.

Inspect Element

Launches the Element Inspector, so that you can select a UI control on the current
form and open the Element Properties Dialog Box for the selected control. You use
the dialog box to inspect and customize the control.

You can use the keyboard shortcut Ctri+Alt+Click to inspect elements
on pop-up windows and dialog boxes.

If you have selected a customization project, all the modifications that you initi-
ate in the inspector will be added to this current project. Otherwise, the inspec-
tor opens the Select Customization Project dialog box.

Manage User De-
fined Fields

Opens the Edit User Defined Fields (CS205020) form, which gives you an opportu-
nity to select user-defined fields for the current form from the previously defined
list of Managing Attributes and User-Defined Fields. For details on how to add user-
defined user fields, see To Add User-Defined Fields to a Form.

Edit Project

Opens the Customization Project Editor for the currently selected customization
project.

Manage Cus-
tomizations

Opens the Customization Projects (SM204505) form.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5f89ca96-f953-49c9-829f-08a3a22947db
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=9ac91432-d70f-4f00-bc0a-f5569d76cdfd
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=810b4857-2ffe-4764-aebf-4d657334f0be
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5

| Acumatica Customization Platform | 43

Command

Description

Show State Dia-
gram

Opens the State Diagram window, which contains the workflow diagram for the
selected form and the Customize Workflow button. If you click this button,
the system opens the Select Customization Project Dialog Box. In the dialog box,
you select an existing customization project (or click New and then specify the
name of the customization project to be created in the New Project dialog box)
and click OK. This opens the Customization Project Editor so that you can mod-
ify the workflow for the current form. For details, see To Add a Workflow and To
Modify a Workflow by Using the Workflow Visual Editor.

The modification of workflows by using the Workflow Visual Editor is
supported for only certain forms; see To Modify a Workflow by Using the
Workflow Visual Editor for the list of forms.

Select Customization Project Dialog Box

You use the Select Customization Project dialog box to select an existing customization project or to

create a new project.

You open the dialog box, shown in the following screenshot, in the following ways:

® From the Customization menu of a form—by selecting the Select Project command

e From the Customization menu of a form—by selecting the Edit Project command if there is no
currently selected customization project

e From the Element Properties Dialog Box, which you access by clicking the Customize button if there
is no currently selected customization project

Select Customization Project

Project Name

o

OK CANCEL NEW...

The dialog box contains the following UI controls.

Control

Description

Project Name

Provides the ability to select an existing customization project. The box contains
a selector, which you can use to find an existing customization project by the
name or by a part of the name.

OK Confirms your selection and exits the dialog box.
Cancel Cancels the operation and exits the dialog box.
New Opens the New Project Dialog Box, where you can create a new project.

If you have selected a customization project, all customizations that you initiate will be added to this
current project until you select another project or sign out.

| Acumatica Customization Platform | 44

New Project Dialog Box

You use the New Project dialog box, shown in the following screenshot, to create a new customization
project.

New Project

Project Name

oK CANCEL

The dialog box contains the following UI controls.

Control Description

Project Name Provides the ability to enter a name of the customization project.

The customization project name is used as the namespace if you cre-
ate an extension library from the project. The first character of the
name must be a letter or the underscore symbol.

OK Creates an empty customization project with the specified name and closes the
dialog box.

As soon as you click the OK button, the platform creates a new cus-
tomization project in the database.

Cancel Closes the dialog box.

Element Inspector

You can use the Element Inspector for the following purposes:
e To view the following reference information for any visual element on a form:
e Control type
e Data access class (if applied)
e Data field (if applied)
e Data view (if applied)
e Business logic controller
e Action name (if applied)
e To view the source code of the ASPX page that contains the UI control for the inspected element
e To view the source code of the data access class that provides data for the inspected element

e To view the source code of the business logic executed for the inspected element

| Acumatica Customization Platform | 45

e To start the customization of the inspected element

For a form, you can activate the Element Inspector from the Customization Menu. If you need to activate
the inspector for a pop-up panel, dialog box, or other UI element that opens in modal mode and makes
the Customization menu unavailable for selection, you can press Control-Alt.

After the inspector is activated, the I"\"? cursor indicates that you can select a Ul element to inspect.
If you select an element, the Element Inspector opens the Element Properties Dialog Box.

Element Properties Dialog Box

The Element Inspector opens the Element Properties dialog box, shown below, when you have
selected a UI element to inspect.

Element Properties X

Cornitral Type: Segment hask
Data Class: Customer
Data Field: AcctCh

“Wigne hlarme: Baccount

Buzines= Logic: Customerbdaint

CUETOMIZE

ACTIONS = CANCEL

In this dialog box, you can perform the following:

e Inspect properties of the Ul element selected on the form

e With a single click, launch the Screen Editor for the form to customize the inspected element

e Select an action to do any of the following:

e Launch the Code Editor to develop a graph extension for the business logic controller (BLC)
bound to the form

e Launch the Data Class Editor for the data access class (DAC) that contains the data field of the
inspected element to customize the DAC

® Open the Source Code Browser to view the following:

e The ASPX code of the inspected page

e The source code of the BLC bound to the form

e The source code of the DAC that contains the data field of the inspected element

The Element Properties dialog box contains the following controls.

Control

Description

Control Type

The type of the inspected UI element.

Data Class

The name of the DAC to which the field for the inspected element belongs.

Data Field

The string value of the pDataField property of the inspected UI element. (It cor-
responds to the name of the field in the DAC.)

| Acumatica Customization Platform | 46

Control

Description

View Name

The name of the data view that provides data for the inspected UI element.

Business Logic

The name of the BLC bound to the form.

Action Name

The name of the action of the inspected toolbar button.

Customize A button that launches the Customization Project Editor, which opens on the
Screen Editor page for the form that contains the inspected element.

Actions Opens the Actions menu with commands to customize or revise the element
source code using the Customization Project Editor (to customize) or the Source
Code browser (to view).

Cancel Cancels the operation and closes the dialog box.

The Actions Menu

The Actions menu, shown in the screenshot below, contains commands you can invoke to customize
or revise the code of the following:

® The inspected element

e The current ASPX page on which the element is selected

e The DAC to which the field for the inspected element belongs
e The BLC (graph class) that is bound to the form

Control Type: Segment Mask

Data Clazs: Customer
Data Field: AcctCD
“iewy hame: Baccourt

Buziness Logic: Customertaint

CUSTOMIZE

ACTIONS = | CAMCEL

Customize Business Logic..

Customize Data Fields ..

Wiewe Azpx Source..

“iew Buziness Logic Source...

Wiewy Data Class Source...

The menu contains the following commands.

Command

Description

Customize Busi-
ness Logic

Creates a graph extension template for the BLC that is bound to the form, adds
the template code to the customization project, and opens the Customization
Project Editor on the Code Editor page, which loads the BLC extension template
SO you can edit it.

Customize Data
Fields

Opens the Customization Project Editor on the Data Class Editor page in the Edit
Attributes section so you can customize the inspected element attributes.

View ASPX
Source

Opens the Source Code Browser on the Screen ASPX tab with the source code of
the current form.

| Acumatica Customization Platform | 47

Command

Description

View Business
Logic source

Opens the Source Code browser on the Business Logic tab with the source
code of the BLC that is bound to the form.

View Data Class
Source

Opens the Source Code browser on the Data Access tab with the source code
of the DAC to which the field for the inspected element belongs.

Customization Project Editor

If you have opened the Customization Project Editor or the Source Code browser, you can
access any source code of the website—not only the source code of the inspected element

and the current form, DAC, and BLC.

You can use the Customization Project Editor (Project Editor) to develop and manage the content of a
customization project. The editor contains separate pages to add and manage items of the following

types in the currently selected customization project:

(See Managing ltems in a Project for instructions.)

Screen (form)

Data access class (DAC)

Code (C#)

File

Generic inquiry

Acumatica Report Designer report
Site map

Database script (custom column or script)
Translation (language locale)
Integration scenario

Shared reusable filter

Access rights of roles to forms
Wiki changes

Analytical report

Push notification

Mobile app screen

You can launch the Customization Project Editor only if you have selected a customization project. You
can launch the editor from any form of Acumatica ERP by using the Customization Menu or from the
Customization Projects (SM204505) form, also described in Customization Projects Form.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5

The Project Editor Webpage

| Acumatica Customization Platform | 48

The Project Editor, shown in the following screenshot, looks like a regular webpage that consists of the

following parts:

items

The main menu for working with the customization project

A navigation pane, which displays the list of pages used to manage the corresponding project

The main area, which displays the list of project items or provides a work area to edit these items

Q Acumatica

File Publish

YogiFon]

| Files (5)

Generic Inquiries (1)

Reports (1)

Site Map (4)

DB Scripts (2)

System Locales
Import/Export Scenarios (1)
Shared Filters

Access Rights

Wikis

Web Service Endpoints

Analytical Reports

Extension Libran

Source Control

Custom Files

C L X + DETECT MODIFIED FILES
B [Object Name Description Last Last
Modified Modified
By On
¥ [App_Data\Mobilelincludes\YF401000.xml.inc admin 4/18/2016
@ | App_Data\Mobile'YogiFonMSh xml admin 4/18/2016
@] | BinYogiFon_Code.dll admin 4/18/2016
] | Pages\YF\YF401000. aspx admin 4/15/2016
] | Pages\YF\YF401000.aspx.cs admin 4/15/2016

In the navigation pane, a node with capitalized name can be expanded to get direct access to items of

the appropriate type.

Main Menu of the Project Editor

The main menu contains the following items and commands.

Item

Command

Description

File

Manage Cus-
tomization
Projects

Opens the Customization Projects (SM204505) form.

Edit Project XML

Opens the Project XML page, which you can use to edit the
XML source code of the current customization project, save
it to the database, download the project package, and up-
load a deployment package to replace the project content.

Edit Project
Items

Opens the Edit Project Items page, which you can use to
edit the XML source code of a project item.

Export Project
Package

Exports the deployment package of the project—that is,
the ZIP file that contains the project. The file has the same
name as the exported customization project has.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5

| Acumatica Customization Platform | 49

Item Command Description
Replace from Initiates the import of a previously exported deployment
Package package from a ZIP file. Provides the Open Package dialog
box with the Choose File button and the Upload button to
replace the current project content.
Publish Publish Current |[Initiates the process of publishing the current customiza-

Project

tion project. Launches a publication process that opens the
Compilation window to output a log with information about
the process. If both the validation and compilation of the
project are successful, the process makes the Publish but-
ton available. This button is used to finalize the publishing
and to update the website.

Multiple Projects

Opens the Customization Projects in a new window.

Publish with
Cleanup

Initiates the process of publishing the current customiza-
tion project as the Publish Current Project command
does, but with the following difference: When the Acumati-
ca Customization Platform publishes a project that contains
a database script, the platform executes the script and tries
to avoid executing the script at every publication of the
project for optimization purposes. Therefore, the platform
keeps information about each script that has been executed
at least once and has not since been changed in the data-
base, and omits the repeated execution of such scripts. If
you run the Publish with Cleanup operation, the platform
cleans all the information about previously executed scripts
of the customization project and executes this scripts once
more while publishing the project.

Extension Li-
brary

Create New

Creates a solution for Microsoft Visual Studio in which you
can develop an extension library for the customization
project. The solution contains the website and extension
library projects. This action also downloads the Openso-
lution.bat file. The file contains the absolute path to the
.s1n file in the file system; you can use this file to open the
solution in Visual Studio.

By default, the system uses the App Da-
ta\Projects folder of the website as the par-
ent folder for the solution project. If the web-
site folder is outside of the C:\Program Files
(x86) and C:\Program Files folders, such as C:
\AcumaticaSites\MySite, we recommend that
you not change it. Otherwise, we recommend
that you specify a parent folder outside these
folders to avoid an issue with permission to ac-
cess files.

Bind to Existing

Specifies the extension library project in the file system
to which the customization code will be moved if you click
Move to Extension Lib on the toolbar of the Code Editor.

Open in Visual
Studio

Downloads the OpenSolution.bat file, which is used to
open the existing solution in Visual Studio.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5

| Acumatica Customization Platform | 50

Item

Command

Description

Show Active Ex-
tensions

Starts the verification of extensions for data access class-
es and business logic controllers, and opens the Validate
Extensions pop-up window to display the validation log.

In the log, every error is highlighted in red. We recommend
that you verify extensions if you have upgraded legacy DAC
customization.

Source Control

Save Project to
Folder

Saves the customization project as a set of files to a local
folder that is used for integration with source control sys-
tems. Invoking this action opens the Saves Project to
Folder dialog box (see To Save a Project to a Local Folder for
instructions) so that you can select the name and location
of the folder inside a repository.

Open Project
from Folder

Loads the customization project from the repository. (See
To Update the Content of a Project from a Local Folder for instruc-
tions.)

Built-In Editors in the Project Editor

To help you work with screens, data access classes, code, custom files, and database scripts in the
scope of a customization project, the Project Editor includes the following editors:

® Screen Editor, which is the visual editor for the source code of an .aspx page

e Data Class Editor, which is used to create, develop, manage, and view in XML format the content of
extensions for data access classes

When the project is published, the Acumatica Customization Platform transforms the
content of extensions for data access classes from XML format to C# code and saves the
code in .cs files in the App RuntimeCode folder of the website.

e Code Editor, which is used to manage, develop, and view the customization code (C#) added to the
project, including extensions for business logic controllers (BLCs) and DACs

® File Editor, which is a text editor used to edit and review the content of text files included in the
customization project

® SQL Script Editor, which is used to add and edit custom SQL scripts in the customization project

® Table Editor, which is used to edit custom tables in the customization project

® Mobile App Editor, which is used to add and update mobile app screens in the customization project

Other types of items are custom data that can be added to the customization project from the
database. For these items, the Project Editor provides you the capabilities to add to the project, delete
from the project, and reload from the database. To create or edit these items, you can use dedicated
forms of Acumatica ERP. For example, to create or edit a generic inquiry in the database, you can use
the Generic Inquiry (SM208000) form.

Also, the Project Editor includes the following editors:

e ASPX Editor, which is used to edit the ASPX code of a page customized by means of the Screen

Editor

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5388c653-eac4-4f43-b769-163cd037ab09

| Acumatica Customization Platform | 51

® XML Editors, which are used to edit and review the XML code of the customization project (Project
XML Editor) or a separate item of the project (/tem XML Editor)

Screen Editor

The Screen Editor is the visual editor for the source code of an ASPX page and the business logic of a
screen. You use it to configure ASP.NET containers, such as forms and grids, to specify the properties
of UI controls and grids, as well as to configure conditions and apply conditions to actions and fields.

By using the editor, you can perform customizations of a form as follows:
e By configuring the form's layout in any of the following ways:
e Add a custom form to Acumatica ERP
e Add a container to a form
e Add a custom field to a data access class (DAC)
e Add a control for a field to a container
e View and modify the properties of a control
e Change the order of controls in a container
e Customize the attributes of a field in a data access class
e View the modifications made to the original declaration of the form
e Immediately preview in the browser the changes made during the customization of the layout
During customization, you can open the Screen Editor in the following ways:

e From the Element Properties Dialog Box, which you access by clicking the Customize button on the
title bar of the form and selecting Inspect Element

e From the Customized Screens page of the Customization Project Editor, by selecting the Screen ID of
the screen (form) you want to customize

e From the navigation pane of the Customization Project Editor, by clicking the needed item within
the Screens folder

The title of each Screen Editor page includes the ID and name (in parentheses) of the form being
customized. The page also has a toolbar, control tree pane, and tabs, as the following screenshot
shows.

Screen Editor: AR303000 (Customers)
B PREVIEW CHANGES ~ ACTIONS -
(<] mw - MAIN PROPERTIES ~ LAYOUT PROPERTIES ~ ATTRIBUTES ~ EVENTS ADDCONTROLS ADD DATAFIELDS

»+ &3 DataSource: CustomerMaint c
» & Form: BAccount

ustomer

Override | Property Value

| Acumatica Customization Platform | 52

Page Toolbar

The page toolbar includes standard and page-specific buttons. The page-specific buttons are described
below.

Button Description
Cancel Cancels the latest edit performed in the Screen Editor.
Save Saves to the customization project the difference between the modified and

original code of the ASPX page, or modifications in the business logic of a form.

Preview Opens the customized form in a new browser window.
Changes
Actions Provides the following actions:

e Edit Aspx: Opens the ASPX Editor with the webpage source code.
e Open Screen: Opens the original form of Acumatica ERP.

o Customize Business Logic: Opens the Code Editor with the extension class
template of the business logic container (BLC) that is bound to the form.

o Customize Data Class: Opens the Data Class Editor for customization of the
DAC that contains the field selected in the Control Tree.

Control Tree

The Control Tree displays the hierarchical structure of actions and controls on the webpage. In the tree,
you can:

® Select a container, a control, or an action for review or customization.
e Change the order of controls in a container.

® Remove any selected item from the webpage or reset properties of the item to the out-of-the-box
state.

The toolbar of the Control Tree includes the following buttons.

Button Description
Refresh Refreshes the Control Tree.
Remove Removes an item selected in the Control Tree from the form.

Reset Properties Resets all controls and actions to the out-of-the-box state.

To change the order of controls in a container, manually drag controls on the Control Tree within their
containers.

Layout Properties Tab

On the Layout Properties tab, you can review and modify the layout properties of the form controls
or actions that are defined on the ASPX page.

| Acumatica Customization Platform | 53

The tab contains a toolbar and a table. The tab toolbar includes the Hide Advanced Properties
button (¥) to hide or show advanced properties of the selected control. The tab table consists of the

following columns.

Column Description

Override A check box that indicates whether the property value was changed. This check
box is selected automatically when you change the property.

Property The name of the property or the property group.

Value The value of the property.

Attributes Tab

You use the Attributes tab to review and customize the attributes of the DAC field that is bound to the
control currently selected in the Control Tree.

The tab consists of a Summary area with the DAC field information and buttons to customize the field

attributes.

The Summary area contains the following elements.

Element

Description

Field Name

The name of the field in the DAC. The field name is the name of the public virtu-
al property in the public abstract class of the field.

Data Class

The name of the DAC to which the field belongs.

Original Attrib-
utes

The original attributes of the field in Acumatica ERP.

The Attributes tab provides the following buttons.

Button

Description

Customize At-
tributes

Opens the Data Class Editor so you can customize the field attributes in the
DAC.

View Source

Opens the Source Code Browser on the Data Access tab that displays the DAC
source code.

Override On
Screen Level

Opens the Code Editor with the BLC extension class template. The template in-
cludes the field attributes and the template of the DACName FieldProperty-
Name CacheAttached () method, which you can use to replace the attributes
within the BLC.

Events Tab

On the Events tab, you can view and add event handlers for the selected control.

The tab consists of a Summary area, a toolbar, and a table. The Summary area contains the following

elements.

| Acumatica Customization Platform | 54

Element

Description

Data Class

The name of the DAC to which the field belongs.

Field Name

The name of the field in the DAC.

Business Logic

The name of the BLC bound to the form.

The tab toolbar includes the following specific buttons.

Button

Description

Add Handler

For the selected event, opens the Code Editor with the BLC extension class tem-
plate. The class template includes a code template for the event handler, so you
should implement only the body of the handler. The button provides the follow-
ing menu commands:

o Keep Base Method: Creates the event handler with two parameters, as it is
defined in the base BLC. As a result, the event handler is added to the appro-
priate event handler collection.

e Override Base Method: Creates the event handler with an additional para-
meter to replace the base BLC event handler collection.

View Source

Opens the Source Code browser with the source code of the BLC bound to the
form.

The table holds information about the event handlers used for the control. It contains the following

columns.
Column Description
Event The event name.
Handled in A check box that indicates whether the event handler is implemented within
Source Acumatica ERP.
Customized A check box that indicates whether the event handler is customized. This check
box is selected automatically when you add the event handler.

Add Control Tab

On the Add Control tab, you can add new containers, controls, and layout rules to the form.

To add a control, drag and drop it to the needed position in the Control Tree. After you have added the
control, you can configure its properties on the Layout Properties tab.

Add Data Fields Tab

You can use the Add Data Fields tab to manage the controls in the form container that is currently
selected in the Control Tree. On this tab, you can create a control for a DAC field and add it to the
selected container. You can also create new custom field in a DAC, create a control for the field, and
add it to the selected container.

The tab contains the Data View drop-down list, a toolbar, and a table. In the Data View drop-down
list, you can select a DAC to view its fields in the table. The list includes all DACName (DataViewName)
pairs of the BLC that are bound to the form. The tab toolbar contains the following buttons.

| Acumatica Customization Platform | 55

Button

Description

Create Controls

Adds the selected fields to the container selected in the Control Tree.

New Field

Opens the Create New Field Dialog Box, where you can add a new custom field to
the DAC that is referenced in the data view selected in the Data View box.

Once you have created a field or multiple fields, you need to publish
the customization project before creating a control for the new fields.

The table displays th

e fields that belong to the selected DAC. The table includes the following columns.

Column Description

Included An unlabeled check box that you can use to select a field for which the Create
Controls operation will create a control in the object that is currently selected in
the Control Tree.

Used A check box that indicates whether a control for the field exists in the object

that is currently selected in the Control Tree. This check box is selected auto-
matically when you create a control for the field.

Field Name

The name and DisplayName (in parentheses) of the field in the DAC.

Control

The type of the UI control.

You can use the follo

wing filters of DAC fields displayed in the table.

Filter Description

All Fields that are not represented by controls on the form.

Visible Fields that are visible due to the visibility field attribute in the DAC.
Custom New custom fields of the DAC.

View ASPX Tab

The View ASPX tab

ASPX Editor

displays the ASPX code of the control selected in the Control Tree.

You can use the ASPX Editor to edit the ASPX code of a page that has been customized by means of
the Screen Editor. You can use this editor instead of the Screen Editor if you prefer a text editor rather

than a visual tool.

You can launch the ASPX Editor by clicking Actions > Edit Aspx on the toolbar of the Screen Editor.

The ASPX Editor pag

e contains the work area of the editor and a toolbar with only the Generate

Customization Script button, as shown in the following screenshot.

| Acumatica Customization Platform | 56

Aspx Editor: AR302000 (Payments and Applications)
GENERATE CUSTOMIZATION SCRIPT
1| <% Page Language="C#" MasterPageFile="~/MasterPages/Formbetail.master"” AutoEventWireup="trus" ValidateRequest="+ " CodeF:
3| <%@ MasterType VirtualPath="~/MasterPages/FormDetail.master” %>
4 | <asp:Content ID="contl" ContentPlaceHolderID="phD5" runat="Server">
5 ¢<px:PXDataSource ID="ds" runat="server"” Visible="True" Width="108%" TypeName="PX.Objects.AR.4RPaymentEntry"” PrimaryView=
6 <CallbackCommands>
7 <px:PXDSCallbackCommand CommitChanges="Trus" Name="Save" PopupVisible="truec"| />
8 <px:PXD5CallbackCommand ert” PostData="Self" />
9 <px:PXD5CallbackCommand Name " PostData="Self" StartNewGroup="Trus" />
1@ <px:PXDSCallbackCommand ' PostData="5Self" />
11 <px:PXD5CallbackCommand "True" Name="Release" PopupVisible="true" CommitChanges="trus" />
12 <px:PXDsCallbackCommand " Mame="ViewBatch" /»
3 <px:PXDsCallbackCommand CommitChanges= StartNewGroup="Trus" />
14 <px:PXD5CallbackCommand RepaintControls CommitChanges="Trus" />
15 <px:PXDsCallbackCommand mmitChanges="t />
16 <px:PXDsCallbackCommand =w" Visible="Fal e
17 <px:PXD5CallbackCommand Name="1
18 <px:PXDsCallbackCommand Visible
19 <px:PXDSCallbackCommand Visible
20 <px:PXDsCallbackCommand visible
21 <px:PXDsCallbackCommand Visible
22 <px:PXDsCallbackCommand eApplication” CommitChanges="True" DependOnGrid="detgrid2" /:
23 <px:PXD5CallbackCommand DependOnGrids= rid" visible="False" />
24 <px:PXDSCallbackCommand cumentToApply"” DependOnGrid="detgrid3"” Visible="False" /»
25 <px:PXD5CallbackCommand "ViewApplicationDocument” DependOnGrid="detgrid2" />
26 <px:PXD5CallbackCommand ewCurrentBatch” DependOnGrid="detgrid2" />
27 <px:PXDSCallbackCommand ucherBatch" />
28 <px:PXD5CallbackCommand " Name="ViewvorkBook" />
29 <px:PXDsCallbackCommand " CommitChanges="trus" Name="Capt
30 <px:PXDSCallbackCommand Visi " CommitChanges="truz" Name="Au -
31 ST LT - Lo . . s .

You use the Generate Customization Script button instead of a Save button because this action
saves to the customization project not the modified ASPX code but the difference between the modified

code and the original code of the page.

Condition Editor

You use the Condition Editor to construct a condition that can later be specified as a property value for

the following items on a particular form:

e A UI control
e An action including an auto-run action
e Transition

You open the Condition Editor by clicking Conditions under the screen ID (of the form for which
you are constructing the condition) in the navigation pane of the Customization Project Editor. The

Condition Editor contains the following parts:
® A page toolbar with standard table toolbar buttons

A table with a list of the created conditions and the basic settings of each of them

When you click the link in the Condition Name column in the table area, the Condition Properties
dialog box is opened, which shows the rows that make up the condition. You can add new rows and

modify existing rows of a condition.

The following screenshot shows the Condition Editor page for the Opportunities (CR304000) form.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5cb49cd5-2be8-4617-9341-958f1c5d6d53

Conditions: CR304000 (Opportunities)

& v X

B *Condition Name
OwnerNotEmpty.
BA

wg

s+

Expression

Internal method
BAccountlD |s Not Empty
‘WorkgrouplD |5 Not Empty

Condition Properties

o

stem Condition

Is Mot Empty

| Acumatica Customization Platform | 57

Status
System Readonly
Inherited

New

Value 2 Bra Ope

QK CANCEL

Figure: The Condition Editor page
Related Links

® To Add a Condition

Workflow Editor

You can customize a form by defining a workflow in Customization Project Editor. A workflow is a
process of changing the state of an entity opened on the form as a result of a user performing some
particular action. A workflow can be described as a state machine. To give you the ability to define
workflows for particular forms, the Customization Project Editor provides the Workflow Editor.

You can open the Workflow Editor by clicking Workflows under the screen ID (of the form on which
you are defining or modifying a workflow) in the navigation pane of the Customization Project Editor.
The Workflow Editor contains the following pages: Workflows and Workflows: <Workflow Name>.

The Workflows Page

The Workflows page contains a list of all workflows defined for a form including predefined and custom

workflows. The Workflows page contains the following parts:

e A page toolbar with the following buttons:

e The standard Cancel, Save, and Clipboard buttons.

e The Upgrade Predefined Workflow button, which you click to upgrade the selected custom

workflow based on a predefined workflow with the latest changes from the system.

| Acumatica Customization Platform | 58

e The Disinherit button, which you click to break the relationship between the predefined
workflow and a workflow that was based on it. If you click a workflow in the table and then
click this button, the selected workflow will no longer get updates from the system, and the
Upgrade Predefined Workflow action will not be available for the workflow.

You cannot revert the Disinherit action. That is, you cannot link the selected
workflow to a predefined workflow once you have selected the workflow and clicked
the Disinherit action.

e The View Changes button. When you click the button, the Changes dialog box is opened
where you can view the description of a workflow n in the JSON format. If any changes were
applied to a predefined workflow, they are highlighted in the dialog box. You can return the
workflow to the predefined state by clicking Revert Changes in the Changes dialog box.

The View Changes button is available for only inherited workflows, that is
workflows based on a predefined workflow.

e The Summary area, which contains the state identifier, the workflow-identifying field, and the
Allow Users to Modify Value check box.

If you do not select any value in the Workflow-Identifying Field box, an entity that has been
created on the form can have only one workflow. If you want the entity to have multiple workflows,
select the field that defines the change of the workflow in the Workflow-Identifying Field box
(see Creating Workflows for details).

If you want users to be able to change the workflow type for an existing entity, select the Allow
Users to Modify Value check box (see Creating Workflows for details).

e A table that lists all workflows defined for the form.

If you click the workflow name from the Workflows page, you open the Workflows: <Workflow Name>
page

The following screenshot shows the Workflows page with a single workflow for the Leads (CR301000)
form.

Customization Project Editor ack Reload
File Publish Extension Library Source Control

TestWorkflow < CR301000 (Leads) Workflows

+ SCREENS) ADD WORKFLOW

~ CR301000
Actions
Fields

Conditions

State Status

Allow Users to Modify Value

+ Workflows

Dialog Boxes

» CR304000 © 2
Data Access B Active Workflow Warkflow Name Base System Workflow Status
Code Type
Files > DEFAULT Default workflow System Readonly

Generic Inquiries
Reports
Dashboards

Site Map
Database Scripts

Figure: The Workflows page

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ce564fa0-baca-4d9b-97a8-ec69910de4c2

| Acumatica Customization Platform | 59

The Workflows: <Workflow Name> Page

You use the Workflows: <Workflow Name> page to define states, transitions, and actions of a
workflow. The page contains the following parts:

® A page toolbar with the following buttons:
e The standard Cancel and Save buttons.

e The View Changes button. When you click the button, the Changes dialog box is opened
where you can view the description of a workflow n in the JSON format. If any changes were
applied to a predefined workflow, they are highlighted in the dialog box. You can return the
workflow to the predefined state by clicking Revert Changes in the Changes dialog box.

The View Changes button is available for only inherited workflows, that is
workflows based on a predefined workflow.

e The States and Transitions pane, which contains the list of states and transitions defined for the
workflow

e A tab area with three tabs: State Properties, Actions, Transition Properties, and Handlers.

If a state is selected in the States and Transitions pane, the State Properties and Actions
tabs are displayed. If a transition is selected in the States and Transitions pane, the Transition
Properties tab is displayed.

The following screenshot shows the Workflows: Default workflow page for the Leads (CR301000) form.

Customization Project Editor Back Reload
File Publish Extension Library Source Control
CustomizeWorkflows < CR301000 (Leads) State Diagram: Default workflow
~ SCREENS L2 ¥] + - DIAGRAM VIEW
~ CR301000 B
Actions States and Transitions STATE PROPERTIES ~ ACTIONS HANDLERS
Event Handlers -
o
£
jelds New]
Conditions New he Workilo
ok Open->Opsn
» Worktlows Qualify->Sales Ready Fields
Dialog Boxes
CRI04000 Accept->Sales-Accepted [¢] [~ COMBO BOX VALUES
' CRE)U":DU Disqualify->Disqualified
' SOSG?:DG Close as Duplicate->Disqualified S Active *Object Name Field Name Disabled Hidden Reguired Default Value Status
' soauz:nu Mark as Converted->Converted > Lead Reason Created Inherited
v 0)
Convert to Opportunity->Converted Lead Source —,

» 50303000

Data Access P

Qualify->Sales-Ready
Code

Accept->Sales-Accepted
Files

Disqualify->Disqualified

Generic Inquiries
Close as Duplicate->Disqualified

Reports
Mark as Converted->Converted
Dashboards
; Convert to Opportunity->Converted
Site Map

Database Scripts ~ Sales-Ready
System Locales Open->Open
Accapt>Sales-Accepted

ImportExport Scenarios
Shared Filters

Access Rights

Wikis

Web Service Endpeints
Analytical Reports
Push Notifications
Business Events

Mabile Application
User-Defined Fields

Wehhnoks

Disqualify->Disqualified

Close as Duplicate->Disqualified

Mark as Converted->Converted

Convert to Opportunity->Converted
~ Sales-Accepted

Open->Open

Disqualify->Disqualified

Close as Duplicate->Disqualified

Mark as Converted->Converted

Convert to Opportunity->Converted

Figure: The Workflows: Default workflow page

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ce564fa0-baca-4d9b-97a8-ec69910de4c2

| Acumatica Customization Platform | 60

Related Links

® To Add a Workflow

Workflow Visual Editor

The Workflow Visual Editor is a tool that you can use to define the states, transitions, and actions of a
workflow by using the diagram view of the workflow, instead of its tree view. You access the diagram
view by clicking Diagram View on the page toolbar.

The following screenshot shows the Diagram View page of the default workflow for the Cases
(CR306000) form.

Customization Project Editor Back Reload
File Publish ExtensionLibrary Source Control
TestCustomization < CR306000 (Cases) State Diagram: Default workflow
- SCREENS) O +- TREE VIEW
» CR301000
» CR304000
+ CR306000
Actions
Fields
Conditions +
+ Workflows
Default workflow -
Dialog Boxes
» §0301000 1
Data Access
Code
Files =
Generic Inquiries
Reports =
Dashboards
Site Map
Database Seripts
System Locales

ImportExport Scenarios
Shared Filters

Access Rights

Wikis

Web Service Endpoints
Analytical Reports
Push Notifications

Business Events
Mobile Application
User-Defined Fields
Webhooks

Figure: The Visual Editor

It is not possible to modify the default workflow. Instead, you create a new workflow based
on the default one, or create a new workflow from scratch.

Diagram View Elements

The Diagram View page contains the following parts:

® A page toolbar with the following buttons:
e The standard Cancel, Save, and Refresh buttons
e The Add New button, which you click to add a state, a predefined state, or a transition
e The View Changes button (see section Workflow Editor for details)

e The Tree View button, which you click to return back to the standard view of the workflow

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=a492a091-9649-4826-bcc3-dccdf8765efd

| Acumatica Customization Platform | 61

e The main area, which displays the workflow of the selected form (screen) as a diagram and has the
following elements:

e Boxes that contain the names of the states of an entity created by using the form and the
names of the actions or event handlers that trigger the transitions. Smaller boxes with the
names of actions and event handlers appear after you create a transition and specify the
source and target states.

Available actions and event handlers for the current state are not displayed if they
do not trigger any transitions.

e Arrows that show the transitions between the states. For example, Item 1 in the following
screenshot shows an arrow that is a transition from the Open state to the Pending Customer
state of a case that has been created on the Cases (CR306000) form.

e Buttons that are shown right of the diagram: Zoom In or Zoom Out (see Item 2 in the following
screenshot), Reset Scale to 100% (Item 3), Fit Screen (Item 4), and Collapse All/Expand All

(Item 5).

Customization Project Editor Back Reload
File Publsh ExtensionLibrary Source Centrol
TestCustomization < CR306000 (Cases) State Diagram: Default workflow
+ SCREENS 2l o +- TREE VIEW
+ CR301000
» CR304000
- CR306000
Actions
Fields
Conditions +
« Workflows
| Default workflow -
Dialog Boxes @
» 0301000 w
Code
Files
Generic Inquiries @
Dashboards ®
Site Map
Database Scripts
System Locales

Import/Export Scenarios
Shared Filters

Access Rights

Wikis

Web Service Endpoints
Analytical Reports
Push Notifications
Business Events

Mobile Application
User-Defined Fields
Webhooks

Figure: The Workflow Visual Editor elements

State Elements

A box with a state contains the following elements.

Element Description

An arrow You click an arrow to expand or collapse, respectively, the list of ac-
tions or event handlers that trigger transitions for this state (see Item
6 in the screenshot above).

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=a492a091-9649-4826-bcc3-dccdf8765efd

| Acumatica Customization Platform | 62

Element

Description

An ellipsis

You click an ellipsis (Item 7) to invoke a context menu with the follow-
ing commands:

e Edit State: Opens the State dialog box, which you can use to mod-
ify the state.

e Add Transition: Opens the Add Transition dialog box, which you
can use to add a transition from the current state to another state.
In the dialog box, you specify the action or event handler that caus-
es the transition, and the target state.

o Delete State: Deletes the state. When you select this command,
you need to confirm the deletion in the dialog box that is opened.

A plus button

You click this button (Item 8) to manually draw a transition line for an
action or an event handler that does not yet have any outgoing tran-
sitions from the current state. This opens the Add Transition dialog
box with the Target State box already filled in.

When the transition is created, the action or event handler that trig-
gers it is added to the box with the current state with the name you
have specified in the Trigger Name box of the dialog box.

The State Dialog Box Elements

The State dialog box—which contains a Summary area and the Fields and Actions tabs—is shown in
the following screenshot and described in more detail below.

State

Identifier

a

Active

] Initial State of the Workflow

Open [

FIELDS ACTIONS HANDLERS

O + X = ® COMBOBOXVALUES
B Active “Object Name *Field Name Disabled Hidden Required Default Value Status
b Case Reason Inherited
Case Active Inherited

Figure: The State dialog box

The Summary area of the dialog box contains the following elements.

0K

Element Description
Identifier A single-letter identifier of the state (for example, H for On
Hold).

Description The display name of the state (for example, On Hold).

| Acumatica Customization Platform | 63

Element

Description

Active

A check box that indicates (if selected) that the current state is
active.

Initial State of the Workflow

A check box that indicates (if selected) that this state is the ini-
tial state of the workflow.

Fields tab

The Fields tab lists the fields that have properties that should be modified for the current state (for
details, see To Add a Workflow). For example, a field can be made Disabled, Hidden or Required. Also,
for the fields of the Combo type, certain combo box values can be selected.

The tab toolbar includes the following specific buttons.

Button

Description

Combo Box Values

Opens the Combo Box Values dialog box, where you can con-
figure the list of values which are displayed as combo boxes.
For details, see To Modify Field Properties.

The tab includes the following columns.

Column

Description

Active

A check box that indicates (if selected) that the field is active for
the selected state.

Object Name

The name of the DAC from which a field is selected.

Field Name

The name of the field.

Disabled A check box that indicates (if selected) that the field is unavail-
able for the selected state.

Hidden A check box that indicates (if selected) that the field is hidden
for the selected state.

Required A check box that indicates (if selected) that the field is required

for the selected state.

Default value

The default value of the field.

Status

A read-only box that indicates the status of the field.

Actions tab

The Actions tab contains the list of actions specified for the state (for details, see To Add a Workflow).

The tab toolbar includes the following specific buttons.

Button

Description

Create Action

Opens the New Action dialog box, where you create an action
for the current state.

The tab includes the following columns.

| Acumatica Customization Platform | 64

Column Description

Active A check box that indicates (if selected) that the action is active
for the selected state.

Actions The actions available for the selected state.

Duplicate on Toolbar A check box that indicates (if selected) that the action should be

available on the page toolbar (as a button).

Auto-Run Action An option indicating whether the action is triggered automatical-
ly when the selected condition is fulfilled. If a value other than
False is selected, the action is triggered automatically on fulfill-
ment of the condition.

Status A read-only box that indicates the status of the action.

Dialog Box The name of the dialog box that is displayed when a user clicks
an action; in this dialog box, the user should enter the needed
values.

Handlers tab

The Handlers tab displays the event handlers that are available for the current state (for details, see
To Add a Workflow).

The tab toolbar includes the following specific buttons.

Button Description

Create Event Handler Opens the New Event Handler dialog box, where you can cre-
ate an event handler for the current state.

The tab includes the following columns.

Column Description

Active A check box that indicates (if selected) that the event handler
is active for the selected state.

Handler Event handlers available for the selected state.

Status A read-only box that indicates the status of the event handler.

Transition Elements

If a transition has a condition (that is, if the transition is performed only when the condition is fulfilled),
a diamond is displayed above the transition (see Item 1 in the following screenshot).

If an action with a transition contains an auto-run condition (that is, if the action is triggered
automatically when the condition is fulfilled), a lightning rod is displayed above the transition (Item 2).

The transition lines are of the same color as the states they originate from, which makes it easier
to distinguish between transitions. Also, each transition has a dot that indicates the direction of a
transition and that is of the same color as the target state (Item 3).

| Acumatica Customization Platform | 65

oo

Customization Project Editor ack Reload

F

le Publish Extension Library Source Control

test 4 S0301000 (Sales Orders) State Diagram: RM workflow

~ SCREENS -0 o +- TREE VIEW
» CR304000

~ S0301000 b
Actions
Fields
Conditions

~ Workflows
SO workflow
QT workflow
I RM workflow
IN workflow
CM workflow
Sales Order

Dialog Boxes
Data Access

Code

Files

Generic Inquiries
Reports
Dashboards

Site Map

Database Scripts
System Locales

Import/Export Scenarios
Shared Filters

Access Rights

Wikis

Web Service Endpoints

Analytical Reports

Figure: Conditions for the transitions

The following screenshot displays the Add Transition dialog box, which opens when you click Add
Transition to add a transition from the current state to another state.

Add Transition

Criginal State: Open
@ Triggerad By Action

O Triggered By Event Handler

= Trigger Name: ~ CREATE
Condition: i)

= Target State: M

OK CANCEL

Figure: The Add Transition dialog box

The following table lists the elements of the Add Transition dialog box.

Element Description

Original State Read-only. The name of the state from which the transition
is being created.

Triggered by Action or Triggered by | An option button that indicates what triggers the transition.
Event Handler

Trigger Name The name of the action or an event handler that triggers
the transition. You can select a name from the drop-down
list or click Create (right of the box) and add a new one.

| Acumatica Customization Platform | 66

Element

Description

Condition

Optional. The condition that should be fulfilled for the tran-
sition to take place.

Target State

The target state of the transition. This box is filled in when
you create a transition by clicking the plus button and man-
ually drawing a transition line.

The dialog box also contains the following buttons.

OK

Closes the dialog box and applies the selected options.

Cancel

Closes the dialog box without saving changes.

The context menu of a transition, which is displayed when you select the transition, contains the

following commands.

Command Description

Edit Transition Opens the Transition dialog box (described below).

Delete Transition Deletes the selected transition. When you select this command,
you need to confirm the deletion in the dialog box that is opened.

The Transition dialog box, which opens when you click the Edit button, is shown in the following

screenshot.

Transition

Open

Close (closeCaseFromPortal) ~

o

Closed -

Fields to Update After Transition

o + X
B Active * Field Name From
Schema
Active
» Reason

Figure: The Transition dialog box

X
M Active
New Value Status
Inherited
Closed on Portal Inherited
OK

The following table lists the elements of the Transition dialog box.

Element

Description

Original State

Read-only. The name of the state from which the transition
is being created.

| Acumatica Customization Platform | 67

Element

Description

Active

A check box that indicates (if selected) that the transition is
active for the selected action.

Triggered by Action or Triggered by
Event Handler

An option button that indicates what triggers the transition.

Trigger Name

The name of the action or an event handler that triggers
the transition.

Condition

Optional. The condition that should be fulfilled for the tran-
sition to take place.

Target State

The target state of the transition. This box is filled in when
you create a transition by clicking the plus button and man-
ually drawing a transition line.

Fields to Update After Transition

The list of fields that should be updated after the transition.

The dialog box also contains the Fields to Update After Transition table with the following

columns.

Active A check box that indicates (if selected) that the field should
be updated after the transition.

Field Name The name of the field that should be updated.

From Schema

A check box that indicates (if selected) that field value from
the database should be used.

New Value

The new value for the field.

Status

The status of the field update.

The dialog box also contains the followin

g button.

oK

Closes the dialog box and applies the selected options.

Related Links

® To Add a Workflow

Dialog Box Editor

To Modify a Workflow by Using the Workflow Visual Editor

You can configure a dialog box that is shown to a user who clicks a particular action on a specific form.
To give you the ability to define workflow dialog boxes, the Customization Project Editor provides the

Dialog Box Editor.

You can open the Dialog Box Editor by clicking Dialog Boxes under the screen ID (of the form for
which the workflow has been defined) in the navigation pane of the Customization Project Editor. The
Dialog Box Editor contains the following parts:

[]
specific buttons:

e The Preview Dialog Box button

A page toolbar (see item 1 in the screenshot below) with standard buttons and the following form

which opens the selected dialog box.

| Acumatica Customization Platform | 68

e The View Changes button. When you click the action, the Changes dialog box is opened
where you can view the description of a dialog box in the JSON format. If any changes were
applied to a predefined dialog box, they are highlighted in the Changes dialog box. You can
return the dialog box to the predefined state by clicking Revert Changes in the Changes
dialog box.

This button is available for only inherited dialog boxes, that is dialog boxes based on
a predefined dialog box.

e A pane that contains the list of defined dialog boxes (item 2)
e An area with information about the dialog box selected in the pane and a list of its fields (item 3)

The following screenshot shows the Dialog Box Editor page for the Opportunities (CR304000) form with
three dialog boxes defined.

Customization Project Editor Back Reload
File Publish Extension Library Source Control
Workflow « CR304000 (Opportunities) Dialog Boxes
1
- SCREENS |) (@ -~ PREVIEWDIALOGBOX VIEW CHANGES<|"> =
3
~ CR304000 Dialog Boxes \/ ~
Actions & Title: Details Number of Columns: 0
Fields w2 ‘ .
Dialog Box Name FormOpen Actions
Conditions & Dialog Box Name Status Modified
» Workflows N -
| Dialog Boxes e Dialog Box Fields
Form\Won
Data Access o 4+ X 4 COMBO BOX VALUES
Code FormLost
Files B A *SchemaField *Field Name *Title From Default Value Ri Column Span Control Status
) » Schema size
Generic Inquiries 2
Reports b PX.Objects.C... Reason Reason In Process 1 Inherited
Dashboards PX Objects.C Stage Stage [stagelD] 1 Inherited
Site Map
Database Scripts
System Locales
Import/Export Scenarios
Shared Filters
Access Rights

Figure: The Dialog Box Editor page
Related Links

® To Add a Dialog Box

Field Editor

The Customization Project Editor provides the Field Editor to give you the ability to modify the following
properties of a particular field of a specific form:

® Disabled

® Hidden

® Required

e List of combo box values

You open the Field Editor by clicking Fields under the screen ID (of the form on which you are
modifying the field’s properties) in the navigation pane of the Customization Project Editor. The Field
Editor contains the following parts:

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5cb49cd5-2be8-4617-9341-958f1c5d6d53

| Acumatica Customization Platform | 69

e A page toolbar with standard table toolbar buttons and the following form specific button:

e The Combo Box Values button. You click this button to configure the list of values for fields
which are displayed as combo boxes. The button is available only for such fields.

e The View Changes button. When you click the action, the Changes dialog box is opened
where you can view the description of a field in the JSON format. If any changes were applied
to a predefined field, they are highlighted in the dialog box. You can return the field to the
predefined state by clicking Revert Changes in the Changes dialog box.

e An table that lists the fields and their basic properties

The following screenshot shows the Field Editor page for the Opportunities (CR304000) form with four
added fields.

CR304000 {Opportunities) Fields

O &) X + VIEW CHANGES

=] Object Name Field Name Disabled Hidden Required Display Name Status

> PX.Objects. CR.CROppo... ContactiD BA Contact Mew
PX.Objects. CR.CROppo... OwnerlD wg Cwner MNew
PX.Objects. CR.CROppo... Resolution Reason Inherited
PX.Objects. CR.CROppo... Source wg Source MNew
FX.Objects. CR.CROppo... Status Status Modified
PX.Objects. CR.CROppo... Subject False Subject MNew

Figure: The Field Editor page
Related Links

® To Modify Field Properties

Action Editor

For a particular form, you may need to add a new action, modify an action in a predefined workflow, or
modify an action defined in a graph.

To give you these abilities, the Customization Project Editor provides the Action Editor. You open
the Action Editor by clicking Actions under the screen ID (of the form on which you are adding or

modifying actions) in the navigation pane of the Customization Project Editor. The Action Editor
contains the following parts:

e A page toolbar with standard table toolbar buttons and the following form specific buttons:

e The Reorder Actions button. When you click the button, the Reorder Action dialog box is
opened where you can reorder action located on a page toolbar or in a selected folder.

e The View Changes button. When you click the button, the Changes dialog box is opened
where you can view the description of an action in the JSON format. If any changes were
applied to a predefined action, they are highlighted in the dialog box. You can return the action
to the predefined state by clicking Revert Changes in the Changes dialog box.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5cb49cd5-2be8-4617-9341-958f1c5d6d53

| Acumatica Customization Platform | 70

The button is available only for inherited actions, that is actions based on predefined
actions.

e The Revert All Changes button. When you click the button, all actions are returned to their
predefined state.

e A table with a list of actions and the basic settings of each of them

When you click the link in the Action Name column in the table area, the Action Properties dialog
box is opened, which shows the properties. The list of properties may differ depending on the type of
the action.

The following screenshot shows the Action Editor page for the Opportunities (CR304000) form.

CR304000 (Opportunities) Actions

O) X =+ * REORDERACTIONS VIEW CHANGES REVERT ALL CHANGES
B Action Name Display Name Action Type Disabled Hidden Dialog Box Processing Status
Screen
> Accept Accept Workflow FormAccept CR503120 Modified

ActionsFolder Actions Graph Action New
~ Action Properties
c
€ Action Name Accept Action Type: Workflow
¢ Display Name Accept Toolbar Folder: Actions -
c -
| -
c Details(FormAccept) -
e SCreen: CR503120 - Update Opportur 2
9 FIELD UPDATE
.
L 0+ X H ®
N B Active * Field From New Value Status
= Schema
M

> Reason [FormAccept. Reason] Inherited
g

Stage [FormAccept.Stage] Inherited

o] —
= Active M Inherited
1€
B
B
B
B
sl
it
¥i OK CANCEL
W L T CTOUITEw

Figure: The Action Editor page

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5cb49cd5-2be8-4617-9341-958f1c5d6d53

| Acumatica Customization Platform | 71

The editor automatically displays actions added in the predefined workflow and actions
added in previous versions of Acumatica ERP in the Screen Editor.

Related Links

® To Configure Actions

Event Handler Editor
You use the Event Handler Editor to create and modify event handlers for a particular form.

You open the Event Handler Editor by clicking Event Handlers under the screen ID (of the form on
which you are adding or modifying event handlers) in the navigation pane of the Customization Project
Editor. The Event Handler Editor contains the following parts:

e A page toolbar with standard table toolbar buttons and the following form-specific buttons:

e The View Changes button. When you click the button, the Changes dialog box is opened
where you can view the description of an event handler in the JSON format. If any changes
were applied to a predefined event handler, they are highlighted in the dialog box. You can
return the event handler to the predefined state by clicking Revert Changes in the Changes
dialog box.

The button is available only for inherited event handlers, that is, event handlers
based on predefined event handlers.

e The Revert All Changes button. When you click the button, all event handlers are returned to
their predefined state.

e A table with a list of event handlers and the basic settings of each of them.

When you click the link in the Handler Name column in the table area, the Event Handler
Properties dialog box is opened, which shows the properties. The list of properties may differ
depending on the event handler. Notice that each event handler has a Display Name, which is
displayed in the diagram view of the workflow (see Workflow Visual Editor for details).

The following screenshot shows the Event Handler Editor page for the Sales Orders (SO301000) form.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5

| Acumatica Customization Platform | 72

S0301000 {Sales Orders) Event Handlers

O) X + VIFW CHANGFES RFVERT CHANGFS

Event Handler Properties
HandlerName Status

OnCreditl imiiSatisied ~ Handler Name OnlnvoiceReleased ENTITY TO APPLY WORKFLOW — Inherited
OnCreditl imitViolated Display Name Invoice Released Object From Event Inherited
Onlnvoicelinked Event Source PX_.Objects.$0.S0Invoice+Events Parameter From Event Inherited
> OninvoiceReleased Event Name: InvoiceReleased View From Graph Allow Multiple Entities Inherited
OnlnvoiceUnlinked FIELD UPDATE Inherited
OnOrderDeleted Reopr — . Inherited
OnPaymentRequiremer O v = Inherited
OnPaymentRequiremer : Auie “GHE SEI1;‘|11113 ReplVas SIS Inherited
OnShipmentConfirmed Inherited
OnShipmentCorrected Inherited
OnShipmentCreationFa Inherited
OnShipmentlinked Inherited
OnShipmentUnlinked No records found. Modified

Try to modify para

oK CANCEL

Figure: The Event Handler Editor page

The editor automatically displays event handlers added in the predefined workflow.

Related Links

® To Configure Event Handlers

Data Class Editor

You use the Data Class Editor to develop the content of extensions for data access classes (DACs). By
using the editor, for example, you can do the following:

o Customize the attributes of the existing fields of a DAC

® Add custom fields to a DAC

e For a selector field, add, delete, and sort the columns of the selector table
e Review the modifications made to an original class

e View the source code of an original data access class

o Navigate to the form on which a field of a class is used

While performing the customization, you can open the editor in the following ways:

| Acumatica Customization Platform | 73

e From the Customization Menu > Inspect Element > Element Properties dialog box, by
selecting the Customize Data Fields command on the Actions menu

e From the Customized Data Classes page of the Customization Project Editor, by selecting the
Name field of a DAC

e From the navigation pane of the Customization Project Editor, by clicking an item in the Data
Access folder

The Data Class Editor page includes the following elements (see the screenshot below):
® The title with the name of the customized class

e A toolbar with standard and page-specific buttons

o A list of the customized fields of the class

e A work area to customize the attributes of the field that is currently selected in the list

Data Class: DR.DRSchedule

v @ ADDFIELD ~ OPENSCREEN VIEWSOURCE SELECTOR COLUMNS EDIT ATTRIBUTES

c X

[E Field Name
DocumentType Customize Attributes Append to Criginal -

» SchedulelD
TranDesc
UsrTest

SchedulelD (Customized Existing Field)

[EXParent (typeof (Select<ARTran, Where<ARTran.tranTy Equal<Current<DRS5chedul
[EXParent (typeof (Select<APFTran, i1 A\PTran. nTy Equal<Current<DRS5chedul
[EXSelector (typeof (Search<DRSchedule.scheduleID>), Filterakle = true)]
[EXDEIdentity (IsKey = true)]

[EXUIField (DisplayName = "Schedule ID", Visibility = PXUIVisibility.SelectorV)

[EX.Data.EP.PXFieldDescription]

The page toolbar contains the following page-specific buttons.

Button Description

Add Field Provides the following actions:

o Create New Field: Opens the Create New Field Dialog Box, which you can use
to add a new custom field to the DAC.

e Change Attributes of Base Field: Opens the Change Existing Field Dialog Box,
which you can use to add an existing field of the DAC to the customization
project.

| Acumatica Customization Platform | 74

Button

Description

Open Screen

For the DAC, opens the primary form of Acumatica ERP.

If there is a primary business logic controller (BLC) for the class, then
the primary form is the form bound to this container. Otherwise, the
primary form is the form bound to the BLC in which the class is the
main DAC of the primary view. See the Acumatica Framework training
documentation for details.

View Source

Opens the Source Code Browser on the Data Access tab, which displays the DAC
source code.

Selector
Columns

(Available for only the fields that are selectors.) Opens the Customize Selector
Columns Dialog Box, in which you can modify the columns in the selector table.

Edit Attributes

(Unavailable for new custom fields.) Opens the Customize Attributes Dialog Box,
which you can use to customize the attributes of the selected field.

You use the list of the currently customized fields of the DAC to select the field that you can review or
change in the work area.

The work area of the page consists of the following:

e The title with the name and type (in parentheses: New Field or Customized Existing Field) of

the selected field

e The Customize Attributes text area, where you can edit the attributes of the selected field

e The Original Attributes text area, where you can view the original attributes of the selected field

e A drop-down list that is visible for only existing customized fields of the data access class, so you
can select one of the following ways of applying the changes to the field attributes:

e Keep Original: The original attributes remain on the field until you select another option in this

box.

® Replace Original: The original attributes are replaced on the field with the custom attributes
specified in the Customize Attributes text area.

® Append to Original: The custom attributes are added to the end of the list of the original
attributes of the data field. If you use this option, make sure you do not duplicate attributes on

the field.

The platform gives you advanced possibilities to control the field customization by using
additional attributes in the DAC extension. See Customization of Field Attributes in DAC
Extensions of Customization Framework for details.

If you want to change the original attributes in the Customize Attributes text area, before typing
any text in the area, select the Replace Original option. The original attributes will be copied to the
Customize Attributes text area.

Create New Field Dialog Box

You can use the Create New Field dialog box to add a new data field to the customized DAC.

| Acumatica Customization Platform | 75

You can open the dialog box, shown in the following screenshot, in either of the following ways:

e From the Add Data Fields tab of the Screen Editor, by clicking the New Field button

e From the Add Field button of the Data Class Editor, by selecting the Create New Field command

Create New Field »

Field Name
Display Mame
Storage Type

Data Type

Length

DETableColumn -

string -

OK CANCEL

The dialog box controls are described below.

Control

Description

Field Name

The name of the field in the DAC. Because the field is custom, the Usr prefix is
added automatically to the name when the box loses focus.

Display Name

The name of the field to be displayed on the form. The specified string is insert-
ed into the DisplayName parameter of the PXUIField attribute of the field.

Storage Type

The storage type for the field, which can be one of the following:

o NonPersistedField: An unbound field of the DAC. The unbound field is added
only to the data access class and is not mapped to the database.

® DBTableColumn: An ordinary bound field. The platform adds the database col-
umn to the base table by altering the base table schema.

o NameValuePair: A "name-value" bound field. The platform stores the field val-
ue in a dedicated table of the database without altering the schema of the
base table.

Data Type

The data type to be used for a custom fields, which can be one of the following:
string, int, bool, decimal, datetime, and guid.

Length

(Available if you have selected the string or decimal type.) For the string type,
the maximum number of symbols in the field value; for the decimal type, the
precision of the value (the maximum total number of decimal digits that will be
stored, both to the left of the decimal point and to the right of it).

Decimal

(Available only if you have selected the decimal type.) The scale of the value
(that is, the number of decimal digits that will be stored to the right of the deci-
mal point).

OK

Adds the new field with the specified properties to the data access class and
closes the dialog box. The field appears in the list of customized fields of the
class in the Data Class Editor.

| Acumatica Customization Platform | 76

Control Description

Cancel Closes the dialog box.

Change Existing Field Dialog Box

The Change Existing Field dialog box, shown below, is used to add an existing field of the data
access class (DAC) to the list for customization.

Change Existing Field

Field Mame -

OK CANCEL

You can open the dialog box by clicking the Add Field button of the Data Class Editor and selecting the
Change Attributes of Base Field command.

The dialog box controls are described below.

Control Description
Field Name The existing field of the DAC you want to change.
oK Adds the selected field to the list of the customized fields of the data access

class, and closes the dialog box.

Cancel Closes the dialog box.

Customize Selector Columns Dialog Box

The Customize Selector Columns dialog box, shown below, is available for only a selector field. In
the dialog box, you can add, delete, and sort columns to customize the selector table. The dialog box
contains a toolbar, a table, the OK and Cancel buttons.

You can open the dialog box from the Data Class Editor by clicking the Selector Columns button.

Customize Selector Columns b

(] X ADD COLUMNS UpP DOWN

B Column Name Data Field

¥ Schedule ID SchedulelD
Ref. Nbr. RefNbr
Customer\endor BAccount!D
Doc. Type DocumentTypeEx

CANCEL

The dialog box toolbar includes the buttons described below.

| Acumatica Customization Platform | 77

Button Description
Refresh Refreshes the list of columns displayed in the table.
Delete Deletes the selected column from the selector.

Add Columns

Opens the Add Columns to Selector Dialog Box, which you can use to add columns
to the table of this dialog box.

Up

Moves up the selected field so the column moves left in the selector.

Down

Moves down the selected field so the column moves right in the selector.

The table contains in

formation on the selector content and includes the following columns.

Column

Description

Column Name

The value of the DisplayName parameter of the pxUIField attribute of the field.

Data Field

The name of the public virtual property of the field in the DAC.

After you click OK in the Customize Selector Columns dialog box, the system applies the
modifications to the selector table. As a result, the PxCustomizeSelectorColumns attribute is added to
the selector field, and you can view the attribute in the Customize Attributes text area of the Data
Class Editor. This attribute defines the new set and order of the columns in the selector.

The Cancel button closes the dialog box without saving changes to the selector table.

Add Columns to Selector Dialog Box

The Add Columns to Selector dialog box, shown in the following screenshot, is used to add one or
multiple columns to the selector table at once. The dialog box contains a table with filters and the OK

and Cancel buttons.

You can open the dialog box from the Customize Selector Columns dialog box by clicking the Add
Columns button.

Add Columns to Selector X

B selected

v
L]

ooooooono

Column Name

Account Account__AccountCD
Account Class Account__AccountClassID
Account Group Account__AccountGrouplD
Currency Account__CurylD
Description Account__Description
Type Account__Type

External Ref. Number ExtRefMNbr

Description Sub__Description

Subaccount

ALL | SELECTOR | CUSTOM

Data Field

Sub_ SubCD

CANCEL

The table includes the following columns.

| Acumatica Customization Platform | 78

Column

Description

Selected

A check box you can use to select fields that will be added to the selector.

Column Name

The value of the DisplayName parameter of the PxUIField attribute of the field.

Data Field

The name of the public virtual property of the field in the DAC.

Each tab of the Add Columns to Selector dialog box displays the filtered list of fields. The tabs are

described below.

Filter Description

All All fields.

Selector Fields that are selectors.
Custom New custom fields.

After you click OK in the Add Columns to Selector dialog box, the system applies the modifications.
As a result, the selected columns are added to the table of the Customize Selector Columns dialog

box.

The Cancel button closes the dialog box without saving the changes to the selector table.

Customize Attributes Dialog Box

The Customize Attributes dialog box (shown in the following screenshot) provides the easiest way to
edit attributes of the field selected in the Data Class Editor. The dialog box contains an attribute pane,
a work area, and the OK and Cancel buttons.

You can open the dialog box from the Data Class Editor by clicking the Edit Attributes button.

Customize Attributes

c X

B Attribute
PXDBldentity
PXParent

* PXSelector
PXUIField

O X
&
B Property Value
CacheGlobal False
DescriptionField
DirtyRead False
Filterable True
Headers Schedule ID,Ref. Nbr..CustomerNVend...
¥ SelectorMode DisplayModeHint, NoAutocomplete
SubstituteKey
CANCEL

The attribute pane includes:

e A toolbar with the Refresh and Delete buttons.

e The list of the field attributes.

In the list, you can select an attribute to be deleted or edited.

| Acumatica Customization Platform | 79

You can use the Delete button to delete the selected attribute of the field. After you delete the
attribute and click OK, the [PXRemoveBaseAttribute (typeof (AttrNameAttribute))] attribute is
added to the field and you can view the attribute in the Customize Attributes text area of the Data
Class Editor.

The work area contains a table that lists the parameters of the attribute selected in the list. The table
columns are described below.

Column Description
Property The name of the parameter.
Value The original value of the parameter.

In the table, you can enter any string as the parameter value without type validation. If the value of
the customized parameter has an incorrect type, it causes a validation error during the publication of
the project.

After you click OK in the Customize Attributes dialog box, the platform applies the modifications
to the field. As a result, the [PXCustomizeBaseAttribute (typeof (AttrNameAttribute),
"ParameterName", NewValue)] attribute is added to the field for each modified parameter. You can
view the attribute in the Customize Attributes text area of the Data Class Editor.

You can click the Cancel button to close the dialog box.

Code Editor

With the Code Editor, you can develop, view, and edit the customization code that has been added to
the project.

You can open the Code Editor in the following ways:

e From a form of Acumatica ERP by using Customization > Inspect Element to open the Element
Properties dialog box, and then clicking Actions > Customize Business Logic

e From the Code page of the Customization Project Editor—by clicking the Object Name of an
existing Code item (see the screenshot below)

| Acumatica Customization Platform | 80

File Publish Extensian Library Source Control
YogiFon « CODE
» SCREEMS (& L X + 7
ARE03000
E Object Hame Description Last Modified By Last Modified On
50303000 -
»| ARReleaseProcess adrnin 87272016
- DATAACCESS Customerhdaint admin 8/2/2016
AR ARTran SOlwoiceEntry admin 8122016
CR.Contact S0O0rderEntry admin B/212016
S50.500rder
- CODE

ARReleaseProcess
Customerhdaint
S0InvoiceEntry
SOO0rderEntry

Files

Generic Inguiries - -

e From the navigation pane of the Customization Project Editor, by clicking an item in the Code
folder

The Code Editor page includes a toolbar and a text area for editing code, as shown in the following
screenshot.

Code Editor: SOOrderProcess (Print/Email Orders)

v OPENSCREEN VIEWSOURCE OVERRIDE METHOD NEWACTION MOVE TOEXTENSION LIB

using System;

using System.Collections;
using System.Collections.Generic;
using System.lLing;

using System.Text;

using PX.Data;

using PX.0Objects.AR;
using PX.0bjects.CR;
using PX.TM;

18 | using PX.0Objects.RQ;

11 | using PX.0bjects.CS;

12 | using PX.0bjects;

13 | using PX.0Objects.S0;

= LR e

0o

15 | namespace PX.0Objects.S0
16 | {

18 public class S00rderProcess_Extension:PXGraphExtension<S00rderProcess>
19 {

21 #region Event Handlers -

The toolbar buttons of the Code Editor page are described below.

| Acumatica Customization Platform | 81

Button Description

Save Saves the code in the project.
You can use the Control-S combination on the keyboard to save the
code.

Cancel Cancels unsaved changes in the code.

Open Screen

Opens the form bound to the business logic controller if you are editing the cus-
tomization code of the business logic executed for a form.

View Source

Opens the Source Code Browser with the original source code of the business log-
ic controller (BLC) if you are editing the customization code of the business logic
executed for a form.

Override Method

Opens the Select Methods to Override Dialog Box, which you can use to select multi-
ple virtual methods of the BLC to override.

New Action

Opens the Create Action Dialog Box, which you can use to create a code template
for a new action.

Move to Exten-
sion Lib

Launches the operation that converts the current code item into a file of cus-
tomization code, adds the file to the extension library project in Microsoft Visual
Studio, and removes the item from the customization project. See Move to Exten-
sion Lib Action for details.

The customization project must be bound to an existing extension li-
brary project in Visual Studio before you invoke the Move to Exten-
sion Lib operation. See Customization Project Editor for details.

Create Action Dia

log Box

If the Code item you are viewing by using the Code Editor is a business logic controller (BLC, also

referred to as graph)

extension, you can create a new action in this BLC. To do this, you can click the

New Action button of the Code Editor to open the Create Action dialog box, shown in the following

screenshot.

Code Editor: SOOrderProcess (Print/Email Orders)

o v OPFENSCREEN VIEWSOURCE OVERRIDE METHOD | NEWACTION | MOVE TOEXTENSION LIB

.Ubjects . ARG
.0bjects.CR;
JTH;
.Objects.RQ;
.Objects.CS;
.Objects;
.Objects.s0;

{

{

28
21
22
23

namespace PX.0Objects.S0

public class 500rderProcess_Ext

#region Event Handlers

Action Name | MyActionDelegateMethod |

Display Name MyActionButtonMame

oK CANCEL

Figure: Opening the

New Action dialog box

| Acumatica Customization Platform | 82

To create an action declaration in the BLC extension, you should specify the name of the action
delegate method in the Action Name box and the name of the action button in the Display Name
box, as shown in the screenshot above, and then click OK. The system adds to the graph extension a
template of the action declaration that includes the following class members:

e The declaration of the action delegate method

e The declaration of the button attributes to add the button to the form toolbar with the specified
name

e The template of the action delegate method

The following example shows the template code for an action.
public PXAction<DACName> myActionDelegateMethod;

[PXButton (CommitChanges = true)]
[PXUIField (DisplayName = "MyActionButtonName")]
protected void MyActionDelegateMethod ()
{
// the body of the action delegate method

Select Methods to Override Dialog Box

If the Code item you are viewing in the Code Editor is a business logic controller (BLC) extension,
you can override a virtual method of this BLC. To do this, you can use the Override Method action
of the Code Editor, which opens the Select Methods to Override dialog box, shown in the following
screenshot.

File Publish Extension Library Source Control
YogiFon 4 Code Editor: SOOrderProcess (Print/Email Orders)
» SCREENS v OPENSCREEN VIEW SOURCE |OVERRIDE METHOD | NEWACTION MOVE TO EXTENSION LIB
Data Access
- CODE - EreE Select Methods to Override (¢
2 | using System.Collections
OOrderProcess 8l u=ing System.collections| |2 ﬁme Trf;i:rapm T:eel:‘\f\uewwamesu
Files (5) 4 | using System.Ling; -
- | , Qe ——— [¥ | PxGraph Load()
;EHT :qumes(: & |using PX-Data; PXGraph Persist()
7 | usin, .Objects.AR;
eports (1) 8 using Px\ub%ects_ck-] PXGraph Persist(Type cacheType, PXDBOperation operation)
A o i E y y
Site Map (3) 9| using PX.TH; O PXGraph ProviderDelete(PXDataFieldRestrict] pars)
DB Scripts 18 | using PX.Objects.RQ; O
- 11 | using PX.Objects.Cs; PXGraph ProviderDelete(Type table, PXDataFieldRestrict[] pars)
ranslations 12 | using PX.Objects; m} PXGraph ProviderEnsure(Type table, PXDataFieldAssign[] values, P
i) 13 | using PX.Objects.S0; . X . .
Import/Export Scenarios (1) e JecEs m| PXGraph Providerinsert(PXDataFieldAssign]] pars)
Shared Filters 15 | namespace PX.Objects.SO] PXGraph Providerinsert(Type table, PXDataFieldAssign[] pars)
Access Rights 15] PXGraph ProviderSelect(BqglCommand command, Int32 topCount, PX
Wiki Articles (1) 18 | public class SOOrderPri] PXGraph ProviderSelect(BqlCommand command, Int32 topCount, PX...
Web Services (1) é;] PXGraph ProviderSelectMulti(PXDataField]] pars)
Analytical Reports (1) 21 #region Event Handleq O PXGraph ProviderSelectMulti(Type table, PXDataField[] pars)
53 ?g:;ié,«:i:?ate W=] PXGraph ProviderSelectSingle(PXDataField[] pars)
24 public IEnumerable V. m} PXGraph ProviderSelectSingle(Type table, PXDataField[] pars)
;E { n basemethod(O PXGraph Providerl pdate(PXDataFieldParam[] pars)
6 return bassMetho:
27] PXGraph Providerlpdate(Type table, PXDataFieldParam(] pars)
gi O PXGraph SelectTimeStamp()
3,;) PXGraph SetContextFields(ContextFieldDescriptor]] fields)
31 s | PXGraph SetContextHeaderFields(Tvpel] fields) A
32 #endregion
33 SAVE CANCEL
34| }
35
36 i
a7

Figure: Opening the Select Methods to Override dialog box

| Acumatica Customization Platform | 83

To add a method to the customization, you should select the check box for the method in the table,
as shown in the screenshot, and click Save. The system adds to the graph extension a template of an
overridden method for each method selected in the table.

The dialog box contains a table that lists the virtual methods of the current BLC and its parent classes,
and the Save and Cancel buttons. You use the table, which contains the following columns, to select
the virtual methods that you have to override.

Column Description

Selected A check box that you can use to select the virtual method to be overridden in
the BLC extension.

Type The identifier of the class type that contains the declaration of the virtual
method.
Method The signature of the virtual method.

To cancel the operation and close the dialog box, click Cancel.

Click Save to close the dialog box and launch the process that adds a code template to the BLC
extension for each item selected in the table.

When you override a virtual method, the system generates an overridden method template that
includes the delegate declaration of the base method, the pxoverride attribute, and the method
declaration that invokes the base method delegate.

The following example shows the template code to override the MethodName method.

public delegate returnType MethodNameDelegate(...);

[PXOverride]

public returnType MethodName (..., MethodNameDelegate baseMethod)
{

return baseMethod(...);

Move to Extension Lib Action

You can develop customization code either as Code items in a customization project or as source
code included in an extension library project to develop in Microsoft Visual Studio. Some part of a
customization may exist in the Code items of a customization project, while another part can be
included in an extension library that is added to the customization project as a dynamic link library
(DLL) file.

If you have a Code item in a customization project that you want to move to an extension library to
compile it into a DLL, you can use the Move to Extension Lib action on the page toolbar of the Code
Editor.

Before you launch the operation, be aware that the customization project is bound to an existing
extension library. (See Customization Project Editor for details.)

After the operation is complete, the Code item that is currently displayed in the work area of the Code
Editor is removed from the customization project, and the file with the same source code is appended

to the extension library that is bound to the customization project. The system assigns a similar name
to the file: For example, if the Code item name was CodeItemName, the name of the created file will be
CodeltemName.cs

| Acumatica Customization Platform | 84

For example, suppose you need to move the CustomerMaint Code item to the YogiFon extension
library (see the screenshot below).

File Publish Extension Library Source Control

YogiFon 4 Code Editor: CustomerMaint (Customers)

-

w OPENSCREEN VIEWSOURCE OWERRIDE METHOD NEWACTION | MOVE TO EXTENSION LIB |

14 | using PX.0Objects.AR; N
15
ARReleaseProcess 16 | namespace PX.Objects.AR
] CustomerMaint 1; {
SOInvoiceEntry 19 public class CustomerMaint_Extension:PXGraphExtension<CustomerMaint>
20
SOOrderEntry 2 t
Files 22 #region Event Handlers
23
Generic Inquines 24 public PXAction<Customer> VerifyCreditRecord;
Repons 25 [PXUIField(DisplayName = "Verify Credit Record")]
26 [PxButton(CommitChanges = true)]
Site Map 27 public virtual veid verifyCreditRecord()
DB Scripts 28 {
29 Contact contact = Base.DefContact.Current;
Translations 38 if (contact == null) return;
Import/Export Scenarios 31 PXCache contactCache = Base.DefContact.Cache;
32 war contactExt = contactCache.GetExtension<ContactExt>(contact); -
Shared Filters - 33, D

Figure: Viewing the content of the Code item before you move it to the extension library

When the operation is complete, the CustomerMaint Code item is removed from the customization
project, as the screenshot below shows.

Q Acumatica

File Publish Extension Library Source Control

YogiFon « CODE

-

» SCREENS c =~ X + 7

» DATAACCE " - - =
CODE | Object Name Description Last Modified By Last Modified On

hd » ARReleaseProcess admin 52712016

ARReleasePocess SOInvoiceEntry admin 512712016

SOlnvoiceEntry SOOrderEntry admin 5/27/2016
SO0rderEntry

Files

w
w

Generic Inquiries
Reports

Site Map

DB Scripts

Translaticns
Import/Expert Scenarios
Shared Filters

Access Rights

Figure: Viewing the Code item list after the operation was performed

In place of the removed item, the CustomerMaint.cs file with the same source code is appended to
the bound extension library project, as shown in the screenshot below.

| Acumatica Customization Platform | 85

CustomerMaint.cs le Solution Explorer > I x

Xx0q|oo|

¥z PX.Objects. AR .CustomerMaint_Extension ~ @ verifyCreditRecord()

@D -2 d

- : - T
using PX-Objects.AR; -+ Search Solution Exp orer (Ctrl+ P ~
—namespace PX.Objects AR b @@ Test A
{ b Wiki
files.list
- public class|Customerf‘-'.aint_Extension:P)(GraphExtensiorM(ustomerf‘-‘.aint) & Global.asax
{ licenses.licx
= #region Event Handlers b & Mam.asp)r(
v web.config
public PXAction<Customer> VerifyCreditRecord; A web_project x.config
[PXUIField(DisplayName = "Verify Credit Record")] D Yogifon st 01sin
[PXButton(CommitChanges = true)]
= public virtual void verifyCreditRecord() b K Properties
{ > =® References
Contact contact = Base.DefContact.Current; P @& CustomerMaint.cs
if (contact == null) return; b o Examples.cs -
PXCache contactCache = Base.DefContact.Cache;
L : Properties > I X
100% =~ 4 >

CustomerMaint.cs File Properties ~

Figure: Viewing the content of the source code file added to the extension library

The operation of moving code to an extension library is irreversible. If you need to move source code
from an extension library to a Code item of a customization project, use the following approach:

select the needed source code, and copy it to

Paste the code from the clipboard, and save the Code item to the customization project.

e In Visual Studio (or any text editor), open the file,
the clipboard.

e Create a new Code item in the customization project.

o Delete the code template from the created item.

[]

o Delete the source code file from the extension library.

File Editor

You can use the File Editor to view or edit a custom fil

e added to the customization project.

To open a custom file in the editor, on the Custom Files page of the Customization Project Editor, click

the file name in the list of custom files.

You can use the editor as follows with custom files included in the project:

e To review and edit a text file

To review the content of a binary DLL file (see the following screenshot)

Custom Files

C "o

B [Object Name

X + DETECT MODIFIED FILES

Description

[@1 | App_Data\Mobilelineludes\AR 403000.xml.inc

@1 | App_Data\Mobile\YogiF onbSM.xml

» [[Bin\YogiFon_Code dI |

| Acumatica Customization Platform | 86

Last Modified Last Modified
By On

admin 5I27/2016
admin 6/1/2016
admin 52712016

Edit File
X
(1

public class InventoryItemMaintExtension:PXGraphExtension<InventoryItemMaint>
void InventoryItem RowSelected(PXCache sender, PXRowSelectedEventArgs e, PXRowSelected de

void Initialize();

public class SampleGraph:PXGraph<SampleGraph:»

Boolean IsReusableGraph;

Boolean IsCreatedFromSession;

Int32 ReuseCount;

DateTime CreateTime;

Boolean IsImport;

Boolean IsExport;

Boolean IsMobile;

Boolean IsContractBasedAPI;

Boolean IsCopyPasteContext;
Dictionary<Type,GetDefaultDelegate> Defaults;

[AXT P P 1 SR T,

-

LA

CANCEL

Figure: Viewing the content of a custom DLL file in the File Editor

In the editor, you cannot save changes in DLL files.

If you have used the File Editor to modify a custom file in a customization project and have saved the
changes in the database, the changes are not saved in the original file in the file system. If you then
click Detect Modified Files on the toolbar of the Custom Files page, the platform does not detect a
conflict because the file in the database is newer. The platform automatically updates the original file in
the file system during the publication of the customization project.

SQL Script Editor

You use the SQL Script Editor (the Edit SQL Script dialog box) to add and edit a custom SQL script.
You can open the editor from the Database Scripts page of the Customization Project Editor in the

following ways:

e To create an SQL script: By clicking Add > Script on the page toolbar

e To edit the script: By doing either of the following:

e Clicking the name of the script in the Object Name column of the table on the Database
Scripts page

e C(licking the row of the script in the table on the Database Scripts page and clicking Edit on the
page toolbar

| Acumatica Customization Platform | 87

Table: Edit SQL Script Dialog Box

The SQL Script Editor has the following elements.

Element

Description

Script Name

The name of the SQL script.

Priority

The priority of the script. The priority can have a value that ranges from -100 to
100. By default, the value is 0.

Unlabeled text
area

A text area that you can use to view and edit a custom SQL script.

The SQL Script Editor has the following buttons.

Specify Data-
base Engine

Opens the Specify Database Engine dialog box, in which you can specify the
attribute of the script that indicates on which database servers the script can be
executed (Microsoft SQL Server, MySQL Server, or both).

OK Saves the custom SQL script to the customization project and closes the dialog
box.
Cancel Closes the dialog box without saving the changes to the script.

Related Links

® Database Scripts

Table Editor

You use the Table Editor (the Edit Table Columns dialog box) to edit a custom table. You can open
the editor from the Database Scripts page of the Customization Project Editor in the following ways:

e By clicking the name of the database table in the Object Name column of the table on the
Database Scripts page

e By selecting the name of the database table in the table on the Database Scripts page and clicking
Edit on the page toolbar

Table: Edit Table Columns Dialog Box

The Table Editor has the following elements.

The table toolbar includes only standard buttons. For the list of standard buttons, see Table Toolbar.

Element Description

Field Name The name of the field of the database table.

Script Type The type of the database script applied to the table.
Data Type The type of the field of the database table.

The dialog box has the following button.

Done

Saves the custom columns of the table to the customization project and closes
the dialog box.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=53fbbe04-a46c-4975-93c4-1d342170e472

| Acumatica Customization Platform | 88

Related Links

® Database Scripts

Mobile App Editor

You can use the Mobile App Editor to add and update mobile app screens to the customization project.

You can open the editor on the Mobile Application page of the Customization Project Editor in one of
the following ways:

e If you want to add a new screen to the mobile app, click Customize > Add New Screen.
e If you want to update the main menu of the mobile app, click Customize > Update Main Menu.

e If you want to update a screen that is already mapped to the mobile app, click Customize >
Update Existing Screen.

An example of the editor's appearance is presented on the following screenshot.

Update: MENU
B) EXPORTPREVIEW AS XML

Commands Result Preview

1 {
2 item "AR301000" {

a| 3}

Errors

Figure: Editing the main menu of the mobile app
For more details on using the Mobile App Editor, see Working with Mobile Framework.
Related Links

® Mobile Application

XML Editors

In the database, the platform keeps each item of the customization project in XML format.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5dacbf34-ac82-41b4-b498-839c173f587c

| Acumatica Customization Platform | 89

The platform provides the following tools for experienced users to edit the content of a customization
project in XML format:

® Project XML Editor

e [tem XML Editor

Project XML Editor

You can use the Project XML Editor to edit and review the content of a customization project in XML
format.

To open the editor, in the Customization Project Editor, click File > Edit Project XML on the menu
(see the following screenshot).

Q Acumatica
Publish Extension Library Source Contrel

Manage Customization Projects ut Editor: AR303000 (Customers)
Edit Project XML

PREVIEW CHANGES ACTIONS «

Edit Project ltems
Export Project Package I 4 Properties | Attributes | Events | Add Controls | Add Data Fields =
Replace frem Package
ataSource: CustomerMaint c =+ Y
AR.ARTran R Eorm: BA :
CR Contact Override Property Value
» Tab: (IS =
S0.800rder . - Base Properties
» Dialogs
~ CODE) D ds
ARReleaseProcess PageleadBehavior
SOInveiceEntry PrimaryView BAccount
SOOrderEntry TypeMName PX.Objects. AR.Cu
Files (5) Visible True
Manarir Inmiriae - Ext Properties

Figure: Opening the Project XML Editor
The editor page, shown in the screenshot below, contains the following UI elements:
e At the top of the page, the name of the customization project that is opened in the editor

e The page toolbar, which includes the file name of a selected deployment package (or the No file
chosen message) and the following buttons:

e Save to database: To save the XML code of the project to the database

e Download Package: To save the project locally as a deployment package ZIP file that has the
same name as the customization project

e Upload Package: To open the deployment package file whose name is currently selected and
displayed in the page toolbar

e Choose File: To select a deployment package file

e The work area of the editor

| Acumatica Customization Platform | 90

YogiFon

| Save to database | | Download Package | Upload Package || Choose File | YegiFen_L9.zip

¢Customization level="@" description="">
<Page path="~/pages/ar/ar3@3080.aspx" ControlId="3" pageScurce="7T3bctvGksB+VecfWNzKPtnlxcc5i
<PXFormView ID="DefContact" ParentId="phG_tab_Items#@ DefContact” TypeFullName="PX.Web.UI
<Children Key="Template">
<AddItem:
<PXTextEdit TypeFullName="PX.Web.UI.PXTextEdit">
<Prop Key="Virtual:ApplyStylesheetSkin™ />
<Prop Key="ID" Value="CstPXTextEdit2" />
<Prop Key="DataFisld" Value="UsrPersonalID" />
<Prop Key="CommitChanges" Value="True" />
</PXTextEdit>
</AddItem>
<AddItem:
<PXDropDown TypeFullName="PX.Web.UI.PXDropDown">
<Prop Key="Virtual:ApplyStylesheetSkin™ />
<Prop Key="ID" Value="CstPXDropDown3" />
<Prop Key="DataField" Valus="UsrPersonalIDType" />
</PXDropDown>
</AddItem>
<AddItem:
¢PXCheckBox TypeFullName="PX.Web.UI.PXCheckBox">
<Prop Key="Virtual:fpplyStylesheetSkin™ />
<Prop Key="ID" Value="CstPXCheckBox1" />
<Prop Key="DataField" Value="UsrCreditRecordVerified" />

</PXCheckBox>
</AddItem>
<PXMailEdit DataField="EMail™ Originallndex="3" />
</Children:
</PXFormview> -
4 [

Figure: Viewing the Project XML Editor page

Item XML Editor
You can use the Item XML Editor to edit and review an item of a customization project.

To open the editor, in the Customization Project Editor, click File > Edit Project Items on the menu
(see the following screenshot).

Q Acumatica
Publish Extension Library Source Control

Manage Customization Projects Editor: AR303000 (Customers)
Edit Project XML

YR AT

Export Project Package v Properties | Attributes | Events | Add Controls =
Replace from Package
. Source: CustomerMaint c =+~ 'Y
ARARTran » @ Form: BAccount
CR.Contact ~ _ Override Property Value
» & Tab: CurrentCustomer -
S0.S00rder . - [] Base Properties
b Dialogs
-~ CODE D ds
ARReleaseProcess PageloadBehavior
S0InvoiceEntry PrimaryView BAccoul
SOOrderEntry TypeName PX.0bje
Files (5) Visible True
cmm;p. Inmniriac - Ext Properties

Figure: Opening the Item XML Editor

| Acumatica Customization Platform | 91

The editor page, shown in the following screenshot, contains the following UI elements:
e The page toolbar, which contains the Save and Cancel buttons
e The list of the items in the customization project

e The work area of the editor

Edit Project ltems

T2
E [y Object Name Type Desct Excludi Created Creation Last Last
By Date Modified Modified
By On

* [PX.Objects AR ARTran DAC | admin 52712016 admin 52712016
I | PX.Objects.CR.Contact DAC O admin 5/27/2016 | admin 52712016
O | PX.Objects. SO.S00rder DAC O admin 5/27/2016 | admin BI2T2016
[d] | App_Data\Mobilelincludes\AR405000.xml.inc | File O admin 5/27/2016 | admin 512712016
@] | App_Data\Mobile\YogiFonMSM. xml File O admin 5272016 | admin B6/1/2016
[@ | Bin\YogiFon_Code.dIl File O admin 2712016 | admin 52712016
@] | Pages\ARVAR409000.aspx File [admin 5/27/2016 | admin 512712016
0] | Pages\AR\AR409000.aspx.cs File | admin 5/27/2016 | admin 512712016
I | ARReleaseProcess Code O admin 52772016 | admin BI2712016
@ | SOlnvoiceEntry Code O admin 52712016 | admin 512712016 .

Source

<DAC type="PX.Objects.AR.ARTran">»
<Field FieldName="UsrSIMCardID" TypeName="string" MapDbTable="ARTran" TextAttributes="#CDATA" Stor
<CDATA name="TextAttributes"»«![CDATA[[PXDBString(4e}]
[PXUIField(DisplayName="SIM Card ID")]
11></CDATA>
<«/Field>
¢<Field FieldName="UsrPhoneNumber" TypeMName="string" MapDbTable="ARTran" TextAttributes="#CDATA" St
<CDATA name="TextAttributes"»>«<![CDATA[[PXDBString(15}]
[PXUIField(DisplayName="Phone MNumber™)]
11></CDATA>
</Field>
<Field FieldName="UsrContractID" TypeName="int" MapDbTable="ARTran" TextAttributes="#CDATA" Storag
<CDATA name="TextAttributes"»><![CDATA[[PXDBInt]
TEYITFi=1d/Ni cnlavlame="antract TN" Frahled = Fal=ai1115¢ /MNATAS

Figure: Viewing the Item XML Editor page

Source Code Browser

You can explore the source code of the Acumatica ERP application on the Source Code (SM204570)
form, which is shown in the following screenshot.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2e58bb02-40c0-47c6-8cea-78607cccc4e1

| Acumatica Customization Platform | 92

o Acumatica YOGIFON ORGANIZATION FINANCE SYSTEM 6/1/2016 11:39 AM ADMIN
Management ntegraticn Automation Customization
Customization 4« &£ Yogifon ~ Source Code CUSTOMIZATION ~ HELP +

Search Screen Aspx | Business Logic | Data Access | Find in Files | Website Sources

ScreenlD SM204505 - Customization Projects o

- WMANAGE
Customization Projects -

Generic Inguiry N

<%@ Page Language="C#" MasterPageFile="~/MasterPages/ListView.master" RutcEventWireup=

Lists as Entry Points ValidateRequest="false" CodeFile="SM204505.aspx.cs" Inherits="Pags SMZ204505"
Pivot Tables Title="Untitled Page" %>
Dashhboards

ID="gontl"™ C tFlaceHolderID="
ce ID="ds" Visible="Trus" Width="
ommands>

Site Map

"server" PrimarvView="

Portal Map

Filters
+~ EXFLORE <px:PXDSCallbackCommand
<3-—<px:F¥D3CallbackCormand Mame="Delete" Visikle="Falsze" />——-%>
|| Source Code <%-—«<px:PXD5CallbackCommand Name="Firsc" StartNewGroup="True" PostData="5¢

<px:PXDS5CallkackCommand Hame="view" CommitChan ™ D ndCnGrid="gr:
<%——<px:PEDSCallbackCommand Name="import" CommitChanges="true" PopupPanel
<%-—<px:PXD5CallkbackCommand PopupPanel="UplcadPackagePanel" Name="actionlr
<px:PXD5CallkackCommand Hame="actionPuklish" CommitChanges="trus" Repaint

«</CallbackCommands:
</px:PXDataSource>
</asp:Content>
<asp:Content ID="cont2" ContentPlaceHolderID="phL" runat="Server">

...... L

Figure: Viewing the Source Code form
You can open the browser in the following ways:

e From the Element Properties Dialog Box, by selecting one of the following commands in the Actions
menu:

e View ASPX Source: To explore the source code of current form

e View Business Logic Source: To explore the source code of the business logic controller
(BLC) that is bound to the current form

e View Data Class Source: To explore the source code of the data access class (DAC) that
contains the data field of the inspected element

e From the Data Class Editor, by clicking View Source on the page toolbar

e From the Code Editor, by clicking View Source on the page toolbar

® From the Screen Editor, by clicking View Source on the toolbar of the Attributes or Events tab
You can use the Source Code browser for the following purposes:

e To search for the following types of source code:

e ASPX code, by the screen ID or by the screen title. You can search by any part of an ID or of a
title.

| Acumatica Customization Platform | 93

® C# source code of a BLC or DAC, by the class nhame. You can also type any part of the name
and select the name from the list of names that match your search string.

® Any source code, by a text fragment.

To download a ZIP file with the source code for the website

Customization Framework

The programming framework of the Acumatica Customization Platform, like Acumatica Framework, is

intended for developers experienced in C#.NET. Because the application objects of Acumatica ERP are
built on top of Acumatica Framework, the developers need to learn both the programming frameworks
to be able to effectively develop quality customizations.

When you have to customize an instance of Acumatica ERP, first you must determine the scope of the
customization. For each form that works with data from the database, the instance of Acumatica ERP
must contain at least the following objects (see the diagram below):

An ASPX page: The page must contain, at minimum, the data source control and a control
container with controls for data fields.

A business logic controller (BLC, also referred to as graph): The graph must be specified in the
TypeName property of the data source control of the page. The graph must contain at least one
data view, which is specified in the primaryview property of the data source control as well as in
the DataMember property of the control container. The graph instance is created on each round
trip and initializes the creation of the data view instance based on a BQL statement. The data view
provides data manipulations and data flows between the container control, the cache object of the
graph, and the corresponding table of the database. The BQL statement contains a reference to at
least one data access class that is required to map the database table to data records in the cache
object.

A data access class (DAC): On each round trip, the DAC instance is created in the cache object
when the data view processes any operation with the corresponding data.

A table in the database: The table is mapped to the data access class that defines the data record
type in the cache object of the graph instance.

| Acumatica Customization Platform | 94

MyTable MyGraph graph MyPage.aspx page
table
PXDataSource
: Cache control
(]
ID =ds =1
u MyTabl i i
u - o VA s ammam I:IT;IEH EEEEEEN = ————— = TypeName = MyGraph I
L DAC e PrimaryView = MyDV :
n
. i
= = '
MyField a S !
column Container '
- MyDV data view * i
[] Dat DataSourceID = ds Lt
a -
: ﬁa‘ Methods to manipulate data ‘ DataMember = MyDV
]
= [|
- -
: BaL ‘ MyTable DAC reference ‘
]
-]
(]

Figure: Objects required for a form that works with data from a database table

By using the Acumatica Customization Platform, you can create or customize each of the object types
listed above.

Customization of ASPX Pages

To change the layout and behavior of an Acumatica ERP form, you must customize the corresponding
ASPX page. However for customizing an ASPX page, the platform uses an approach that does not
require you to change the original ASPX code of the Acumatica ERP form. Instead, the platform can
apply the .aspx file with the same name from a special subfolder within the website folder, if this file
exists. At run time, while the platform is processing a request to open a form, the platform first tries
to find the needed .aspx file inside this subfolder to use it instead of the original file. If the file with
customized ASPX code is found, the platform opens the customized form. Otherwise, the original form
is opened.

To cancel a customization of a page, you need only to delete the file with the appropriate name from
the subfolder.

Customization of Application Classes (BLCs and DACs)

To provide the ability to customize the functionality or business logic of a form, the platform uses the
technology based on class extensions. With this technology, to customize a BLC or DAC, the platform
does not change the original code of Acumatica ERP. Instead, the platform uses an additional C# file
for each class extension.

At run time, the platform automatically detects a class extension during the first initialization of the
base (original) class. If an extension is found, the platform replaces the base class with the merged
result of the base class and the extension that was found.

To cancel a customization of business logic, you need only to delete the file that contains the
appropriate class extension.

This approach makes it easy to apply and cancel any customization of business logic in Acumatica ERP.

| Acumatica Customization Platform | 95

Customization of the Database Schema
The platform provides the following capabilities that you can use to customize the database schema:

® You can create an SQL script to execute while the customization is applied to an instance of
Acumatica ERP.

® You can create a custom bound field to add the corresponding column to a table while the
customization is applied to an instance of Acumatica ERP.

® You can define the UpdateDatabase () method of a class derived from the CustomizationPlugin
class to execute an SQL script or a stored procedure from the C# code after the customization is
applied to an instance of Acumatica ERP. (See Custom Processes During Publication of a Customization
for details.)

In This Chapter

® Changes in Webpages (ASPX)

® Changes in the Application Code (C#)
® Changes in the Database Schema

® Custom Processes During Publication of a Customization

Changes in Webpages (ASPX)

To customize the look and behavior of an Acumatica ERP form, you need to change the ASPX code of
the form. Because you need to include all the changes in a customization project, you have to perform
the form customization by using the Screen Editor of the Customization Project Editor.

To collect all the changes that you make while you customize a form, the Screen Editor creates a Page
item with a name that corresponds to the form ID, and includes the item in the currently selected
customization project. This item contains XML code with instructions that have to be applied to the
ASPX code of the form during the publication of the project.

For example, the following fragment of a Page item contains the XML code with the <AaddItem> tag
used to add the UsrsIMCardiD field as a column to the Transactions grid.

<PXGridLevel DataMember="Transactions"
ParentId="phG tab Items#0 grid Levels#0"
TypeFullName="PX.Web.UI.PXGridLevel">
<Children Key="Columns">
<AddItem>
<PXGridColumn TypeFullName="PX.Web.UI.PXGridColumn">
<Prop Key="DataField" Value="UsrSIMCardID" />
<Prop Key="Width" Value="160" />
</PXGridColumn>
</AddItem>
</Children>
</PXGridLevel>

In the XML code above, note that the <prop> tag is used to set the width property of the column to
160.

| Acumatica Customization Platform | 96

With the Screen Editor, you can customize any object in the ASPX code of an Acumatica ERP form and
save the resulting changeset to the customization project. To apply the customization to the website,
you have to publish the project.

For example, at the publication process, the platform transforms the XML code fragment above to the
following fragment of ASPX code.

<px:PXGridColumn DataField="UsrSIMCardID" Width="160" />

During the publication of the project, the platform applies the XML changeset to the appropriate form
to create a customized version of the .aspx file with the same name in the pages xx subfolder of the
CstPublished folder of the website. If the form ID contains the SO prefix, the customized ASPX code
is located in the \CstPublished\pages_so folder, as the following screenshot shows.

@ Uv‘ « Local Disk (C:) » Training » YogiFon >| CstPublished » pages_so |
Organize ~ Include in library = Share with = Burn MNew folder = - 1 @@
Controls - Name Date modified Type Size
CstDesigner
- 50301000.aspx 23-Jun-16 1543 ASP.NET Server Pa... 104 KB
4 CstPublished . o) .)
| 50301000.aspx.cs 23-Jun-16 15:43 Visual C# Source fi... 1KB
pages_ar
= 50303000.aspx 23-Jun-16 1543 ASP.NET Server Pa... 63 KB
pages so : -) -)
— "*] 50303000.aspx.cs 23-Jun-16 15:43 Visual C# Source fi... 1KB
Customization =
Dashboards
Frames
4 items

Figure: Viewing the files with customized ASPX code in the CstPublished folder

After the project has been published, when Acumatica ERP has to display a form, first it tries to
find the .aspx file of the form in the cstpPublished folder. If it finds it, Acumatica ERP opens the
customized version of the form instead of the original one.

Any customization of Acumatica ERP can be unpublished. If you unpublish a form customization, the
platform deletes the corresponding file in the cstPublished folder of the website.

Changes in the Application Code (C#)

In this section, you can find information about the customization of the application functionality, which
is provided by the application business logic (implemented in C# code) of data access classes and
business logic controllers.

BLC and DAC Extensions

To give you the ability to customize the functionality or behavior of a form, the Acumatica
Customization Platform uses technology based on extension models. When you are resolving a typical
customization task, you generally create extensions for original data access classes and business logic
controllers.

An extension for a business logic controller (BLC, also referred to as graph) or a data access class
(DAC) is a class derived from a generic class defined in the px.Data assembly of Acumatica ERP. To

| Acumatica Customization Platform | 97

declare an extension for a DAC, you derive a class from the pPXCacheExtension<T> generic class. To
declare an extension of a BLC, you derive a class from the PXxGraphExtension<T> generic class.

If you have created an extension for a BLC or DAC in a customization project and published the
project, the platform applies the extension to the base class at run time. During publication of the
project, all the code extensions created for an instance of Acumatica ERP in the project are saved
as C# source code files in the App RuntimeCode folder of the application instance (see the diagram
below).

|] -
Database - Website folder
]
Customization u Bin
project data : folder
|
- : PX.Objects.dll
= App-RuntimeCode il
L ile
= folder
]
DAC : I\ DAC extension || Original
extension Publication of Citfile DAC
the project
BLC I BLC extension Original
extension o Citfile BLC
.
|
]
]
]
]
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREREEE AR I FEEEEEEEEEEESRN
Initialization Initialization Cache
. . of the DAC of the BLC
Application 4 y
YY VY

Merged DAC Merged BLC

Figure: Use of DAC and BLC extensions for a customization

At run time, during the first initialization of a base class, the Acumatica Customization Platform
automatically finds the extension for the class and applies the customization by replacing the base
class with the merged result of the base class and the extension it found.

When you unpublish all customization projects, the platform deletes all the code files from the
App_ RuntimeCode folder. As a result, the platform has no custom code to merge at run time.

Multilevel Extensions

The Acumatica Customization Platform supports multilevel extensions, which are required when you
develop off-the-shelf software that is distributed in multiple editions. Precompiled extensions provide a
measure of protection for your source code and intellectual property.

The figure below illustrates the DAC extension model.

| Acumatica Customization Platform | 98

“% Table

“4 PXCacheExtension<Table>

“% PXCacheExtension<Extensionl, Table>

“% PXCachebxtension<Extension2, Extensionl, Table>

“% PXCacheExtension<Extension3,Extension2,Extensionl, Table>

“% PXCacheExtension<Extensiond, Extension3,Extension2,Extensionl, Table>

“t3 PXCacheExtension<Extension5,Extensiond, Extension3,Extension2, Extensionl, Table>

“13 PXCacheExtension<Extension6,Extension5, Extensiond, Extension3, Extension2, Extensionl, Table>

“1% PXCacheExtension<Extension7, Extension6, Extension5, Extensiond, Extension3, Extension2, Extensionl, Table>

“% PXCacheExtension<Extension8,Extension7, Extensionb, Extension5, Extensiond, Extension3, Extension2,Extensionl, Table>
“% PXCacheExtension<Extensiond,Extension8, Extension7, Extension6, Extension5, Extensiond, Extension3,Extension2, Extensionl, Table>
“i% PXCacheExtensionAttribute

Figure: DAC extension levels
The figure below illustrates the BLC extension model.

‘1 Graph

“§ PXGraphExtension<Graph>

“§ PXGraphExtension<Extensionl,Graph>

“$ PXGraphExtension<Extension2,Extensionl,Graph>

“% PXGraphExtension<Extension3,Extension2,Extensionl, Graph>

“1% PXGraphExtension<Extensiond, Extension3,Extension2, Extensionl, Graph>

“i% PXGraphExtension<Extension5,Extensiond, Extension3, Extension2, Extensionl, Graph>

“i4 PXGraphExtension<Extension6,Extension5, Extensiond, Extension3, Extension2,Extensionl, Graph>

“$ PXGraphExtension<Extension7,Extension6, Extension5, Extensiond, Extension3, Extension, Extensionl,Graph>

“1% PXGraphExtension<Extension8,Extension7,Extension6, Extension5, Extensiond, Extension3, Extension2, Extensionl, Graph>
“t% PXGraphExtension<Extension9,Extension8, Extension7,Extension6, Extension5, Extensiond, Extension3,Extension2, Extensionl, Graph>

Figure: BLC extension levels

You can use multilevel extensions to develop applications that extend the functionality of Acumatica
ERP or other software based on Acumatica Framework in multiple markets (that is, specified categories
of potential client organizations). You may have a base extension that contains the solution common to
all markets as well as multiple market-specific extensions. Every market-specific solution is deployed
along with the base extension. Moreover, you can later customize deployed extensions for the end user
by using DAC and graph extensions.

When extensions can be deployed separately, the application developer should use multiple
extension levels. Otherwise, we recommend using a single extension level.

The Order in Which Extensions Are Loaded

For each DAC or graph type, the system loads and applies extensions at run time as follows:
1. The system collects extensions for the DAC or graph type.

2. The system sorts the list of extensions in alphabetical order.

3. If there is a subscriber to the pPx.Data.PxXBuildManager.SortExtentions event, the system
passes the list of extensions in alphabetical order to this subscriber, which can sort extensions in a
custom way. A sample implementation of the subscriber is shown in the following code.

| Acumatica Customization Platform | 99

Make sure you use a stable sorting method as the following example does.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web.Compilation;
using Autofac;

using PX.Data.DependencyInjection;

namespace MyLib
{
public class ServiceRegistration : Module
{
protected override void Load(ContainerBuilder builder)
{
builder.ActivateOnApplicationStart<ExtensionSorting> () ;
}
private class ExtensionSorting
{
private static readonly Dictionary<Type, int> order = new Dictionary<Type, int>
{
typeof (MultiCurrency), 4 },
typeof (SalesPrice), 3 },

Discount), 2 1},

(
(
typeof (
(

— e -

typeof (SalesTax), 1 },

{ typeof (MyGraphExtl), -1 },
{ typeof (MyGraphExt2), -2 },
}i

public ExtensionSorting()
{
PXBuildManager.SortExtensions += StableSort;
}
private static void StableSort (List<Type> list)
{
if (list?.Count > 1)
{
var stableSortedList = list.OrderByDescending (item =>
_order.ContainsKey(item) ? order[item] : 0).ToList();
list.Clear () ;
list.AddRange (stableSortedList) ;

4. The system changes the order of dependent extensions (such as DaclExt:
PXCacheExtension<Dacl> and DaclExtExt: PXCacheExtension<DaclExt, Dacl>) so that the
higher-level extensions have higher priorities during the merge operation.

| Acumatica Customization Platform | 100

Suppose that the website folder contains five extensions of the contact DAC that are available in the
MyLib and ExternalLib namespaces, and the customization project includes an external sorter, which
sorts the extensions in a custom way. The following diagram shows how these extensions are sorted.
As a result of the sorting in this example, the first extension that is applied is MyLib.ContactExt. The
Externallib.ExtExtForContact class has the highest priority during the merge operation.

Extensions of PX.Objects.CR.Contact

MyLib

In alphabetical order Sorted by external sorter Final sorting

| public class : i |

| Externallib.ExtExtForContact MyLib.ContactExt MyLib.ContactExt

| public class Contact> |

| Externallib.ExtForContact MyLib.ContactEXtEXt MyLib.ContactEXtEXt

FrTeE : | | | |
Contact>
| MyLib.ContactExt | | MyLib.ContactEXtEXLEXt | | MyLib.ContactEXtEXtEXt |

ExternalLib | MyLib.ContactEXtEXt Externallib.ExtExtForContact Externallib.ExtForContact

Externallib.ExtForContact Externallib.ExtExtForContact

| public class : i |
| MyLib.ContactEXtEXtEXt

| public class 8 ForContact, Contact> |

Figure: Extension sorting
In This Section

® DAC Extensions

® Graph Extensions

® Run-Time Compilation

® [Extension Library

DAC Extensions

This topic explores the ways provided by the Acumatica Customization Platform to define data access
class (DAC) extensions of different levels and shows how different DAC extensions can interact.

To declare a DAC extension, you derive a class from PxCacheExtension<T>.
First-Level DAC Extension

The example below shows a declaration of a first-level DAC extension.

class BaseDACExtension : PXCacheExtension<BaseDAC>

{
public void SomeMethod ()

{
BaseDAC dac = Base;

The extension class includes the read-only Base property, which returns an instance of the base DAC.
Second-Level DAC Extension

The example below shows a declaration of a second-level DAC extension.

| Acumatica Customization Platform | 101

class BaseDACExtensionOnExtension :
PXCacheExtension<BaseDACExtension, BaseDAC>

public void SomeMethod ()

{
BaseDAC dac = Base;
BaseDACExtension dacExt = Basel;

The extension class includes the following:

e The read-only Base property, which returns the instance of the base DAC

e The read-only Basel property, which returns the instance of the first-level DAC extension
Two Variants of a Higher-Level DAC Extension

A definition of an extension of a higher level has two possible variants. In the first variant, you derive
the extension class from the pxCacheExtension generic class with two type parameters, where the
first type parameter is set to an extension of the previous level. In the second variant, you derive the
extension class from the pPxCacheExtension generic class with the same number of type parameters as
the level of the extension of the new class. In this case, you set type parameters to extension classes
from all lower extension levels, from the previous level down to the base class.

First Variant of a Higher-Level DAC Extension

The example below shows the declaration of a third- or higher-level DAC extension that derives from
the PxcacheExtension generic class with two type parameters.

class BaseDACMultiExtensionOnExtension :
PXCacheExtension<BaseDACExtensionOnExtension, BaseDAC>

public void SomeMethod ()

{
BaseDAC dac = Base;
BaseDACExtensionOnExtension dacExtOnExt = Basel;

An extension class defined this way includes the following:
e The read-only Base property, which returns the instance of the base DAC

® The read-only Basel property, which returns the instance of the DAC extension from the previous
level

Second Variant of a Higher-Level DAC Extension

The example below shows a declaration of a third- or higher-level DAC extension that derives from the
PXCacheExtension generic class with three or more type parameters.

class BaseDACAdvMultiExtensionOnExtension :

| Acumatica Customization Platform | 102

PXCacheExtension<BaseDACExtensionOnExtension, BaseDACExtension, BaseDAC>

public void SomeMethod ()

{
BaseDAC dac = Base;
BaseDACExtension dacExt = Basel;

BaseDACExtensionOnExtension dacExtOnExt = Base2;

An extension class defined in this way includes the following:
e The read-only Base property, which returns the instance of the base DAC

e The read-only BaseN properties for all extension levels below the current level, where N is the
sequence number of an extension level

Attributes Hierarchy of a DAC Field

Conceptually, a DAC extension is a substitution of the base DAC. The base DAC is replaced at run time
with the merged result of the base DAC and every extension discovered.

Each extension on another extension completely overrides the DAC field attributes. The attributes
declared on the highest-level extension override all previously declared attributes.

For example, suppose that the attributes of the same DAC field are defined on different extension
levels as follows:

e In the base DAC, as shown below

[PXUIField (DisplayName = "Base Name")]
[PXDefault ("Default base value")]

e In the first-level DAC extension, as the following code shows

[PXUIField (DisplayName = "Levell Name", Visible = false)]
e In the second-level DAC extension, as shown below

[PXUIField(DisplayName = "Level2 Name")]
[PXDefault ("Default 2nd level value")]

If all the extensions are applied, any field of the second-level DAC extension will have the following
parameters specified by attributes:

® Display name: Level2 Name
® Visible: true

® Default value: Default 2nd level value

| Acumatica Customization Platform | 103

You cannot modify the same member of the base DAC in the DAC extensions of the same
level. You should use DAC extensions of different levels that successively extend one
another.

DAC Field Read and Write Operations

The Acumatica Framework can access the value of a DAC field only through an instance of the base
DAC. The instance of the DAC extension is used to get the field value only when the field is declared in
the extension and is not present in the base DAC.

To assign a value to a field, the application developer should use the instance of the base DAC. You
must use the instance of a DAC extension to assign a field value when the field is declared within the
extension and is not present in the base DAC.

In This Section
® Access to a Custom Field
® Customization of Field Attributes in DAC Extensions

® Supported DAC Extension Formats

Access to a Custom Field
You can customize a data access class (DAC) in either of the following ways (see the diagram below):

e By altering the attributes of existing fields. You can use an altered field just as you would any other
existing field.

® By declaring new (custom) fields.

| Acumatica Customization Platform | 104

PX.Objects.dll PX_Objects_<DACName>_extensions.cs
file (Bin folder) file (App_RuntimeCode folder)
<DACName> Original DAC <DACName> DAC extension
Original Fields Customized Attributes Custom Fields

for the Original Fields

Cache

A 4 v

Merged DAC instance

<DACName> <DACNameExt>
Original DAC instance DAC extension instance
Original Fields Customized Custom
Attributes Fields

Figure: Analyzing the content of the merged DAC instance in the cache object

Every custom field is declared within the code of a DAC extension; therefore, at run time, the custom
field is accessible only through the DAC extension instance of the cache object.

You can access a custom field:
® [from a Method
® From a BQL Statement

® from a Field Attribute

From a Method

You can access the extension instance through the base (original) DAC object by using one of the
following generic methods:

® The GetExtension<T> (object) static generic method of the pxCache<T> generic class

® The GetExtension<T> (object) static generic method declared within the non-generic pxCache
class

There are no differences between these generic methods. You can use either one.

For example, you might access an instance of a DAC extension as follows. This example uses the row
instance of the base DAC to retrieve the rowExt DAC extension object.

DACNameExt rowExt = PXCache<DACName>.GetExtension<DACNameExt> (row) ;

| Acumatica Customization Platform | 105

To access a custom field, use the instance of a DAC extension that contains the field as follows.
The code below illustrates the use of the GetExtension<T> (object) static generic method of the
PXCache<T> generic class to access an instance of a DAC extension used to access a custom field.

var fieldValue = PXCache<DACName>.GetExtension<DACNameExt> (row) .UsrFieldName;

You can retrieve a DAC extension object or particular field from it by using the methods of pxCache,
as shown in the code below. This code demonstrates how you can access a field by using the
GetExtension<> method.

//Access to the field through the GetExtension<> method
//localCategory gets the value of the usrLocalTaxCategoryID custom field
//defined in the InventorylItemExtension DAC extension for the Inventoryltem class
protected void InventoryItem RowUpdating (PXCache sender, PXRowUpdatingEventArgs e)
{
InventoryItem row = e.NewRow as Inventoryltem;
InventoryItemExtension rowExt = sender.GetExtension<InventoryItemExtension> (row);
string localCategory = rowExt.UsrLocalTaxCategoryID;

In event handlers, you can also use the Getvalue () and GetvalueExt () methods to access the
custom field by its string name, as the code below shows.

//Access to the field through the GetValue () method
//localCategory gets the value of the usrLocalTaxCategoryID custom field
//defined in a DAC extension for the InventoryItem class
protected void InventoryItem RowUpdating(PXCache sender, PXRowUpdatingEventArgs e)
{

InventoryItem row = e.NewRow as Inventoryltem;

string localCategory = (string)sender.GetValue (row, "usrLocalTaxCategoryID");

For custom fields defined in DAC extensions, you can also use other methods of pxCache classes, such
as SetValue () and SetDefaultExt (). For more information, see the pxCache<Table> class in the API
Reference Documentation of Acumatica Framework.

You can refer to the custom field by its BQL name in any methods of Acumatica Framework.

The example below shows how you can refer to the field in the setEnabled<T> () method of the
PXUIFieldAttribute that you can use to configure the UI representation of the field at run time. For
more information on available classes and their methods, see the API Reference Documentation of
Acumatica Framework.

//The usrLocalTaxCategoryID custom field is defined
//in the InventoryItemExtension DAC extension for the InventoryItem class
protected void InventorylItem RowSelected(PXCache sender, PXRowSelectedEventArgs e)
{
InventorylItem row = e.Row as Inventoryltem;
PXUIFieldAttribute.SetEnabled<InventoryltemExtension.usrLocalTaxCategoryID> (sender,
row, true);

| Acumatica Customization Platform | 106

From a BQL Statement
In BQL expressions, you have to refer to the custom field by its BQL name in the extension class.

For example, after you have added the UsrSearchKeywords field to the InventoryItemExtension
class, which is a DAC extension for the InventoryItem class, the field is accessible in BQL, as shown in
the code below.

//The usrLocalTaxCategoryID custom field is defined

//in the InventorylItemExtension DAC extension for the InventoryItem class

PXSelect<InventoryItemExtension,
Where<InventoryItemExtension.usrLocalTaxCategoryID, IsNotNull>>

From a Field Attribute
In DAC extensions, you have to refer to a custom field by its BQL name.

After you have added the UsrSearchKeywords field to the InventoryItemExtension class, which is a
DAC extension for the InventoryItem class, the field is accessible in other DAC extensions.

For example, if you need to specify the type of the custom DAC field. For example, in attributes, you
can use the typeof operator, as shown in the code below.

//The usrLocalTaxCategoryID custom field is defined
//in the InventoryltemExtension DAC extension for the InventoryItem class

[PXSelector (typeof (InventoryItemExtension.usrLocalTaxCategoryID))]

Customization of Field Attributes in DAC Extensions

If you have a customization that replaces the original attributes of a field with custom attributes,
after you upgrade Acumatica ERP to a new version, new functionality may became unavailable, as the
following diagram shows.

| Acumatica Customization Platform | 107

Acumatica ERP (old version) Acumatica ERP (old version)
DAC Customization DAC
Field XXX Field XXX
Attribute A qummml ¢ ¢ o o o ¢ o o o mmmy| |CustomAtribute A
Attribute B Custom Attribute B
I DAC Extension
Update Field XXX (REPLACE)
Custom Attribute A
! :
Acumatica ERP (new version) Custom Atirbute B Acumatica ERP (new version)
DAC DAC
Field XXX Field XXX
Attribute A Custom Attribute A
Attribute B Custom Attribute B
prmm— eamm e ¢ ¢ ¢ © ¢ o o o
Attribute D
Attribute E

Figure: Possible result of using the Replace (default) method to customize the attributes of a DAC
field

To address this issue, the customization framework provides advanced possibilities for you to control
the field customization by using additional attributes in the DAC extension.

When you customize Acumatica ERP, you can specify how the system should apply the original and
custom attributes to the field. Thus, you can make the customizations more flexible and use the
collections of original attributes that could be updated between Acumatica ERP versions.

To specify the way the system should apply the field attributes in a DAC extension, you can use the
following attributes.

Attribute Description

PXMergeAttributes Specifies how to apply custom attributes to the
existing ones.

PXRemoveBaseAttribute Removes the specified existing attribute.

PXCustomizeBaseAttribute Defines a new value for the specified attribute
parameter.

PXCustomizeSelectorColumns Defines the new set and order of the columns in

the selector.

Application Order of the Custom Attributes

The customization attributes described above should be declared in the following order:

https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=b78b0a53-b9db-0693-66fa-7d2b432b9f38
https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=de0837e1-1429-3b5e-8ea2-4c5cf0d2033f
https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=29049e2a-2e62-71c6-2f40-513894226781
https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=4183d63c-7eca-d318-7c14-1bca9477bfec

| Acumatica Customization Platform | 108

1. PXCustomizeBaseAttribute
2. PXRemoveBaseAttribute

3. PXMergeAttributes

The PXCustomizeSelectorColumns works independently and can be declared in any place of the
attribute section.

For details on how to customize field attributes for a particular screen, see the Overriding Attributes of a
DAC field in the Graph topic.

Supported DAC Extension Formats
You can keep a DAC customization in a customization project in any of the following ways:

e As a DAC item of a customization project in XML format. When you publish the
project, the platform creates the DAC extension source code and saves the code in the
<DACItemName> extensions.cs file in the App RuntimeCode folder of the website.

The system creates the file name based on the item name by replacing all symbols
except letters and digits with the _ symbol and adding the _extensions suffix. For
example, the extension code file for the PX.0Objects.CR.Contact DAC item has the
name PX Objects CR Contact extensions.cs.

e As a Code item of a customization project that is the C# code of the DAC extension wrapped in
XML format. When you publish the project, the platform saves the code in the <CodeItemName>.cs
file in the App RuntimeCode folder of the website.

® As a .dl11 file of the extension library in the Bin folder of the website. The library contains the
binary code of the DAC extension. To deploy the extension library to the production environment
along with a customization project, you include the extension library in the project as a File item.
See Extension Library for details.

By using the Customization Project Editor, you can:

e Convert a DAC item to a Code item.

The system creates the Code name based on the DAC item name by using
the last word of the name and adding the Extensions suffix. For example, the
PX.0Objects.CR.Contact DAC item is converted to the ContactExtensions Code item.

® Move a Code item to the extension library included in the customization project as a File item.

If you have a customized data access class that is added to the project as a DAC item, then you can
click Convert to Extension on the page toolbar of the Customized Data Classes page to convert the
class changes into the class extension code used to complete the extension development in either the
Code Editor or Microsoft Visual Studio (see the diagram below).

https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=29049e2a-2e62-71c6-2f40-513894226781
https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=de0837e1-1429-3b5e-8ea2-4c5cf0d2033f
https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=b78b0a53-b9db-0693-66fa-7d2b432b9f38
https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=4183d63c-7eca-d318-7c14-1bca9477bfec

| Acumatica Customization Platform | 109

Customization Project File item
Extension
DAC item Code item Library file
DAC CONVERT TO DAC MOVE TO DAC
extension Musmsswssmmmwsapl extension EummmwmmmnnnngP extension
XML code EXTENSION C# code EXTENSION LIB binary code

Figure: Converting the code format of a DAC extension in a customization project

For a Code item included in a customization project, if you want to move the code to an extension
library to compile it into a .d11 file, you can click the Move to Extension Lib button on the page
toolbar of the Code Editor. After the operation is complete, the Code item that is currently displayed in
the work area of the Code Editor is removed from the customization project. The file with the same
source code is appended to the extension library that is bound to the customization project. If the
Code item name was CodeItemName, the name of the created file will be CodeItemName.cs.

Graph Extensions

This topic explores the ways provided by the Acumatica Customization Platform to define business logic
controller (BLC, also referred as graph) extensions of different levels, and shows how different BLC
extensions can interact.

To declare an extension of a BLC, you derive a class from PXGraphExtension<T>.
First-Level BLC Extension

The example below shows a declaration of a first-level BLC extension.

class BaseBLCExtension : PXGraphExtension<BaseBLC>

{
public void SomeMethod ()

{
BaseBLC baseBLC = Base;

The extension class includes the read-only Base property, which returns an instance of the base BLC.

Second-Level BLC Extension

The example below shows a declaration of a second-level BLC extension.
class BaseBLCExtensionOnExtension :
PXGraphExtension<BaseBLCExtension, BaseBLC>

public void SomeMethod ()
{

| Acumatica Customization Platform | 110

BaseBLC baseBLC = Base;
BaseBLCExtension ext = Basel;

The extension class includes the following:
e The read-only Base property, which returns the instance of the base BLC

e The read-only Basel property, which returns the instance of the first-level BLC extension
Two Variants of a Higher-Level BLC Extension

A definition of a higher-level BLC extension has two possible variants. In the first variant, you derive
the extension class from the PXGraphExtension generic class with two type parameters, where the
first type parameter is set to an extension of the previous level. In the second variant, you derive the
extension class from the PXGraphExtension generic class with the same number of type parameters as
the level of the extension of the new class. In this case, you set type parameters to extension classes
from all lower extension levels, from the previous level down to the base class.

First Variant of a Higher-Level BLC Extension

The example below shows a declaration of a third- or higher-level BLC extension that is derived from
the PxGraphExtension generic class with two type parameters.

class BaseBLCMultiExtensionOnExtension :
PXGraphExtension<BaseBLCExtensionOnExtension, BaseBLC>

public void SomeMethod ()

{
BaseBLC BLC = Base;
BaseBLCExtensionOnExtension prevExt = Basel;

An extension class defined in this way includes the following:
e The read-only Base property, which returns the instance of the base BLC

e The read-only Basel property, which returns the instance of the BLC extension from the previous
level

Second Variant of a Higher-Level BLC Extension

The example below shows a declaration of a third- or higher-level BLC extension that is derived from
the PxGraphExtension generic class with three or more type parameters.

class BaseBLCAdvMultiExtensionOnExtension :
PXGraphExtension<BaseBLCExtensionOnExtension, BaseBLCExtension, BaseBLC>

public void SomeMethod ()

{
BaseBLC BLC = Base;
BaseBLCExtension ext = Basel;

| Acumatica Customization Platform | 111

BaseBLCExtensionOnExtension extOnExt = Base2;

An extension class defined in this way includes the following:
e The read-only Base property, which returns the instance of the base BLC

e The read-only BaseN properties for all extension levels below the current level, where N is the
sequence number of an extension level

Conceptually, a BLC extension is a substitution of the base BLC. The base BLC is replaced at run time
with the merged result of the base BLC and every extension the platform found. The higher level of a
declaration an extension has, the higher priority it obtains in the merge operation.

In This Section

® Event Handlers

® Customization of a Data View
® Customization of an Action

® Override of a Method

® Overriding Attributes of a DAC field in the Graph

Event Handlers

The business logic associated with data modifications is implemented through event handlers. Event
handlers are methods that are executed when the pxCache objects of a particular data access class
(DAC) raise data manipulation events.

Every business logic controller (BLC, also referred to as graph) instance has a collection of event
handlers for each type of data manipulation event. Every collection is filled automatically with event
subscribers that are declared within the base (original) BLC and that meet the naming conventions of
Acumatica Framework event handlers.

With Acumatica Customization Platform, you can define new event handlers within BLC extensions. You
can define an event handler in two possible ways:

e You define the event handler in the same way as it is defined in the base BLC. As a result, the
event handler is added to the appropriate event handler collection. Depending on the event type,
the event handler is added to either the end of the collection or the start of it. When the event
occurs, all event handlers in the collection are executed, from the first to the last one.

® You define the event handler with an additional parameter, which represents the delegate for one
of the following:

e The event handler with an additional parameter from the extension of the previous level, if
such an event handler exists.

e The first item in the collection of event handlers, if no handlers with additional parameters
declared within lower-level extensions exist. The collection contains event handlers without the
additional parameter from extensions discovered at all levels.

In either case, you can decide whether to invoke the delegate.

| Acumatica Customization Platform | 112

The cacheAttached () event handler declared in the highest-level BLC extension is used
to replace base DAC field attributes. Attributes attached to the CacheAttached () event
handlers within the base BLC or its extensions are attached to the pxcache object, each
time completely replacing the previous ones, from the base BLC to the highest extension
discovered.

Event Handler Added to the End of the Collection
The following event handlers are added to the end of the collection:
® FieldUpdated(PXCache sender, PXFieldUpdatedEventArgs e)
® RowSelecting (PXCache sender, PXRowSelectingEventArgs e)
® RowSelected (PXCache sender, PXRowSelectedEventArgs e)

® RowInserted (PXCache sender, PXRowInsertedEventArgs e)

® RowUpdated (PXCache sender, PXRowUpdatedEventArgs e)

® RowDeleted (PXCache sender, PXRowDeletedEventArgs e)

® RowPersisted(PXCache sender, PXRowPersistedEventArgs e)

The system executes event handlers from the base (original) event handler up to the highest extension
level (referred to as the bubbling strategy). The lower the BLC extension's level of declaration, the
earlier the event subscriber is called. The figure below illustrates this principle.

PXCache Base 1st-level 2nd-level
Event Handler Event Handler Event Handler
|

|
Handler{sender, args) 1
Handler{sender, args}—#

Handler(sender, args) II-I

Figure: Event execution with the bubbling strategy

Event Handlers Added to the Beginning of the Collection
The following event handlers are added to the beginning of the collection:

® FieldSelecting(PXCache sender, PXFieldSelectingEventArgs e)

® FieldDefaulting (PXCache sender, PXFieldDefaultingEventArgs e)

® FieldUpdating (PXCache sender, PXFieldUpdatingEventArgs e)

| Acumatica Customization Platform | 113

® FieldVerifying(PXCache sender, PXFieldVerifyingEventArgs e)

® RowlInserting(PXCache sender, PXRowInsertingEventArgs e)

® RowUpdating (PXCache sender, PXRowUpdatingEventArgs e)

® RowDeleting (PXCache sender, PXRowDeletingEventArgs e)

® RowPersisting (PXCache sender, PXRowPersistingEventArgs e)

® CommandPreparing (PXCache sender, PXCommandPreparingEventArgs e)

® ExceptionHandling (PXCache sender, PXExceptionHandlingEventArgs e)

Event handlers are added by the system to the beginning of the collection by using the tunneling
strategy. The system executes event handlers from the highest extension level down to the base event
handler. The higher the BLC extension's level of declaration, the earlier the event subscriber is called.
The figure below illustrates this principle.

PXCache 2nd-level 1st-level Base
Event Handler Event Handler Event Handler
|

|
Handler{sender, args) 1
Handler{sender, args}—#

Handler(sender, args) II-I

Figure: Event execution with the tunneling strategy
Event Handlers with an Additional Parameter

The event handler with an additional parameter replaces the base BLC event handler collection. When
the event is raised, the system calls the event handler with an additional parameter of the highest-
level BLC extension. The system passes a link to the event handler with an additional parameter from
the extension of the previous level, if such an event handler exists, or to the first item in the event
handler collection. You use a delegate as an additional parameter to encapsulate the appropriate event
handler.

The Acumatica Framework provides the following delegates to encapsulate event handlers:
® PXFieldSelecting(PXCache sender, PXFieldSelectingEventArgs e)

® PXFieldDefaulting(PXCache sender, PXFieldDefaultingEventArgs e)

® PXFieldUpdating(PXCache sender, PXFieldUpdatingEventArgs e)

® PXFieldVerifying(PXCache sender, PXFieldVerifyingEventArgs e)

® PXFieldUpdated (PXCache sender, PXFieldUpdatedEventArgs e)

| Acumatica Customization Platform | 114

® PXRowSelecting (PXCache sender, PXRowSelectingEventArgs e)

[J PXRowSelected (PXCache sender, PXRowSelectedEventArgs e)

® PXRowInserting (PXCache sender, PXRowlInsertingEventArgs e)

® PXRowlInserted (PXCache sender, PXRowInsertedEventArgs e)

® PXRowUpdating (PXCache sender, PXRowUpdatingEventArgs e)

® PXRowUpdated (PXCache sender, PXRowUpdatedEventArgs e)

® PXRowDeleting (PXCache sender, PXRowDeletingEventArgs e)

[J PXRowDeleted (PXCache sender, PXRowDeletedEventArgs e)

® PXRowPersisting (PXCache sender, PXRowPersistingEventArgs e)
® PXRowPersisted (PXCache sender, PXRowPersistedEventArgs e)

® PXCommandPreparing (PXCache sender, PXCommandPreparingEventArgs e)

® PXExceptionHandling (PXCache sender, PXExceptionHandlingEventArgs e)

For example, for the Fieldverifying event, the event handler with an additional parameter looks like

FieldVerifying (PXCache sender, PXFieldVerifyingEventArgs e, PXFieldVerifying del).

You can execute del () to invoke the event handler to which del points, or you can decide not to
invoke it. When del () points to the base BLC event handler collection, its invocation causes the
execution of the whole collection. All other event handlers in the collection are invoked sequentially
after the first handler is executed.

Suppose that you have declared event handlers as follows.

public class BaseBLC : PXGraph<BaseBLC, DAC>

{
protected void DAC RowUpdated (PXCache cache, PXRowUpdatedEventArgs e)

{

protected void DAC Field FieldVerifying (PXCache sender, PXFieldVerifyingEventArgs e)
{

public class BaseBLCExt : PXGraphExtension<BaseBLC>

{
protected void DAC RowUpdated (PXCache cache, PXRowUpdatedEventArgs e)

{

protected void DAC Field FieldVerifying (PXCache sender, PXFieldVerifyingEventArgs e)

| Acumatica Customization Platform | 115

protected void DAC RowUpdated (PXCache cache, PXRowUpdatedEventArgs e, PXRowUpdated del)
{
if (del !'= null)
del (sender, e);

protected void DAC Field FieldVerifying(PXCache sender, PXFieldVerifyingEventArgs e,
PXFieldVerifying del)

{
if (del != null)
del (sender, e);

public class BaseBLCExtOnExt : PXGraphExtension<BaseBLCExt, BaseBLC>

{
protected void DAC RowUpdated (PXCache cache, PXRowUpdatedEventArgs e)

{

protected void DAC Field FieldVerifying(PXCache sender, PXFieldVerifyingEventArgs e)
{

protected void DAC RowUpdated (PXCache cache, PXRowUpdatedEventArgs e, PXRowUpdated del)

{
if (del != null)
del (sender, e);

protected void DAC Field FieldVerifying(PXCache sender, PXFieldVerifyingEventArgs e,
PXFieldVerifying del)

{
if (del != null)
del (sender, e);

In this case, the RowUpdated and Fieldverifying event handlers are invoked in the appropriate
sequences, explained below.

The following figure illustrates the order in which the RowUpdated events are invoked.

| Acumatica Customization Platform | 116

2nd-evel 1st-level Base 1st-level 2nd-level
Event Handler Event Handler Event Handler Event Handler Event Handler
I] 1
Raise(sender, args, deljm :

Raise(sender, args) b.

Raise(sender, argsj—>l
Raise(sender, args)—m

1
|

[

|

I

|

I

I

[1

I I

I I

| |

| e ——————————— 4 Y —— =
[I

| |

ke |

- |

|

|
Raise{sender, args, deljrg :
|
|
|
|

Figure: The order of the RowUpdated event handler execution

The following figure illustrates the order in which the Fieldverifying events are invoked.

e 2nd-level 1st-level 2nd-level 1st-level Base
SEHS Event Handler Event Handler Event Handler Event Handler Event Handler
I]]
Raise(sender, args, deljm :

Raise(sender, args) [

Raise(sender, args]—b~l
Raise(sender, args)

1
|

[

|

I

I

[

I

I 1

| l »>
I I

I I

| e ———— — — S S

I I

[I

le |

[|

|

|
Raise(sender, args, deljpg :
|
|
|
|

Figure: The order of the FieldVerifying event handler invocation

Customization of a Data View

The platform provides a way to alter or extend the data views defined in a BLC.

A data view is a pxSelect BQL expression declared in a BLC for accessing and manipulating
data. A data view may contain a delegate, which is an optional graph method that executes
when the data view is requested. Every data view is represented by the pxview object and
placed in the Views collection of the appropriate BLC. To construct an instance of the pPxview
class, you use a pxselect BQL expression and an optional delegate from the highest-level
extension discovered.

Suppose that you have declared the Objects data view within the base BLC, as shown below.

public class BaseBLC : PXGraph<BaseBLC, DAC>

{
public PXSelect<DAC> Objects;

You can alter a data view within a BLC extension in the following ways:

e By altering the data view within a BLC extension. A data view that is redeclared within a BLC
extension replaces the base data view in the Views collection of the BLC instance. Consider the
following example of a first-level BLC extension.

| Acumatica Customization Platform | 117

public class BaseBLCExt : PXGraphExtension<BaseBLC>
{
public PXSelectOrderBy<DAC,
OrderBy<Asc<DAC.field>>> Objects;

The Views collection of a BLC instance contains the pxview object, which uses the objects data
view declared within the first-level extension, instead of the data view declared within the base
BLC.

A data view redeclared within a BLC extension completely replaces the base data view
within the Views collection of a BLC instance, including all attributes attached to the data
view declared within the base BLC. You can either attach the same set of attributes to
the data view or completely redeclare the attributes.

By declaring or altering the data view delegate in a BLC extension. The new delegate is attached to
the corresponding data view. Consider the following example of a second-level BLC extension.

public class BaseBLCExtOnExt : PXGraphExtension<BaseBLCExt, BaseBLC>
{
protected IEnumerable objects ()

{
return PXSelect<DAC>.Select (Base) ;

The Views collection of a BLC instance contains the pxview object, which uses the objects data
view declared within the first-level extension, with the objects () delegate declared within the
second-level extension (see the screenshot below).

1st-level

Base

Data View
|

—Select{}+:

Data View

Figure: The interaction among the levels of a BLC extension

To query a data view declared within the base BLC or a lower-level extension from the data
view delegate, you should redeclare the data view within a BLC extension. You do not need to

| Acumatica Customization Platform | 118

redeclare a data member when it is not meant to be used from the data view delegate. Consider
the following example of a second-level BLC extension.

public class BaseBLCExtOnExt : PXGraphExtension<BaseBLCExt, BaseBLC>
{
protected IEnumerable objects ()

{

return Base.Objects.Select();

The new delegate queries the data view declared within the base BLC. Having redeclared the data
view within the first-level extension, you prevent the data view execution from an infinite loop (see
the following screenshot).

1st-level Data 2nd-level Base
View Data View

|

—Select(}I—I-:
|
|
: =
|

Figure: The view of the base BLC from the second-level delegate

| Acumatica Customization Platform | 119

If a data view declared within the base BLC contains a delegate, this delegate also gets
invoked when the data view is queried from the new delegate (see the following figure).

1st-level 2nd-level Base Base
Data View Delegate Data View Delegate
[
Select()—» :
|

[
|
|
|
|
|
|
|
g

Figure: The view with the delegate of the base BLC from the second-level delegate

Customization of an Action

The platform provides a way to alter or extend an action defined in a business logic controller (BLC,
also referred as graph).

An action is a BLC member of the pxaction type. An action always has the delegate defined.
Every action is represented by the pxaction object and placed in the Actions collection of
the appropriate BLC. To construct an instance of the pxaction class, you use a BLC member
of the pxaction type and a delegate from the highest-level extension discovered.

Suppose that you have declared the Objects data view and the validateObjects action within the
base BLC, as shown below.

public class BaseBLC : PXGraph<BaseBLC, DAC>

{
public PXSelect<DAC> Objects;

public PXAction<DAC> ValidateObjects;
[PXButton]

[PXUIField (DisplayName = "Validate Objects")]
protected virtual void validateObjects ()

{

}

You can alter actions within BLC extensions in the following ways:
e By overriding action attributes within a BLC extension.

To override action attributes in a BLC extension, you should declare both the BLC member of the
PXAction type and the delegate. You should attach a new set of attributes to the action delegate.
Also, you need to invoke the press method on the base BLC action. Having redeclared the member

| Acumatica Customization Platform | 120

of PxAction<>, you prevent the action delegate execution from an infinite loop. Consider the
following example of a first-level BLC extension.

public class BaseBLCExt : PXGraphExtension<BaseBLC>
{

public PXAction<DAC> ValidateObjects;

[PXButton]

[PXUIField (DisplayName = "Validate All Objects")]

protected void validateObjects ()

{

Base.ValidateObjects.Press();

The Actions collection of a BLC instance contains the validateObjects action, which consists of
the pxaction type member and the delegate, both of which were declared within the first-level
extension (see the following figure).

When overriding an action delegate within a BLC extension, you completely
redeclare the attributes attached to the action. Every action delegate must have
PXButtonAttribute (or the derived attribute) and pxuIFieldAttribute attached.

1st-level 1st-level Base Base
PXAction Member Delegate PXAction Member Delegate
I
(> '

Press I

B
|

Figure: The interaction among the first-level and base actions
By overriding the action delegate within the BLC extension.

The new delegate is used by the appropriate action. Consider the following example of a second-
level BLC extension.

public class BaseBLCExtOnExt : PXGraphExtension<BaseBLCExt, BaseBLC>
{

[PXButton]

[PXUIField(DisplayName = "Validate Objects")]

protected void validateObjects ()

{

}

| Acumatica Customization Platform | 121

The Actions collection of a BLC instance contains the validateObjects action, which consists of
the pxaction<> type member declared within the first-level extension and the delegate declared
within the second-level extension. To use an action declared within the base BLC or the lower-level
extension from the action delegate, you should redeclare the action within a BLC extension. You do
not need to redeclare an action when it is not meant to be used from the action delegate.

1st-level 2st-level Base Base
PXAction Member Delegate PXAction Member Delegate
I
(>

[
Press I
|

B
|

Figure: The case when you don't need to redeclare an action

To modify the same member of the base BLC or any BLC extension, you should use
extensions of higher levels.

Override of a Method
The platform provides a way to override a method of a BLC.

Suppose that you need to override the persist method of the BaseBLC class, which is defined in the
code below.

public class BaseBLC : PXGraph<BaseBLC>
{

public virtual void Persist ()

{

You can override the method within a BLC extension as follows.

public class BaseBLC Extension : PXGraphExtension<BaseBLC>
{

public delegate void PersistDelegate();

[PXOverride]

public void Persist (PersistDelegate baseMethod)

{

baseMethod () ;

| Acumatica Customization Platform | 122

The graph extension should include the declaration of the base method delegate, the pxOverride
attribute, and the overridden method, which invokes the base method delegate, as the code above
shows.

Because the pxoverride attribute on the declaration of the method is included in the graph extension,
it forces the system to override the original method in the graph instance. Otherwise, the overridden
method will never be invoked.

Overriding Attributes of a DAC field in the Graph

You can override one attribute or multiple attributes of a DAC field for a particular screen without
changing the existing behavior of the attribute or attributes for all other screens.

You can do the following to override the attributes of a DAC field:
® Replace the whole set of attributes

e Append an attribute

e Override a single property of an attribute

® Replace one attribute with another

To override attributes, you should declare a cacheAttached event handler in the graph that
corresponds to the screen for which you want to change the DAC field's behavior. With the declared
CacheAttached event handler, you use special attributes, depending on what you want to do with the
original attributes, as described in the following sections.

Replacing the Whole Set of Attributes
To override all attributes at once, you should only declare a cacheAttached event handler in the graph.

Suppose that the original DAC field attributes are declared as shown in the following code.

public class ARInvoice : IBglTable
{
[PXDBDecimal (4)]
[PXDefault (TypeCode.Decimal, "0.0")]
[PXUIField (DisplayName = "Commission amount")]
public virtual Decimal? CommAmt
{

get;
set;

To override a DAC field by using the cacheAttached event handler, in the graph corresponding to the
screen whose behavior you want to change, declare the cacheAttached event handler for the field. The
event handler must be named according to the standard conventions for naming graph events that is
described in the Event Handlers topic.

For the commamt field, the code for the event handler looks like the following.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=cd34176b-2ab9-42cc-890c-b6cb42cd433e

| Acumatica Customization Platform | 123

[PXDBDecimal (4)]

[PXDefault (TypeCode.Decimal, "0.0")]

[PXUIField (DisplayName = "Commission Amount")]

[PXAdditionalAttribute (NecessaryProperty = true)]

protected virtual void ARInvoice CommAmt CacheAttached (PXCache sender) { }

In this example, we added the pxadditionalAttribute to the list of the commamt field attributes.

The set of attributes on the cacheAttached handler redefines the whole set of attributes placed on the
specified DAC field. This results in undesired copying of all unmodified attributes, and the DAC and the
graph no longer act synchronously. Therefore, we do not recommend using this method unless you
intend to override all attributes of a field.

Appending an Attribute

Acumatica Framework provides a special attribute called PXMergeAttributesAttribute. When placed on
a CacheAttached event handler for the corresponding DAC field, this attribute allows gives you the
ability to reuse the existing attributes of a DAC field.

To append an attribute, you declare the cacheattached event handler with the pxMergeaAttributes
attribute and the new attribute (or attributes), as shown in the following code.

[PXMergeAttributes (Method = MergeMethod.Append)]
[PXAdditionalAttribute (NecessaryProperty = true)]
protected virtual void ARInvoice CommAmt CacheAttached (PXCache sender) { }

This example works similarly to the previous one: It adds the pxadditionalAttribute attribute to the
list of the commamt field attributes, but without code duplication.

Overriding a Single Property of an Attribute

Acumatica Framework provides a special attribute called PXCustomizeBaseAttribute. When placed on a
CacheAttached event handler for the corresponding DAC field, this attribute gives you the ability to
redefine a single property of an attribute.

For example, suppose that you need to change the Ul display name from Commission Amount to
Base Currency Commission for only one screen. The code should look like the following.

[PXMergeAttributes (Method = MergeMethod.Append)]
[PXCustomizeBaseAttribute (typeof (PXUIField),

nameof (PXUIFieldAttribute.DisplayName), "Base Currency Commission")]
protected virtual void ARInvoice CommAmt CacheAttached (PXCache sender) { }

This example reuses the existing attributes by using the pxMergeAttributes attribute and redefines
the PxUIFieldAttribute attribute by using the pxCustomizeBaseAttribute attribute.

Replacing One Attribute with Another

Acumatica Framework provides a special attribute called PXRemoveBaseAttribute. When placed on a
cacheAttached event handler for the corresponding DAC field, this attribute gives you the ability to
remove the specified attribute.

For example, suppose that you need to replace pXxDefaultAttribute with PXDBDefaultAttribute for
only one screen. Further suppose that the original field declaration looks the one shown in the following
code.

https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=b78b0a53-b9db-0693-66fa-7d2b432b9f38
https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=29049e2a-2e62-71c6-2f40-513894226781
https://help.acumatica.com/Main?ScreenId=ShowWiki&pageid=de0837e1-1429-3b5e-8ea2-4c5cf0d2033f

| Acumatica Customization Platform | 124

[Site (DisplayName = "Warehouse ID",
DescriptionField = typeof (INSite.descr))]

[PXDefault (typeof (SOShipment.siteID),
PersistingCheck = PXPersistingCheck.Nothing)]

public virtual Int32? SiteID { get; set; }

Then replacing PxDefaultAttribute with PXDBDefaultAttribute looks as shown in the following
code.

[PXMergeAttributes (Method = MergeMethod.Append)]
[PXRemoveBaseAttribute (typeof (PXDefaultAttribute))]
[PXDBDefault (typeof (SOShipment.sitelID),

PersistingCheck = PXPersistingCheck.Nothing)]
protected void SOOrderShipment SiteID CacheAttached(PXCache sender) { }

In this example, all existing attributes are reused by the pxMergeAttributes attribute, the
PXDefaultAttribute is removed by the PXRemoveBaseAttribute attribute, and the new PXDBDefault
attribute is declared.

Run-Time Compilation

If you have created an extension for a business logic controller or a data access class in a
customization project, during the project publication, the Acumatica Customization Platform stores the
code of the class extension in a .cs file within the App_RuntimeCode folder of the website.

At run time, the platform compiles the code in a separate library that is dynamically merged with the
original classes. Run-time compilation is used by default for the code of the DAC and Code project
items. (See Types of Items in a Customization Project for details.)

Publication of a customization updates the files in the App_ RuntimeCode folder of the website. Unlike
when the Bin folder is updated, update of files in the App RuntimeCode folder doesn't cause the
application domain to restart. (See Performing the Publication Process for details.)

Extension Library

An extension library is a Microsoft Visual Studio project that contains customization code and can be
individually developed and tested.

To move your code from your customization project to an extension library, you should first create an
extension library and then move desired Code and DAC items to the extension library. After that you
can develop your extension library in Visual Studio. See the following topics for details:

® To Create an Extension Library
® To Convert a DAC Item to an Extension Library
® To Move a Code Item to the Extension Library

If you need to deploy the customization code of an extension library to another system, you have to
add the library to a customization project as a File item to include it in a customization package. See To
Add a Custom File to a Project for details.

An extension library .d11 file must be located in the Bin folder of the website. At run time during the
website initialization, all the .d11 files of the folder are loaded into the server memory for use by the

| Acumatica Customization Platform | 125

Acumatica ERP application. Therefore, all the code extensions included in a library are accessible from
the application.

During the first initialization of a base class, the Acumatica Customization Platform automatically
discovers an extension for the class in the memory and applies the customization by replacing the base
class with the merged result of the base class and the discovered extension.

| -

Database | Website folder
u

Customization = Bin
project data : folder

|
: wocdll Extension PX.Objects.dll
c Library file file
|

xxx.dll :

File item = DAC Original
u extension DAC

‘llllll.llllllll

|
. BLC Original
o extension BLC
-
|
u
u
u
u

Initialization Initialization Cache
of the DAC of the BLC
\ AR 2

Merged DAC Merged BLC

Application

Figure: Actual approach to the use of an extension library for a customization

The use of extension libraries that are precompiled provides a measure of protection for your source
code and intellectual property.

Extension Library (DLL) Versus Code in a Customization Project

While you are developing source code for a customization task, you can either keep the code in the
customization project as DAC and Code items or move the code to an extension library and include the
library in the project as a File item.

DAC and Code items are saved in the database, and, if the customization project is published, in the
files located in the app RuntimeCode folder of the website. Acumatica Customization Platform compiles
all the code located in this folder at run time.

We recommend that you keep the source code in the customization project only if the customization is
elementary, such as if the code contains an event handler for a control on a form. When you work with
a code item, it is easy to view the code of the applied customization directly in the Code Editor without
Microsoft Visual Studio. However, if you are solving a complex customization task, it is generally better
to develop the solution code in an extension library by using Visual Studio.

| Acumatica Customization Platform | 126

You can use Visual Studio to develop a Code item as well as code in an extension library. But the
IntelliSense feature in Visual Studio is not available for the source code of a Code item if the code
either uses custom fields or invokes members of class extensions defined in other Code and DAC items.

You can later customize deployed extensions for the end user by means of code extensions. Therefore,
if the customization is compiled to an extension library, more than one customization can be applied to

a single Acumatica ERP form.

If you have a custom DAC or a DAC extension in one customization and an extension of
this custom DAC or a higher-level DAC extension in another customization, a publication of
the second customization will fail if the customizations are published in the wrong order. To
resolve the issue, convert the DAC extension in the second customization to an extension
library. With this approach, no code will be generated during publication, and the order of
publication is not important. See To Convert a DAC Item to an Extension Library for details.

The following table shows the differences in the use of the code in DAC and Code items and in an

extension library.

Code in DAC and Code items

Code in an Extension Library

Best for:

Quick start of a customization

Development of a customization
project when more than one de-
veloper is involved

Primary storage:

Database

File system

Location within the website fold-
er:

App RuntimeCode

Bin

Intellectual property protection:

No—the source code is open in
the deployment package

Yes—the source code is not pro-
vided in the deployment pack-
age

trol system:

Run-time compilation without Yes No

the application domain being

restarted:

Editor: Code Editor, Visual Studio Visual Studio
IntelliSense feature in Visual No Yes

Studio:

Debugging: Yes Yes
Integration with a version con- |Yes Yes

Additional:

Can be moved to an extension
library when needed

To make a decision about how to work with the code, you should consider the following questions:

e How much code will be in the customization project?

e Is there a need for replicability of the customization?

e How many developers will take part in coding?

| Acumatica Customization Platform | 127

e Do you need to open the source code in the production environment?

We recommend that you use an extension library if any of the following conditions is met:

® You intend to have more than five class extensions for business logic controllers.

® The customization will be deployed on more than one system.

e The customization code will be developed by a team that needs to use a version control system.

® You have a reason to protect the intellectual property of the source code of the solution.

Changes in the Database Schema

The Acumatica Customization Platform permits the following changes to the database in the scope of a
customization project:

® Creation of custom tables
® Creation of custom columns in existing tables

® Creation of views, indexes, and other database objects
Creation of Custom Tables

We recommend that you create a custom table in the database of your development environment by
using a database administration tool, such as SQL Server Management Studio, and then import the
table schema from the database to a customization project by using the Customization Project Editor.
The project keeps the schema in XML format. While publishing the customization project, the platform
executes a special procedure to create the table by the schema, while meeting all the requirements of
Acumatica ERP.

Creation of Custom Columns in Existing Tables

To create a custom database-bound field, you add a column to the database table and declare the field
in the extension of the base (original) DAC.

The new column is appended to the original table by altering the table schema. When you create the
database-bound field by using the Data Class Editor, the platform generates the DAC extension code
for the new field and adds to the customization project the XML definition of the new column to be
created in the database. To be able to create a UI control for the new field to display on a form, you
have to publish the project to make the system create the column in the database table and compile
the customization code. After the publication, you can add the control for the new field to the form by
using the Screen Editor.

Creation of Views, Indexes, and Other Database Objects

With the platform, you can add to a customization project an SQL script to be executed during the
publication of the project. However, we recommend that you avoid doing this.

A possible result of a custom SQL script is the loss of the integrity and consistency of the
application data.

If you do add a custom SQL script, you must adhere to the following requirements for the script:

| Acumatica Customization Platform | 128

Because Acumatica ERP supports multitenancy, you must create an SQL script that correctly
creates a database object that properly specifies and uses the company mask.

You must correctly specify the attributes for the script so that the script can be executed on the
target database servers: MySQL Server, Microsoft SQL Server, or both. For details about attributes,
see Using the SQL Script Attributes.

Custom Processes During Publication of a Customization

The platform provides you the ability to execute custom processes within the instance of Acumatica
ERP at the following times during the publication of a customization project:

After website files are updated but before the website is restarted

After the customization has been published and the website is restarted

To implement such processes, you can create a class derived from the CustomizationPlugin class,
further referred to as the customization plug-in, and override one or both of the following methods,
which can be invoked at the end of the publication process:

The onPublished () method is executed right after website files are updated but before the
website are restarted. This method is invoked only if run-time compilation is enabled. In a cluster
environment, the method is invoked on each cluster node. By using this method, you can update
any files within the website except the customization code files located in the /Bin folder. For
example, you can set up your own UI styles and skins or log-in images.

The UpdateDatabase () method is executed after the customization is published and the website is
restarted. In this method, for example, you can already manipulate data in the database by using
the business logic implemented in the customization. For example, you can develop source code to
import data by using a scenario included in the customization.

In a customization project, you can include multiple classes derived from the CustomizationPlugin
class.

The platform does not provide you the ability to set the order of execution of customization
plug-ins in a published customization.

For details about how to create a class derived from the CustomizationPlugin class, see To Add a
Customization Plug-In to a Project.

| Managing Customization Projects | 129

Managing Customization Projects

A customization project is a set of changes to the user interface and functionality of Acumatica ERP. A
customization project, described more fully in Customization Project, might include the following:

e New custom forms and modifications to existing forms of Acumatica ERP
e Extensions for the business logic

e Custom reports

e Custom application configuration

e Additional files that you need for the customization

In Acumatica ERP, you manage customization projects by means of the Customization Projects
(SM204505) form, which is shown in the screenshot below. (See also Customization Projects Form for
more information.) On this form, you can add a new customization project, open a customization
project for editing in the Customization Project Editor, publish any number of customization projects,
cancel the publication of customization projects, export a customization project as the deployment
package, import a customization project from an existing deployment package, and delete a
customization project.

o Acun‘latica ORGANIZATION FINANCE DISTRIBUTION SYSTEM 2 6/27/2016 10:49AM ADMIN@COMPANY
Management nte Automation
Customization <« © Yogifon ~ Customization Projects CUSTOMIZATION ~ HELP +

Search C B -~ + X PUBLISH -~ UNPUBLISHALL IMPCRT » EXPORT VIEW PUBLISHED

« MAN E O Published * Project Name Level Screen Names Description g;’ealed Ic.).:‘sl Modified
| I Customization Projects » [AdvCstAEF PO301000,PO302000 admin 6/23/2016
Generic [nguiry O AdvUI7 IN202500 admin 6/23/2016
Lists as Entry Points m} CRMAdJdOn admin 62312016
Pivot Tables | FormActionAEF 50301000 admin 6/23/2016
Dashboards O GridActionsAEF C€S5203000 admin 6/23/2016
Site Map O KeyWords IN202500 admin 6/23/2016
Portal Map O PurchaseQrderWizard admin 6/23/2016
Filters | RapidByte admin 6/23/2016
. EXPLORE v YoqgiFon AR303000,AR405000,50301000,50303000 admin 6/23/2016
Source Code

Figure: Viewing the Customization Projects form

In MySQL, the maximum size of one packet that can be transmitted to or from a server
is 4MB by default. If you use MySQL and want to manage a customization project

with the size that is larger than the default maximum value, you have to increase the
max_allowed packet variable in the server. The largest possible packet size is 1GB.

In This Part

e 7o Create a New Project

® To Select an Existing Project
® To Open a Project

® To Update a Project

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5

To

| Managing Customization Projects | 130

® To Delete a Project

® To Export a Project

® To Import a Project

® To Replace the Content of a Project from a Package
® To Merge Multiple Projects

® To Manipulate Customization Projects from the Code

Create a New Project

Because the Acumatica Customization Platform uses a customization project as a container for the
customization items, the platform does not permit you to perform any customization without starting a
customization project.

You can create a customization project in the following ways:
® On the Customization Projects form
® From the Customization menu

® From the Element Inspector

There are no differences between these ways because the result is the same: a new customization
project with the specified name is added to the Acumatica ERP instance as a record in the database.
The platform can then use this project as a container of customization items.

Customization project name can contain the following symbols: Latin letters, numbers, dots,
underscores, and square brackets, The project name must start with a letter. For example,
the name ISVSolution[18.101.0039][18R1_2018.01.25] is valid. The names 18R1_ISV and
R1{ISV} are not valid.

Adding a Customization Project on the Customization Projects Form

To add a customization project on the Customization Projects (SM204505) form, perform the following
actions:

1. Navigate to System > Customization > Manage > Customization Projects.

2. On the form toolbar, click Add Row (+), as shown in the following screenshot, to add a row to the
list of the projects on the form.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5

| Managing Customization Projects | 131

£ Yogifon ~ Customization Projects CUSTOMIZATION ~ HELP =
c L X PUBLISH ~ UNPUBLISH ALL IMPORT ~ EXPORT VIEW PUBLISHED
B O Publisame Level Screen Names Description Created By Last Modified On
> Al TAEF PO301000.P... admin 6/23/2016
O AdvUI7 IN202500 admin 6/23/2016
O CRMAJdOn admin B/23/2016
O FormActionAEF 50301000 admin 6/23/2016
O GridActionsAEF CS5203000 admin B6/23/2016
O KeyWords IN202500 admin 6/23/2016
O PurchaseOrderWWizard admin B6/23/2016
O RapidByte admin 6/23/2016
v YogiFon AR303000.A. .. admin B/23/2016

Figure: Adding a row to the customization project list
3. In the new row, specify a unique name for the project, as the screenshot below shows.

4. Click Save on the form toolbar to save the new project in the database.

£ Yogifon ~ Customization Projects CUSTOMIZATION ~ HELP =
& L X PUBLISH v UNPUBLISHALL IMPORT ~ EXPORT VIEW PUBLISHED
E O Published * Project Name Level Screen Names Description Created By Last Modified On
. o
O AdvCstAEF PO301000,P... admin 6/23/2016
O AdvUIT IN202500 admin 6/23/2016
O CRMAddOn admin 6/23/2016
O EormActionAEF S0301000 admin 6/23/2016
O GridActionsAEF CS203000 admin 6/23/2016
O KeyWords IN202500 admin 6/23/2016
O PurchaseOrder\Wizard admin 6/23/2016
O RapidByte admin 6/23/2016
v YogiFon AR303000.A... admin 6/23/2016

Figure: Entering the new project name
Creating a Customization Project from the Customization Menu

To create a customization project from the Customization Menu, perform the following actions:

1. On any form of Acumatica ERP, click Customization > Select Project, as the following
screenshot shows (item a).

2. In the Select Customization Project Dialog Box, which opens, click New (item b).
3. In the New Project Dialog Box, which opens, enter the name of the new project (item c).

4. In this dialog box, click OK (item d) to create the project in the database and close the dialog box.

To

| Managing Customization Projects | 132

£ Yogifon - Sales Orders [NOTES ACTMITIES FILES HELP ~
- o Select Project
L + L] F- K < > b | ACTIONS ~ REFORTS -

* Order Type SO 2 * Customer 2| £ Org
C <NEW> 0O Credit Hold atic
¥ Hold * Project X - Nen-Project Cede. ol Order Total 0.00
Status On Hold Description
* Date 627712016~

Select Customization Project

*Req 62772016 ~
Customer Order. Project Name o
External Refer. . o
— OK CANCEL [yisms
Document Details | Tax Details | Commisg Shipments | Payments | Totals
New Project
c
*Branch * Inventory Free Warehouse I ‘roject Name | Proi Open Qty. Unit Price
B0 In free Project Nam | MyProject| @ ||

OK CANCEL
F

Figure: Creating a customization project from the Customization menu

Creating a Customization Project from the Element Inspector

Suppose that you have not selected a customization project. In the Element Properties Dialog Box, if you
have tried to start performing customization by clicking Customize, Actions > Customize Business
Logic, or Actions > Customize Data Fields, the inspector opens the Select Customization Project
dialog box to force you to select or create a customization project.

To create a customization project from this dialog box, perform the following actions:
1. In the dialog box, click New.
2. In the New Project dialog box, which opens, enter the name for the new project (item c).

3. In this dialog box, click OK to create the project in the database and close the dialog box.

Select an Existing Project

Because the Acumatica Customization Platform uses a customization project as a container for the
customization items, the platform does not permit you to perform any customization without starting a
customization project.

You can select an existing customization project in the following ways:

® By selecting it from the Customization menu

® By selecting it from the Element Inspector

To Select a Customization Project from the Customization Menu

To create a customization project from the Customization Menu, perform the following actions:

| Managing Customization Projects | 133

1. On any form of Acumatica ERP, click Customization > Select Project, as the following
screenshot shows (item a).

2. In the Select Customization Project Dialog Box, which opens, click the Project Name selector and
select a project name (items b and c).

3. In this dialog box, click OK (item d) to select the project and close the dialog box.

£ Yogifon ~ Customization Projects HELP ~

c v 4+ X PUBLISH~ UNPUBLISHALL IMPORT = W2ty Select Project
R RV e Scicct ProjectName X
Oa AdvCstAEF nin
O AdvUIT SELECT ¢ [l | | p| r'uin vanag tomizations
O CRMAddOn nin TEIZ32076
00 FormActionAEF B Proiect Name T | Doscriptic | Owner BT nin 612312016
O GridAclionsAEF ||| adyCstAEF admin PO30100... | Jiin 6123/2016
o KeyWords AdvUIT admin IN202500 | frin 6123/2016
O BurchaseOrdetl || crpaddon admin nin 6123/2016
o RapidByte FormActionAEF admin 50301000 | fin 6123/2016
o YogiFon >| GridActionsAEF t admin Ccs203000 | Jin 6/23/2016
KeyWords admin IN202500
PurchaseOrderWizard admin
RapidByte admin
YogiFon admin AR30300...

Project Name GridActionsAEF
0 CANCEL NEW..

Figure: Selecting a customization project from the Customization menu
To Select a Customization Project from the Element Inspector

Suppose that you have not selected a customization project. If in the Element Properties Dialog Box, you
have tried to perform customization by clicking Customize, Actions > Customize Business Logic,
or Actions > Customize Data Fields, the inspector opens the Select Customization Project dialog
box to force you to select a customization project.

To select a customization project, in the Select Customization Project dialog box, perform the
following actions:

1. In the Project Name selector, select a project name.

2. Click OK to select the project and to close the dialog box.

To Open a Project

If you have selected a customization project, you can open the project for editing in the Customization
Project Editor in the following ways:

® On the Customization Projects Form: Click the project name in the table.

| Managing Customization Projects | 134

From the Customization Menu: Click Customization > Edit Project.

From the Element Properties Dialog Box: Click Customize, Actions > Customize Business Logic,
or Actions > Customize Data Fields.

To Update a Project

If you have modified an item of a customization project in the file system by using an integrated
development environment (IDE), such as Microsoft Visual Studio, these changes may not be reflected
in the customization project yet. You have to update the project in the database before the publication
or export of the deployment package of the project.

To update a customization project, perform the following actions:

1.

2.

3.

4.

Open the project in the Customization Project Editor. (See To Open a Project for details.)
In navigation pane of the editor, select Files to open the Custom Files page.

On the page toolbar, click Detect Modified Files, as shown in the screenshot below, to review
the files included in the project that could have been modified in the file system but haven't been
updated in the customization project yet.

If at least one conflict is detected, the Modified Files Detected dialog box opens (also shown in
the following screenshot). The dialog box displays each changed file with the check boxes in the
Selected and Conflict columns selected. See Detecting the Project Items Modified in the File System for
details.

To update the selected files in the project, on the toolbar of the dialog box, click Update
Customization Project, as the following screenshot shows.

File Publish Extensicn Library Source Control
YogiFon 4 Custom Files
(& L X + DETECT MODIFIED FILES
E 0 Object Name Description Last Last
CODE Modified Mumlled
By
| Files (5) P~ .

: . > 41 App_Data\Mobilelincludes\AR 403000 xml inc admin 5127/2016
Generic Inquiries 8 App_DataillobileiYogiFonldSh xml admin | 612016
Reports BRI Modified Files Detected
Site Ma
E‘Be; q_p) @ | Page some files have been mo d in the file system. Please resclve the conflic P16

B Scripts (1) @ Pa
01| Bage | UPDATE CUSTOMIZATION PROJECT | DISCARD ALL CHANGES 18
System Locales
Import/Expert Scenarios B Selected Conflict Path
Shared Filters > % C:\Training\YogiFon_st_011App_DataMobilslincludestAR409000 xm
Access Rights E = C\Training\YogiFon_st_01tApp_DataiMobiletYogiFonlSM. xml
Wikis O C:\Training\YogiFon_st_01\App_RuntimeCode\ARReleaseProcess.cs
Web Service Endpoints] c \Tralnlng\YoglFon st DW\App RuntimeCode\PX_Objects_AR_AR ..
Analvtical Report O c \Trqlm R_Con
natieal Repots - = <t 01VApp_RuntimeCodel S0,
} PX Dbjecls AR ARTran extenmonscs
O C:\Train v cs
O Cc \Tralnmg\‘r’oglFDn st DW\App_RuntlmeCDde\SOOrderEmr\r cs
O C:\Training\YogiFon_st_01\Bin\YogiFen_Code dll
O C:\Training\YogiFon_st_01\Pages\AR\AR 403000 aspx
O C:\TrainingtYogiFon_st_01\Pages\AR\AR40%000 aspx.cs

Figure: Updating files in the project

To

| Managing Customization Projects | 135

Delete a Project

To

If a customization project is not published, you can delete the project from the instance of Acumatica
ERP by using the Customization Projects (SM204505) form.

To delete a customization project, perform the following actions:
1. Navigate to System > Customization > Manage > Customization Projects.

2. In the project list, select the row of the project that has to be deleted, as shown in the screenshot
below (item a).

3. On the form toolbar, click Delete Row (X), item b in the screenshot, to delete the selected project
from the list.

4. On the form toolbar, click Save (item c in the screenshot) to save the changes to the database.

£ Yogifon - Customization Projects CUSTOMIZATION ~ HELP =
& Lol + F'UBLISH * UNPUBLISHALL IMPORT ~ EXPORT VIEW PUBLISHED
E [] Publisk * Project Name Level Screen Names Descriptior Created By Last Modified
On

O AdvCstAEF PO301000,PO302000 admin 6/23/2018

| AdvUIT IN202500 admin 6/23/2016

i CRMAddOn admin 6/23/2018

[FormActionAEF S0301000 admin 6/23/2016

O GridActicns AEF C5203000 admin 6/23/2018

| KevWords IN202500 admin 6/23/2016

O PurchaseOrderiVizard admin 6/23/2016

| RapidByte admin 6/23/2016

v YogiFon AR303000,AR405000,S030... admin 6/28/2016

Figure: Deleting a customization project
The platform deletes from the database the project data and the data of the project items. The
platform does not delete the files and the objects that were added to the projects from the database,
such as site map nodes, reports, user access rights, and integration scenarios.

Export a Project

You can export (download) a customization project when the project is finished to deploy the
customization to the target system. Also, you can download the package to have a backup copy of the
customization project you are working on.

Before you download the package, we recommend that you make sure you have included all the
needed changes in the customization project. To do this, you take the following actions:

e Make sure that you have added all custom files to the project and uploaded the latest actual
version of the files to the project. See To Update a Project for details.

® Make sure that the database schema is updated in the customization project. See To Update Custom
Tables in the Project for details.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5

| Managing Customization Projects | 136

® Make sure you have added the needed site map nodes to the project. See Site Map for details.

® Publish the project and test the customization before downloading the deployment package, to
ensure that you have no issues.

To download the deployment package of a customization project, you should export the project. You
can export a customization project in the following ways:

® By using the Customization Projects form
® Through the Customization Project Editor

The system creates the deployment package of the project and downloads the zip file of the package
on your machine. The file has the same name as the customization project. For more information about
a deployment package, see Deployment of Customization.

Exporting a Customization Project by Using the Customization Projects
form

To export a customization project by using the Customization Projects (SM204505) form, perform the
following actions:

1. Navigate to System > Customization > Manage > Customization Projects.
2. In the project list of the form, click the row of the customization project to be exported.
The row is highlighted in the table, as the screenshot below shows.

3. Click Export on the form toolbar to export the highlighted project.

C Yogifon - Customization Projects CUSTOMIZATION ~ HELP «
& a L + X PUBLISH ~ UNPUBLISH ALL IMPCRT ~ VIEW PUBLISHED
E [| Published * Project Name Level Screen Description Created By Last Modified
Names On
O AdvCstAFF PO301000... admin 6/23/2016
O AdvUIT IN202500 admin 6/23/2016
O CRMAJdOn admin 6/23/2016
O Vv FormActiocnAEF S0301000 admin 6/23/2016 l
O GridActionsAEF CS203000 admin 6/23/2016 |
o KeyWords IN202500 admin 6/23/2016
O PurchaseOrderWiz ... admin 6/23/2016
O RapidByte admin 6/23/2016
[] YogiFon AR303000... admin 6/29/2016

Figure: Exporting a customization project

Exporting the Customization Project Opened in the Customization Project
Editor

To export the customization project that is currently opened in the Customization Project Editor, click File
> Export Project Package on the editor menu, as shown in the following screenshot.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5

To

| Managing Customization Projects | 137

Q Acumatica
Publish Extension Library Source Control

Manage Customization Projects zed Screens
Edit Project XML
Edit Project Items - X + s ADD SCREEN ~

Export Project Package Title Is New Last Modified By Last Modified On

ara fram Dan lean .00 Customers admin 6/23/2016
Replace from Package
00 Subscription Usage Details ' admin 62372016
50303000 S0301000 | Sales Orders admin 612312016
Data Access S0.30.30.00 Invoices admin 612312016
Code
Files (5)

Figure: Exporting the current customization project

Also, you can export the customization project from the Project XML Editor of the Customization Project
Editor by clicking Download Package on the page toolbar, as shown in the following screenshot.

File Publish Extensicn Library Scurce Control
YogiFon 4 .
d YogiFon
» SCREENS : _
Data Access | Save to database | || Download Package|| | Upload Package || Choose File |No file chosen
Code

<Customization level="8" description="">
Files (5) <Page path="~/pages/ar/ar3@3080.aspx" Controlld="5" pageSource="7T3bctvGks8+VecfWNzKPtnlxcc
<PXFormView ID="DefContact" ParentId="phG_tab_Items#8 DefContact™ TypeFullName="PX.lWeb.
<Children Key="Template">
Reports (1) <AddItem:>
. . <PXDropDown TypeFullName="PX.Web.UI.PXDropDown™>
Site Map (3) <Prop Key="Virtual:ApplyStylesheetSkin" />

Generic Inquiries (1)

DB Scripts <Prop Key="ID" Value="CstPXDropDown3" />
_ <Prop Key="DataField" Value="UsrPersonalIDType" />
System Locales </PXDropDown>
Import/Export Scenario: </AddItem>
. <AddItem:>
Shared Filters . <PXTextEdit TypeFullName="PX.Web.UI.PXTextEdit">
Ao [TR <Prop Key="Virtual:ApplyStylesheetSkin" />

<Prop Kev="ID" Value="CstPXTextEdit2" />

Figure: Exporting the current customization project from the Project XML Editor

Import a Project

You can import a deployment package to work with the customization project or to publish the final
customization on the target website.

You can import deployment packages of earlier versions of Acumatica ERP to Acumatica ERP
2020 R2.

To upload the deployment package of a customization project, you should import the project by using
the Customization Projects (SM204505) form. (See Customization Projects Form for more information.)

To do this, perform the following actions:

1. Navigate to System > Customization > Manage > Customization Projects.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5

To

| Managing Customization Projects | 138

2. Click Import on the form toolbar, as the screenshot below shows.
3. In the Open Package dialog box, which opens, click Choose File.
4. In the Open dialog box, which opens, select the deployment package file to be uploaded.

The name of the selected file is displayed in the File path box of the Open Package dialog box,
as shown in the screenshot.

£ Yogifon - Customization Projects CUSTOMIZATION ~ HELP =

& B -~ + X PUBLISH ~ UNPUBLISHALL HIUZeIId EXPCRT VIEW PUBLISHED

B [| Published * Project Name Level agﬁ: Description Created By Last Modified On
O AdvCstAEF PO301000.... admin 6/23/2016
O AdvUI7 IN202500 admin 6/23/2016
O CRMAddOn admin 6/23/2016 |
O ™ FormActicnAEF S0301000 admin 6/23/2016
O idActi ' 6/23/2016 |
™ 6/23/2016 [
Oa PurchaseOrg [- - - 62312016
- | File path | Choose File |AIM-CsrProj_4-2 zip o
O RapidByte 6/23/2016
L YogiFon 6/29/2016

UPLOAD

Figure: Importing a customization project

5. In the Open Package dialog box, click Upload.

The platform uploads the selected package, create the corresponding customization project, and saves
the project in the database. As the result, the new customization project appears in the list on the
Customization Projects form; therefore, you can access the project data and manage the project.

Replace the Content of a Project from a Package

You might need to upload a newer version of the customization project that has been modified outside
the system on which you are working, or upload the project from a backup copy.

You can replace the content of a customization project from a deployment package in the following
ways:

® By using the Customization Projects form

® Through the Customization Project Editor

The platform does not verify the content of a deployment package before replacing a
customization project in the database.

Replacing a Customization Project from a File by Using the Customization
Projects Form

To replace the content of a customization project from a file by using the the Customization Projects
(SM204505) form (see also Customization Projects Form), perform the following actions:

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5

| Managing Customization Projects | 139

1. Navigate to System > Customization > Manage > Customization Projects.

2. In the project list, click the row of the customization project to be updated, as the screenshot
below shows.

3. Click Import > Replace Highlighted Project Content on the form toolbar, as the screenshot
below also shows.

4. In the Open Package dialog box, which opens, click Choose File.

5. In the Open dialog box, which opens, select the deployment package file to be uploaded.

The name of the selected file is displayed in the File path text box of the Open Package dialog
box, as shown in the screenshot.

o Acumatica ORGANIZATION FINANCE DISTRIBUTION SYSTEM =t 2/14/2017 2:07 AM ADMIN
* lanagement ntegration Automation Customization
Customization « C - + X - IUEOIIRd EXPORT VIEW PUBLISHED
Search E | | Published “Project Name Level Screen Descrip mport Project ied On
Names
O LidessN CR303010 Replace Highlighted Project Content 4
+ MANAGE O POstatus P0O301000 admin 7/18/2014
| Customization Projects O test AR303020 admin 1/20/2017
Generic Inquiry > i Open Package 1172017
Lists as Entry Points =] 4/8/2016
Pivot Tables File path Choose File IYog|F0ﬂ7P77AuloTesl,Z|p
Dashboards UFLED
Site Map
Portal Map

Filters
Figure: Replacing the content of a customization project

6. In the Open Package dialog box, click Upload.
The platform uploads the selected package and replaces in the database the content of the selected
project with the content of the deployment package.

Replacing the Customization Project Opened in the Customization Project
Editor from a File

To replace the content of a customization project that is currently opened in the Customization Project
Editor, perform the following actions:

1. Click File > Replace from Package on the editor menu, as shown in the following screenshot.

| Managing Customization Projects | 140

Q Acumatica
Publish Extension Library Source Control

Manage Customization Projects zed Screens
Edit Project XML
Edit Project Items - X + ’ ADD SCREEN ~
Export Project Package Title Is New Last Modified By Last Modified On
Replace from Package] Customers admin 6/23/2016
. Subscription Usage Details ' admin 6232016
50303000 . P
50.30.10.00 Sales Orders admin 62372016
Data Access S0.303000 Invoices admin 6/23/2016
Code
Files (5)

Generic Inquiries (1)
Figure: Replacing the content of the current customization project
2. In the Open Package dialog box, which opens, click Choose File.
3. In the Open dialog box, which opens, select the deployment package file to be uploaded.

The name of the selected file is displayed in the File path text box of the Open Packagedialog
box.

4. In the Open Package dialog box, click Upload.
The platform uploads the selected package and replaces in the database the content of the selected
project with the content of the deployment package.

Also, you can replace the content of the customization project by using the Project XML Editor of the
Customization Project Editor. To do this, perform the following actions:

1. In the Customization Project Editor, click File > Edit Project XML to open the Project XML Editor
for the current customization project.

2. On the toolbar of the Project XML Editor, click Choose File.
3. In the Open dialog box, which opens, select the deployment package file to be uploaded.

The name of the selected file is displayed in the text box right of the toolbar buttons instead of the
No file chosen string (which is shown in the screenshot below).

4. On the editor toolbar, click Upload Package.

| Managing Customization Projects | 141

File Publish Extension Library Source Control
YogiFon 4 .
d YogiFon
» SCREENS
Data Access |I Save to database || | Download Package| || Upload Package l Choose File | No file chosen
Code

<Customization level="@" description="">
Files (5) <Page path="~/pages/ar/ar3e3088.aspx” ControlId="5" pageSource="7T3bctvGksB+VecfWNzKPtnlxcc
<PXFormView ID="DefContact"” ParentId="phG_tab_Items#8_ DefContact™ TypeFullName="PX.Web.
<Children Key="Template">
Reports (1) <AddItem:>
<PXDropDown TypeFullName="PX.Web.UI.PXDropDown™>

Generic Inquiries (1)

- -
Site Map (3) <Prop Key="Virtual:ApplyStylesheetSkin" />
DB Scripts <Prop Key="ID" Value="CstPXDropDown3" />
_ <Prop Key="DataField" Value="UsrPersonalIDType"” />
System Locales </PXDropDoun>
Import/Export Scenario! </AddItem>
. <AddItem>
Shared Filters . <PXTextEdit TypeFullName="PX.Web.UI.PXTextEdit"s
Ao Pl <Prop Key="Virtual:ApplyStylesheetSkin" />
b <Prop Kev="ID" Value="CstPXTextEdit2" />

Figure: Replacing the content of a customization project from the Project XML Editor
The platform uploads the selected package and displays its XML code in the Project XML Editor.

5. Explore the content of the uploaded package to ensure that this is the needed one.

6. To replace the content of the project that is currently opened in the Customization Project Editor
with the content of the uploaded package, click Save to Database on the page toolbar.

By using this approach, you can explore the content of the package before replacing the content of the
customization project that is currently opened in the Customization Project Editor.

Build a Package Based on Existing Files

You may need to build a customization package that is based on a customization project or that uses
existing files.

To do that, you can use the PX.CommandLine tool provided by Acumatica Customization Platform.
About the PX.CommandLine Tool

The PX.CommandLine tool represents an executable file (PX.CommandLine.exe) located in the \Bin
folder of your customization project.

When you run px.CommandLine.exe, you supply a set of command-line parameters where each
parameter must be presented in the following format.

parameter name "parameter value"
The PX.CommandLine tool has the following syntax.

PX.CommandLine.exe

[/website "path\to\web\site\root"]

/method BuildProject

/in "path\to\source\folder"

/out "path\to\output\file.zip"

[/include "path\to\additional\filel.ext" "relative\package\path\to\file2.ext" ...]

[/d
[/1

You

| Managing Customization Projects | 142

escription "Package description"]
evel "customization level"]

can use the following parameters:

/in: Required. The path to the folder that will be used as a base for the new customization
package. The folder may contain either a customization package that will be modified, or the files
that will be included in the new customization project.

/out: Required. The path to the customization package that you build using the PX.CommandLine
tool. The output is a .zip archive.

/website: Optional. A path to a website folder. Use this parameter if the PX.CommandLine tool
executable file is not located in the \Bin folder of your website.

/method: Required. This parameter must always have the BuildpProject value, which indicates
that the tool builds a new project. Other methods of the tool are not available.

include: Optional. The argument consists of two parameters: an absolute path to a file that
should be added to the output package, and a relative path inside the /website folder where the
file is copied after you publish the customization project. This argument may be repeated any
number of times.

/includeDirectory: Optional. The argument consists of two parameters: an absolute path to a
folder containing files that should be added to the output package, and a relative path to a folder
in the website folder where these files are copied after the customization project is published. This
argument may be repeated any number of times.

/description: Optional. A description of the output customization package.

/level: Optional. The level of the customization package, which helps Acumatica Customization
Platform to resolve conflicts while multiple customization projects are being merged. The value
must be an integer. For details about the level of a customization project, see the description of the
Level column of the Customization Projects (SM204505) form.

Building a Customization Package by Using the PX.CommandLine Tool

To build a customization package by using the PX.CommandLine tool, you execute
PX.CommandLine.exe wWith the appropriate keys.

For example, if you have a customization package located in the C:\AcumaticaSites\T300 folder and

you

want to build a customization package based on this project, the command is as shown in the

following code.

PX.
/in
/ou

This

CommandLine.exe /method BuildProject
"C:\AcumaticaSites\T300"
t "C:\AcumaticaSites\MyNewPackage.zip"

command builds a customization package and puts the resulting .zip archive in the c:

\AcumaticaSites\MyNewPackage folder.

You
dot

PX.

/in

can also build a new customization package based on a project stored in a source control folder. To
hat, execute a command that looks similar the one shown in the following code.

CommandLine.exe /website "path to Acumatica website" /method BuildProject

"path to customization source control folder"

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c525f1b9-40f1-4a8e-aba8-592d3d6cd2a4

| Managing Customization Projects | 143

/out "full name of customization file.zip"

To Merge Multiple Projects

To

As a rule, it is better to have multiple customization projects instead of a single one. But if you have
two or more customization projects that contain changesets with the same items, and if you are
sure that each project is valid and that the merged customization applies to the website properly, we
recommend that you merge the projects. You use the Customization Projects (SM204505) form as a
starting point.

To merge multiple customization projects, perform the following actions:

1. Navigate to System > Customization > Manage > Customization Projects.
2. In the project list, select the check boxes for only the projects to be merged.

3. Click Publish on the form toolbar.

4. Click View Published on the form toolbar to open the Published Customization Page.

5. Click Download Package on the page toolbar to download the Customization.zip file, which
includes the full content of the merged customization project.

The customization.zip file is the deployment package of the merged customization project. You
can use the merged project to publish the final customization project on the target website. You
can rename the .zip file to assign the needed name to the customization project. To upload the
deployment package to a target system, import the .zip file, as described in To Import a Project.

Manipulate Customization Projects from the Code

You can use the web service API for manipulating customization projects from the code. Methods of
the web service API can be used, for example, to deploy customization packages to local and remote
instances of Acumatica ERP.

For manipulating customization projects, the web service API includes the methods, which are
accessible through the SOAP API, described in the following topics:

® GetPackage() Method
® PublishPackages() Method
® UnpublishAllPackages() Method

® UploadPackage() Method

A user of an application that invokes any of these methods should be assigned the
Customizer role in the appropriate instance of Acumatica ERP. See To Assign the Customizer
Role to a User Account for details.

The web service used for manipulating customization projects is available under the URL, which is
specified in one of the following ways (see the screenshot below):

e http://<Computer Name>/<Website Name>/api/servicegate.asmx, such as http://MyComputer/
YogiFon/api/servicegate.asmx

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5

| Managing Customization Projects | 144

® http://<IP Address>/<Website Name>/api/servicegate.asmx, such as http://111.222.3.44/

YogiFon/api/servicegate.asmx

[ServiceGate Wieb Service X

« > C Ijapp,!tw—afinai,/apilservicegate.asmx|

+ EnumGraphs
« EnumTables

« EnumTablesEx

« GetPackage

« Login
s LoginEx
« Process

« ProcessBatch

« PublishPackages

+» ReportEnumNames

+« ReportEnumTableNames

+ ReportGet¥ersionXml
+ ReportGetXml

* ReportSave

+ ReportSaveEx

« ReportSave¥ersionXml

+ SetBusinessDate

« UnpublishallPackages

« UploadPackage

| Servicegate .

The following operations are supported. For a formal definition, please review the Service Description,

0O =

Figure: Accessing the web service through the browser

To use the listed methods in the code, you should create a service gate for the specified URL and log

in, as shown in the following code fragment.

var webserviceurl = "http://localhost/Acumaticalnstance/api/ServiceGate.asmx";
var username = "admin";
var password = "123";

var client = new ServiceGate.ServiceGate

Url = webserviceurl,

CookieContainer = new CookieContainer(),

Timeout = (int) TimeSpan.FromMinutes (5).TotalMilliseconds
}i
var loginResult = client.Login (username, password);
if (loginResult.Code == ErrorCode.OK)

{

// Use the methods to manipulate customization projects

| Managing Customization Projects | 145

GetPackage() Method

You use the GetPackage () method to get the content of a customization project from the database of
an Acumatica ERP instance.

Syntax

public byte[] GetPackage (string packageName)

Parameters

® packageName: The name of the customization project to be loaded from the database.

Return Value

The method returns an array of bytes that corresponds to the content of the deployment package .zip
file.

Example

The following code logs in to an Acumatica ERP instance, gets the content of the packagel
customization project from the database, and returns the content as a byte array. You can then, for
example, save the array to a .zip file to download the deployment package in the file system.

var webserviceurl = "http://localhost/Acumaticalnstance/api/ServiceGate.asmx";
var username = "admin";

var password = "123";

var packageName = "packagel";

var client = new ServiceGate.ServiceGate

Url = webserviceurl,
CookieContainer = new CookieContainer (),

Timeout = (int) TimeSpan.FromMinutes (5).TotalMilliseconds
}i
var loginResult = client.Login (username, password) ;
if (loginResult.Code == ErrorCode.OK)
{
var packageContents = client.GetPackage (packageName) ;

//do something with the packageContents package content

Usage Notes

If there are multiple tenants in an instance of Acumatica ERP, this method affects the tenant to which
the service is logged in. To log in to a specific tenant, add the tenant name to the user name using the
following format: user@MyTenant.

| Managing Customization Projects | 146

PublishPackages() Method

You use the publishPackages () method to publish multiple customization projects that exist in the
database of an Acumatica ERP instance.

Syntax

public void PublishPackages (string[] packageNames, bool mergeWithExistingPackages)

Parameters
® packageNames: An array of names of the customization projects to be published.

® nergeWithExistingPackages: An indicator of whether the specified customization projects must
be merged with the customization projects that are currently published in the same instance
of Acumatica ERP. If the value of the parameter is true and there are published customization
projects in the instance, the platform merges the content of the projects specified in the method
with the content of the currently published projects and then applies the merged customization
to the instance. If the value of the parameter is false, the platform cancels the currently applied
customization and publishes only the projects specified in the method.

Example

The following code logs in to an Acumatica ERP instance and publishes the packagel, package2, and
package3 customization projects that exist in the database of the instance.

var webserviceurl = "http://localhost/Acumaticalnstance/api/ServiceGate.asmx";
var username = "admin";

var password = "123";

var packageNames = new []{"packagel", "package2", "package3"};

var mergeWithExistingPackages = true;

var client = new ServiceGate.ServiceGate
{
Url = webserviceurl,
CookieContainer = new CookieContainer (),

Timeout = (int) TimeSpan.FromMinutes (5).TotalMilliseconds
}i
var loginResult = client.Login (username, password) ;
if (loginResult.Code == ErrorCode.OK)

{

client.PublishPackages (packageNames, mergeWithExistingPackages) ;

Usage Notes

If there are multiple tenants in an instance of Acumatica ERP, this method affects the tenant to which
the service is logged in. To log in to a specific tenant, add the tenant name to the user name using the
following format: user@MyTenant.

| Managing Customization Projects | 147

UnpublishAllPackages() Method

You use the UnpublishAllPackages () method to cancel customization of an Acumatica ERP instance.
Syntax

public void UnpublishAllPackages ()

Example

The following code logs in to an Acumatica ERP instance and cancels all customization projects that is
currently applied to the instance.

var webserviceurl = "http://localhost/Acumaticalnstance/api/ServiceGate.asmx";
var username = "admin";
var password = "123";

var client = new ServiceGate.ServiceGate
{

Url = webserviceurl,

CookieContainer = new CookieContainer (),

Timeout = (int) TimeSpan.FromMinutes (5).TotalMilliseconds
}i

var loginResult = client.Login (username, password);

if (loginResult.Code == ErrorCode.OK)

{
client.UnpublishAllPackages() ;

}

Usage Notes

The method removes all customization changes from the file system, regardless of the tenants where
the customization projects were published.

UploadPackage() Method

You use the UploadPackage () method to import a customization project from the file system. The
method saves the content of an uploaded deployment package to the database of an instance of
Acumatica ERP.

Syntax

public void UploadPackage (string packageName, byte[] packageContents,
bool replaceIfPackageExists)

Parameters

® packageName: The name of the customization project to be saved in the database.

| Managing Customization Projects | 148

® packageContents: An array of bytes that contains the content of the deployment package .zip file
and will be saved in the database.

® replacelfPackageExists: An indicator of whether the customization platform must replace an
existing customization project with the same name in the database. If the value of this parameter
is true and the database contains a customization project with the same name, the platform
replaces the project with the specified content. If the value of the parameter is false and the
database contains a customization project with the same name, an exception occurs.

Example

The following code logs in to an Acumatica ERP instance, loads the c:\packagel.zip file content, and
saves or updates the packagel customization project in the database of the instance.

var webserviceurl = "http://localhost/Acumaticalnstance/api/ServiceGate.asmx";
var username = "admin";

var password = "123";

var packageName = "packagel";

var packageContents = File.ReadAllBytes ("C:\packagel.zip");

var replacelIfPackageExists = true;

var client = new ServiceGate.ServiceGate
{
Url = webserviceurl,

CookieContainer = new CookieContainer (),

Timeout = (int) TimeSpan.FromMinutes (5).TotalMilliseconds
}i
var loginResult = client.Login (username, password) ;
if (loginResult.Code == ErrorCode.OK)

{
client.UploadPackage (packageName, packageContents, replacelfPackageExists);

Usage Notes

If there are multiple tenants in an instance of Acumatica ERP, this method affects the tenant to which
the service is logged in. To log in to a specific tenant, add the tenant name to the user name using the
following format: user@MyTenant.

To Detect Whether a Customization Project Is Applied
to the Application

You can see whether a customization project is applied to the application on the Welcome screen, with
more detailed information available on the Customization Projects (SM204505) form. To detect whether
an Acumatica ERP instance is customized, perform the following actions:

1. Launch the application in the browser.

2. In the bottom of the Welcome screen, check for the presence of the Customized string.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5

| Managing Customization Projects | 149

If the string exists, it is followed by the names of the customization projects that are currently
published, as shown in the following screenshot.

My Username

Q Acumatica

THE CLOUD ERP

YogiFon

Figure: Viewing the customization projects that are currently published

Enter your credentials and click Sign In.

Navigate to System > Customization > Manage > Customization Projects.

nc. All rights reserved. Version

On the form, view the list of the customization projects that are accessible in the application for
your tenant (see the following screenshot).

Q Acumatica

Management Integration
Customization

Search

~ MANAGE

ORGANIZATION

Automation

<

4

|| Customization Projects

Generic [nguiry

Lists as Entry Points
Pivot Tables
Dashboards

Site Map

Prrtal Man

c
E]

S

O
O
O
&l
L

<

Yogifon - Customization Projects

o

Published
'
U
v

FINANCE DISTRIBUTION

+ X PUBLISH ~

* Project Name
KeyWords

RapidByte

YoaiFon
YogiFonOwithScenGIR .

CONFIGURATION SYSTEM HELP

UNPUBLISHALL IMPORT ~
Level Screen Names Description
IN202500
AR303000,3

Figure: Viewing the list of customization projects

EXPORT

6/23/2016 10:22AM ADMIN

CUSTOMIZATION HELF +

VIEW PUBLISHED

Created By
admin
admin
admin
admin

Last Modified On
6/23/2016
6/23/2016
6/21/2016
4/15/2016

To

| Managing Customization Projects | 150

If a customization project that you know to be published is absent in the list, the project
may be published for another tenant. See Customization of a Multitenant Site for details.

6. In the Published column of the list, notice which customization projects have the check box
selected. These are the projects that are currently published.

7. Use the Customization Project Editor to explore the content of each published customization project.
To open a project in the editor, click the name of the project.

You can also view the names of the customization projects that are currently published in the About
Acumatica dialog box, as the following screenshot shows.

About Acumatica X

Q Acumatica
Version 5.30.1749|Customization:
| KeyWords,RapidByte,YogiFon |

Figure: Viewing the list of the customization projects that are currently published
To open the dialog box, click Help > About on a form of Acumatica ERP.

Manage Prefixes in a Customization Project

You can specify a prefix that should be added to any object of the customization project. When
validation of the customization project is performed, the platform checks all objects to be sure they
have the added prefix.

To add a prefix for a customization project, do the following:
1. On the main menu of the Customization Project Editor, select File > Validate Project Prefix.
The Customization Project Prefix dialog box opens.

2. In the Project Prefix box, add the prefix for the customization project. The prefix is two to four
characters in length and can be made up of any of the 26 Latin letters (A through Z). Only capital
letters are allowed.

3. Click Save.

You can perform validation of the project's items to check for the added prefix. To do this, in the
Customization Project Prefix dialog box, click the Validate Project Items button. In the
Validation Result area, the result of the validation appears.

Format of the Validation Result

If errors or warnings have been detected during validation, the validation result has the following
format:

o <CustomizationProjectName>

| Managing Customization Projects | 151

® <CustomizationRuleName>
® <PathToTheDLL> | <ProjectltemType> | <NameOfTheProjectltem>

List of rules broken by the specified item.

To Add a Custom Feature Switch

This section explains how to add a custom feature switch into an ISV solution. For details about custom
feature switches, see Custom Feature Switches.

Before You Proceed

Before you start adding a switch for a custom feature, the following prerequisite steps should be
performed:

® The new custom feature should be developed and integrated into Acumatica ERP.

® You should have Acumatica Developer Network (ADN) Level 2 or Level 3. For details, see the
Acumatica Developer Network website.

® You should contact the Independent Software Vendor (ISV) team or Technical Contract Manager to
create a Stock Keeping Unit (SKU) and sign a contract.

For the custom feature switch to work properly, make sure you have done the following:

o Defined access rights for all custom forms if the feature switch you are developing restricts these
custom forms partially (that is, it restricts only some caches, actions, or fields on the form, rather
than restricting access to the forms as a whole)

o Defined access rights for all standard forms that the custom feature switch restricts completely or
partially

e Included the defined access rights in your customization project

For details on access rights, see User Roles: General Information. For details on adding access rights to a
customization project, see Access Rights.

To Add a Custom Feature Switch
To add a custom feature switch, do the following:

1. Customize the Enable/Disable Features (CS101000) form by adding a check box with the name of
the custom feature on it. For details, see To Add a Box for a Data Field.

2. Add a column to the FeaturesSet DAC by using a cache extension, and add a related column to
the database. The name of the new column must consist of the Usr prefix and the feature name.
For details, see To Add a Custom Data Field. As a result, you get the FeatureSetExt class.

3. Create your Features.xml file with information about your feature, as shown in the following
example.

<?xml version="1.0" encoding="utf-8"?>
<Features Type="FeatureExtTest.FeaturesSetExt" Key="0">
<Feature Name="UsrTestFeature">

https://adn.acumatica.com/why-join-adn/
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6aca93da-a187-4117-ae0a-bc7bbd39b2ce

| Managing Customization Projects | 152

<Access ScreenID="CR102000"/>

<Access ScreenlID="TT999999"/>

<Access ScreenID="SM201510" ActionName="installLicense"/>
</Feature>
</Features>

The name of the custom feature in the FeaturessSet table column and the
Features.xml file must be the same.

4. Add the Features.xml file to your Visual Studio project in the folder with the same name as the
namespace that holds the FeaturessSetExt class (which contains the database extension for the
FeaturesSet table). That is, the Feautres.xml file and the FeaturesSetExt class must be in the
same namespace.

For example, suppose that you have a Visual Studio project and that in the root folder you have
defined the FeaturesSetExt class; then you should add the Features.xml files to the same
project folder, as shown in the following screenshot.

w File Edit View Project Build Debug Test Analyze Tools Edensions Window yel FeatureExtTest

Help
Q- H-alH 9 - Debug = Any CPU - P FeaturebxiTest ~ il _

Features.xml

ActionName="installlic

Propertie

Features.xml File

Embedded resource
Do nat copy

Figure: Location of the Features.xml files
For details about the Features.xml file structure, see The Features.xml File.

5. Set the Build Action property of the Features.xml file in Visual Studio to Embedded Resource.

Custom Feature Switches

You can develop a custom feature and integrate it in Acumatica ERP by using a customization project.
After you develop this custom feature, you might want to add a switch for this feature—that is, a
check box that the administrator can select to enable the feature—on the Enable/Disable Features
(CS100000) form. With this feature switch added, the administrator can enable the feature to make
the custom forms associated with the feature available or disable the feature to make the custom
forms unavailable.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c1555e43-1bc5-4f6f-ba9d-b323f94d8a6b

| Managing Customization Projects | 153

Adding a Custom Feature: Process Overview

After you have developed a custom feature and integrated it in Acumatica ERP, your feature is
reviewed by the ISV team, and information about the feature is added to the Acumatica Licensing
Server. After that, you can customize the Enable/Disable Features (CS100000) form, the FeaturesSet
table, and the Features.xml file to add information about your feature to the project. The process of
exchanging information with the Acumatica Licensing Server is shown in the diagram below.

Acumatica ERP instance

-4———License Key:

Acumatica Licensing Server —|
»| License Info
-

\/

i

Enable/Disable Features Customization
Form Project

Features.xml

(0

FeaturesSet Table

Figure: Adding a custom feature

After you have completed all these steps, when your customer purchases your custom feature, you
should notify the ISV team about it (for example, by using your ISV solution's page on the partner
portal).

The Features.xml File

Every instance of Acumatica ERP has a Feature.xml file, located in the PX.Data.dl1 library. This file
contains the description of the out-of-the-box features that are available in the instance and displayed
on the Enable/Disable Features (CS100000) form.

Each feature is represented in the Features.xml file by a Feature element with a number of Access
subelements. (For an example, see the following code.)

<Feature Name="Branch">
<Access ScreenID="GL201500"
CacheName="PX.0Objects.GL.Ledger"
FieldName="DefBranchID" />
<Access ScreenID="GL101010" />
<Access FieldClass="BRANCH"/>
</Feature>

| Managing Customization Projects | 154
For all custom features you are implementing, you should create a new Features.xml file of the same
structure that contains information about all new features.
Targets for Rules

By using the Access element, you can set up rules for the following items:
e A specific page, as shown in the following example.
<Access ScreenID="AP506500" />
e All pages whose identifiers start with the provided value; see the following code line.
<Access ScreenID="IN" />
e A specific data field on a page, as shown below.
<Access ScreenID="GL201500"
CacheName="PX.0Objects.GL.Ledger"
FieldName="PostInterCompany" />
e Data fields having a specific field class. (See the following example.)

<Access FieldClass="BRANCH"/>

To apply this rule to a field, you should specify the name of the field class in the PXUIField
attribute added to the field definition in the data access class, as follows.

[PXUIField (DisplayName = "Active", FieldClass="BRANCH")]
public bool? Active{
get;
set;
e A specific action on a page, as demonstrated in the following code line.
<Access ScreenID="AR303000" ActionName="NewSalesOrder"/>

e A user role, as the following example shows.

<Access Role="Consultant"/>

| Publishing Customization Projects | 155

Publishing Customization Projects

To

To apply a customization project to an instance of Acumatica ERP, you have to publish the
customization project. You can also publish multiple customization projects at once; see Simultaneous
Use of Multiple Customizations for details.

When you publish a customization project, the system applies the changes in the project to the
website. After the customization project has been published, users see the modified Acumatica ERP.
The changes apply to the website of Acumatica ERP and therefore affect all tenants in the system (see
Customization of a Multitenant Site for details).

The Acumatica Customization Platform provides the following ways to manage the publication process:

1. You can develop and include in a customization project the custom code that is executed during
the project publication. See Custom Processes During Publication of a Customization for details.

2. By using additional attributes in DAC extensions, you can specify how the system should apply the
original and custom attributes to the field. See Customization of Field Attributes in DAC Extensions for
details.

3. By using SQL script attributes, you can control the execution of batches in SQL scripts. See Using
the SQL Script Attributes for details.

You can cancel the publication of the project and publish the project again, which you might do often
during the development and testing of the customization. The application domain does not restart
every time you publish the customization project because Run-Time Compilation is enabled for the
website by default.

Detailed instructions are provided in the following topics:

® To Publish a Single Project

® To Publish Multiple Projects

® To Prepare a Project for Publication

® To Publish the Current Project

® To Publish the Current Project with a Cleanup Operation

® To Publish a Customization for a Multitenant Site

® Validating Customization Code

® To View a Published Customization

® To Unpublish a Customization

Prepare a Project for Publication

Before you publish a customization project, we recommend that you make sure you have included all
the needed changes in the customization project. To do this, you should take the following actions:

e Make sure that you have added all custom files to the project and uploaded the latest version of
the files to the project.

| Publishing Customization Projects | 156

Make sure that the database schema is updated in the customization project. You may have
modified custom tables by using a database management tool, such as SQL Management Studio.
On the page toolbar of the Database Scripts page, click Reload From Database. This action
regenerates the database table schema of the custom tables.

Open the Site Map page, make sure that you have added the needed site map nodes to the
project. If you have modified the site map nodes after you have added them to the project, click
Reload From Database to update the customization project.

Make sure that all other objects (such as generic inquiries, system locales, integration scenarios,
shared reusable filters, access rights, wikis, web service endpoints, analytical reports, push
notifications) are updated in the project. If an object was changed in the application instance, open
the appropriate page of the Customization Project Editor, and click Reload From Database on the
page toolbar to update the corresponding item in the project. (See To Update a Project for details.)

To Publish a Single Project

You can publish a single customization project by using the Publish action on the Customization Projects
(SM204505) form.

To to do this, perform the following actions:

1.

2.

Navigate to System > Customization > Manage > Customization Projects.

In the project list, select the check box (in the unlabeled column) for the needed customization
project, as the screenshot below shows.

Clear any selected check boxes in this column for other customization projects.

All previously published projects that are not selected will be unpublished.

Click Publish on the form toolbar to initiate the publication of the selected project.

£ Yogifon ~ Customization Projects CUSTOMIZATION ~ HELP =
c o L + X PUBLISH UNPUBLISH ALL IMPORT ~ EXPORT VIEW PUBLISHED
E O Published * Project Name: Level Screen Names Description Created By Last Modified
On
O AdvCstAEF PO301000,P0O302000 admin B6/23/2016
O AdvUI7 IN202500 admin 6/23/2016
O CRMAddOn admin B6/23/2016
O FormActicnAEF S0O301000 admin 6/23/2016
O GridActionsAEF CS203000 admin 6/23/2016
» KeyWords IN202500 admin B6/23/2016
O PurchaseCrderWizard admin 6/23/2016
| RapidByte admin 6/23/2016
O " YegiFeon AR303000,AR409000,5030.. admin B/28/2016

Figure: Publishing a single customization project

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5

| Publishing Customization Projects | 157

To Publish Multiple Projects

To publish multiple customization projects, you perform the following actions on the Customization
Projects (SM204505) form:

1. Navigate to System > Customization > Manage > Customization Projects.

2. In the project list, select the check boxes (in the unlabeled column) for the customization projects
you want to publish.

You can save these selections by clicking Save on the form toolbar. The form opens with
the selections that are previously saved in the database.

3. Click Publish on the form toolbar to initiate publication of the selected projects.
All previously published projects that are not selected will be unpublished.

The platform merges the selected projects into one project and then publishes the project. For more
details, see Performing the Publication Process and Validating Customization Code.

Performing the Publication Process

When you run the publication process, the Acumatica Customization Platform executes the process in
the following stages:

1. If you publish more than one customization project, the platform merges the projects into a single
customization project.

2. The platform validates the customization project. (See Validating Customization Code for details.)

3. If the validation completes successfully, the platform applies the changes to the application
instance when you click Publish in the Compilation window.

When the platform merges multiple projects, if different projects include customization for the same
application object, the customization from the project with the highest level (an optional humber
assigned to each project) is added to the merged project. See Simultaneous Use of Multiple Customizations
for details.

If you manage multiple customization projects and some projects are published, you do not
have to unpublish any projects before other projects are published (leaving the check boxes
selected for already-published projects in the list). On the Customization Projects (SM204505)
form, you just need to select any projects you want to publish and click Publish on the
toolbar. If you clear the check box for a published project, it will be unpublished.

After the publication is complete, you can view the content of the merged customization project by
clicking the View Published button on the form toolbar of the Customization Projects form. (See To View
a Published Customization for details.)

After the project is ready, the platform validates and compiles the customization code included in the
project. If there are any validation errors, the system displays the error messages in the browser
and doesn't compile the code. If the compilation completes successfully, you can click Publish in the
Compilation window to apply the changes contained in the project items to the website.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5

| Publishing Customization Projects | 158

During the actual publication, the platform applies the changes to the application and database objects
and updates the files in the website folder as follows:

e The custom layout is applied to the forms of Acumatica ERP.

e The .cs files with the DAC extension code for the existing data access classes are generated and
placed in the file system.

e The .cs files with the BLC extension code for the existing business logic are generated and placed
in the file system.

® The .cs files with the custom code (Code items) are generated and placed in the file system.
e The custom files of the project are added to the website folder.
e The custom tables are created in the database, and custom SQL scripts are executed.

e The custom generic inquiries, reports, site map nodes, system locales, integration scenarios,
shared reusable filters, access rights, wikis, web-service endpoints, and analytical reports are
added to the database.

We recommend that you back up the database before you publish customization projects,
because canceling publication doesn't revert changes made to the database. See To Unpublish
a Customization for details.

After the publication is complete, the application domain always restarts if the project includes
assemblies, which are placed in the /Bin folder of the website. If you have no assemblies in the
project, you can enable run-time compilation and publication will not cause a restart.

If a published customization project contains classes derived from the CustomizationPlugin class, the
platform launches the implemented custom processes after website files were updated and after the
website was restarted. (See Custom Processes During Publication of a Customization for details.)

After you have published the customization project, the files with the customization code are updated
in the file system, and you can work with them in MS Visual Studio. The .cs files with code are placed
in the App RuntimeCode folder of the website.

Validating Customization Code

While the Acumatica Customization Platform processes publication of a customization project, the
platform validates the customization code included in the project. This validation of the code provides
not only checking for syntax and semantics but also checking of the compatibility of the code included
in the customization project with the original application code.

If you have a customization project that works properly for the current version of Acumatica ERP and
have upgraded an application instance to a newer version, the customization project might not work
properly or might even prevent the website from starting after the upgrade. This could occur because
the code of Acumatica ERP is continuously developed to implement new features or enhance existing
functionality. Thus, the code of an updated instance of Acumatica ERP can become inconsistent with
the code in a customization project. For example, if the signature of a method that is overridden in the
customization code is changed in the original code, a run-time error may occur in the graph extension.
As another example, modified or deleted database columns and tables might cause the functionality of
a data access class extension to fail.

To

| Publishing Customization Projects | 159

The platform checks the compatibility of the code included in a customization project with the original
application code every time it publishes the project. If there are any compatibility errors, the platform
displays the warning and error messages in the Compilation window and stops the publication
process. See Messages for Validation Errors and To Resolve an Issue Discovered During the Validation for
detailed information about, respectively, the error messages and the ways to fix the validation errors.

Publish the Current Project

To

If you create a customization project in the Customization Project Editor, the best way to publish the
customization project that is under development is to use the Publish Current Project menu
command provided by the editor. This publication does not influence the publication of other
customization projects that exist in the application instance.

To publish the customization project that is currently open in the Customization Project Editor, perform
one of the following actions:

e Use the Control+Space combination on the keyboard.
e In the editor menu, select Publish > Publish Current Project.

When you perform one of these actions, the platform initiates the publication of the project. If another
customization project is already published, the platform merges the projects into a single project, and
then compiles and validates the merged project. If the validation succeeds, the platform applies the
merged customization to the application instance.

You can publish the customization project as described above again after you have made any change
to the project.

Publish the Current Project with a Cleanup

Operation

If a customization project contains a database script, during the project publication, the platform
executes the script. For optimization purposes, to avoid the execution of database scripts during every
publication of the project, the platform saves information about each script that has been executed at
least once and has not yet been changed in the database, and omits the repeated execution of such
scripts. You can force the platform to clean up all such information about previously executed scripts of
a customization project and execute the scripts once more while publishing the project. This process is
called publishing with cleanup.

When to Publish with a Cleanup Operation

Database scripts can be separated into two categories: those that modify the database schema, and
those that modify data in database tables. The first kind of scripts are applied to the whole instance, so
they are called database-level scripts. The second kind of scripts modify the data of a single tenant for
which the scripts are published, so these scripts are called tenant-level scripts.

When a customization project that contains database script customization items is published for

the first time, a hash for each script is saved to the database. For a tenant-level script, the system

also saves the tenant ID for which this script has been published. When the customization project

is published again, the system compares the hash of each database script (and the tenant ID, if the
script is tenant-level) in the current project to the hash (and tenant IDs, if applicable) of each database
script in the database. If the hashes (for a database-level script) or hashes and tenant IDs (for tenant-

| Publishing Customization Projects | 160

level script) are equal, the script is not applied. The conditions for which different scripts are applied
are shown in the following diagram.

No Yes

s it a tenant-level script?

Yes

as this script bee
published for current
tenant?

No as this script bee
published for this

instance?

(1) (1) (1) (1)
— N — N
Apply the script Scip the script Apply the script Scip the script

Figure: Conditions for which scripts are applied
The system behavior with these scripts has the following outcomes:

e Even minor changes in a database script customization item may lead to the script being applied
again.

e The same tenant-level script is not applied for the same tenant twice.
e When a customization project is published for another tenant, all tenant-level scripts are applied.
e A database-level script is never applied again for the same instance.

Publishing with cleanup applies all database scripts again, regardless of whether these scripts have
ever been applied. You should use publishing with cleanup only if any changes were made outside of
the Customization Project Editor to the tables that are affected by your custom database scripts.

For example, suppose that you have added a database script that creates a new table in the database.
Further suppose that you have published this customization project, and the table has been added to
the database. Then you have removed this table from the database manually. To apply the script in the
customization project and create the table again, publish the project with the cleanup option.

To Perform Publishing with Cleanup

To perform publishing with cleanup, do the following:

| Publishing Customization Projects | 161

Open the customization project in the Customization Project Editor (see To Open a Project for details).

On the menu of the editor, click Publish > Publish with Cleanup, as shown in the screenshot
below, to clean information about previously executed scripts of the project and initiate the process
of publishing the customization project.

Q Acumatica
File Extension Libran Source C

Yogif ~ Fublishe
R publish with Cleanup + ~# ADDSCREEN~
Data
Cod E Screen 1D Title Is New Last Modified By Last Modified On
oo > AR303000 Customers admin 62312016
Files® AR 409000 | Subscription Usage Details | v admin 6/23/2016
Generic Inquiries (1) S0.30.10.00 | Sales Orders admin 62312016
Reports (1) - - 3y
S0.30.30.00 Invoices admin 6/23/2016
Site Map (3)
MR Srrinte

Figure: Publishing a customization project with a cleanup operation

To Publish a Customization for a Multitenant Site

You can publish a customization project for multiple tenants in a multitenant site; see Customization
of a Multitenant Site for details. You use the Customization Projects (SM204505) form to publish this
customization.

To share customization content stored exclusively in the database for multiple tenants, perform the
following actions:

1.

2.

Navigate to System > Customization > Manage > Customization Projects.

In the table, select the check boxes in the rows that correspond to the customization projects that
you need to publish for multiple tenants.

On the toolbar of the form, click Publish > Publish to Multiple Tenants.
In the Publish to Multiple Tenants dialog box, which opens, do the following:

a. In the Selected column, select check boxes for the tenants to which you want to apply the
selected customization projects.

b. To skip updating the site files, select the Apply Changes Only to Database (Skip Website
Update) check box.

If you have published all the selected customization projects in the website for a
single tenant at least once, you do not need to update website files. You can apply
only the database changes.

c. To execute all database scripts of the selected customization projects, select the Execute All

Database Scrips (Including Previously Executed) check box.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5

| Publishing Customization Projects | 162

When the platform publishes a project that contains a database script, it executes
the script and tries to avoid the execution of the script during every publication of
the project, for optimization purposes. Therefore, the platform keeps information
about each script that is executed at least once and has not yet been changed

in the database, and omits the repeated execution of such scripts. If you run

the publication with the Execute All Database Scrips (Including Previously
Executed) check box selected, the platform cleans up such information about
previously executed scripts and executes them once more while publishing the
project.

d. Click OK.

The platform applies the customization content to each tenant selected in the dialog box. As a result,
the published customization content is saved in the database for each selected tenant.

To View a Published Customization

You can view the merged content of multiple customization projects that are currently published by
using the Published Customization page of the Customization Projects (SM204505) form.

When you publish multiple projects at once, the platform merges the projects into a single project and
then applies this project to the application instance. (See To Publish Multiple Projects for details.) To view
the content of the merged project, perform the following actions:

1. Navigate to System > Customization > Manage > Customization Projects.

2. On the form toolbar, click View Published on the toolbar, as the following screenshot shows.

ORGANIZATION FINANCE DISTRIBUTION [ESEai=il > 11/11/2016 516 AM ADMIN
IManagement ntegration Automation Customization
Customization « &£ Revision Two HQ - Customization Projects CUSTOMIZATION ~ HELF =
Search | @ v 4+ X PUBLISH~ UNPUBLISHALL IMPORT ~ EXPORT | VIEW PUBLISHED
IANAGE B [Published * Project Name Level Screen Names Description Created By Last Modified On
M c t - don Profect O EcommerceSept1? IN202500 admin 312312015
ustomization Frojects
| R] s HideSSN CR303010 admin 411472015
SEnene A O HideSSNPOstatus CR303010.P0O301.. admin 3232015
uiste as Entry Points O KeyWords IN202500 admin 10201
Pivet Tables O POstatus P0301000 admin 71812014
i O RapidByte admin 32612015
Site Map m] Stockimage admin 81312014
Portal Map O Stockltemimages admin 8/13/2014
Filters 0 u212Upgraded AP301000,AP3020. admin 41102015
+ EXPLORE

Figure: Opening the Published Customization page
The Published Customization page opens. The screenshot below shows two simultaneously published
customization projects, HideSSN and POstatus. The Published Customization page shows the result of
merging these projects.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5

To

| Publishing Customization Projects | 163

ORGANIZATION FINANCE DISTRIBUTION CONFIGURATION SYSTEM HELP 3 414/2015 5:09AM ADMIN

n Autemation
Customization 4 0 * 0
Published Customization
Search
| Save lo database | | Download Package | Upload Package || Choose File | No file chosen

- MANAG

<Customization level="8" description="">

Customization Projects <Page path="~/pages/cr/cr3@3010.aspx"| pageSource="1VrrbSs4EvtcAvafBEFdTIdxHulur+cUSShxa2uehud2xRO0BNDXN ey qF JUEL+HHSE3htSD]

Generic Inquiry <PXTextEdit Datafield="TaxRegistrationID" ParentId="phG_tab_Items#0_sdTaxRegistrationID" TypeFullMame="PX.Web.UI.PXText
. quiry <Prop Key="TextMode" Value="Password” />

Lists as Entry Points </PXTextEdit>
- </Page>
Pivat Tables [<Page path="~/pages/po/poseleee.aspx"| pagesource="7T1rbts2spabyYP+D4ENTLACSZqNNZOMKNzhITIAS3NgILFbiInEs) 1EjS265nMde7PIL1SOHE
Dashboards <PXTab ID="tab" Parentld="phG_tab" TypeFullliame="PX.Web.UI.PXTab">
<Children Key="Ttems">
Site Map <AddItem>
Portal Map <PXTabItem TypeFulllame="PX.Web.UI.PXTabItem">
<Prop Key="Text" Value="Shipping Status® />
Filters <Children Key="Template">
. EXPLORE <AddTtem>
<PXLayoutRule TypeFulllame="PX.Web.UI.PXLayoutRule">

Source Code <Prop Key="Virtual:ApplyStylesheetSkin" />

<Prop Key="ID" Value="Rule&" />

<Prop Key="LabslsWidth" Value="M" />

<Prop Key="CantrolSize" Value="M" />
</PXLayoutRule>
</AddItem>

<AddItem>
<PXDropDoun TypeFulllame="PX.Web.UI.PXDropDown™>
<Prop Key="virtual:ApplyStylesheetskin" /> -
P o TR A7 sam e m bk EAL T AT bt T E

Figure: Viewing the merged XML code of published customization projects

Unpublish a Customization

When there are multiple customization projects published in an instance of Acumatica ERP, you can the
following options to unpublish the projects:

® Unpublish all projects

® Unpublish some projects

In both cases, you use the Customization Projects (SM204505) form as a starting point.
To Unpublish All Projects

To remove all customization projects from publication, perform the following actions:
1. Navigate to System > Customization > Manage > Customization Projects.

2. On the form toolbar, click Unpublish All.
The platform removes all published customization from the Acumatica ERP instance. See Unpublishing
Customization Projects for details.

To Unpublish Some Projects
To remove some customization projects from publication, perform the following actions:
1. Navigate to System > Customization > Manage > Customization Projects.

2. In the project list of the form, be sure the check boxes for projects that you want to remain
published are selected, and clear the check boxes for the unnecessary projects.

3. On the form toolbar, click Publish.

The platform removes all published customization from the Acumatica ERP instance, merges the
content of the customization projects that are currently selected on the form, and applies the merged
content to the instance.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5

| Publishing Customization Projects | 164

Unpublishing Customization Projects

When you unpublish all customization projects, the system reverses the changes introduced by the
customization as follows:

The forms of Acumatica ERP return to their original layout.

The .cs files of the project with customization code are removed from the website folder in the file
system.

The custom files of these projects are removed from the website folder on the file system.

Some changes aren't reversed, as described below:

Database changes remain in the database after the customization is unpublished. Thus, the generic
inquiries, reports, changes to the site map, custom tables, custom database objects, and custom
data remain in the database. Changes to the site map remain in the navigation menu of Acumatica
ERP. If you need to remove these changes, you must do so manually.

The .s1n file of the integrated Microsoft Visual Studio solution and its projects (if any) remain in
the file system. However the customization code of the unpublished customization project and the
external files added to the customization project are removed from the solution.

For example, if a customization project contains a Report item and a SiteMapNode item for the report,
after you publish and unpublish the project, the report and the site map node remain in the database
and remain available in the application, so you need to remove them manually.

There is no difference in the unpublishing process for a single-tenant site and a multitenant site: The
platform deletes the same files in the file system and keeps all the changes in the database.

| Managing Items in a Project | 165

Managing Items in a Project

You use the Customization Project Editor to manage the items in a customization project. The editor
includes a page to support each type of item in a customization project. (See Types of ltems in a
Customization Project for details.) By using the navigation pane of the editor, shown in the following
screenshot, you can open these pages (each of which is described in detail in the corresponding part of

this guide).
Q Acumatica
File Publish Extension Library Source Control

MyCustProject 4« Customized Screens

| Screens (& [l X V4 ADD SCREEN ~
Data Access
Coda B Screen 1D Title Is New Last Modified By Last Modified On
Files *

Generic Inquiries
Reports

Dashboards

Site Map

Database Scripts
System Locales
Import/Export Scenarios
Shared Filters

Access Rights

Wikis

Web Service Endpoeints
Analytical Reports
Push Motifications
Business Events

Maobile Application

Figure: Viewing the navigation pane of the editor
In This Part

® Customized Screens

® Customized Data Classes
® Code

® Custom Files

® Generic Inquiries

® Custom Reports

® Dashboards

o Site Map

® Database Scripts

® System Locales

| Managing Items in a Project | 166

® /mport and Export Scenarios
® Shared Filters

® Access Rights

o Wikis

® Web Service Endpoints

® Analytical Reports

® Push Notifications

® Business Events

® Mobile Application

Customized Screens

You use the Customized Screens page of the Customization Project Editor to manage the Page,
AUScreenAction, AUScreenNavigationAction, and AutomationScreenField items in the customization
project. The Page item for an existing form contains the instructions about changes to the layout that
have to be applied by the platform to the ASPX code of the form during publication of the project.

For a custom form, the Page item holds the content of the form and the path to the ASPX file of the
form. (The path is required so the platform can detect changes of the file in the file system in the
development environment and update the file while you publish the project.)

Using the Customized Screens page, you can do the following:

e Modify the layout and actions on an existing form. When you start to modify the layout of
an existing form, to store the changes, the platform adds a Page item for the form to the
customization project. When you use the Screen Editor to change the form layout, the platform
saves each change to this item. The changed logic of the form is saved in the AUScreenAction,
AUScreenNavigationAction, and AutomationScreenField items. See Types of Items in a Customization
Project for details about customization project items.

e Create a custom form. To do this, you invoke Add Screen > Create New Screen on the
Customized Screens page to create the workable template for the form, and add the template to
the customization project as a Page item, a Code item, a SiteMapNode item, and two File items, as
described in To Add a New Custom Form to a Project. You can then develop the custom form by using
both the Screen Editor and Microsoft Visual Studio.

The Customized Screens page contains the list of the Page items for existing and custom forms added
to the customization project.

On the page, you can perform the operations with the customized screens that are described in the
following topics:

® To Add a Page Item for an Existing Form
® To Delete a Page ltem from a Project
® To Add a New Custom Form to a Project

® To Delete a Custom Form from a Project

| Managing Items in a Project | 167

® To Delete Items from the Project on the Edit Project Items Page
® To Add a Condition

® Creating Workflows

To Add a Page Item for an Existing Form

You can add a Page item for an existing form to a customization project by using both the Customization
Menu and the Element Inspector, or you can add the item in the Customization Project Editor.

The following sections provide detailed information:
® To Add a Page ltem by Using the Element Inspector

® To Add a Page Item on the Customized Screens Page
To Add a Page Item by Using the Element Inspector

To add a Page item for an existing form to a customization project by using the Element Inspector,
perform the following actions:

1. Open the form in the browser.
2. On the form title bar, click Customization > Inspect Element to launch the Element Inspector.

3. On the form, select the UI element (or area) to be customized, to open the Element Properties Dialog
Box for the element (or area).

4. In the dialog box, click Customize.

5. If there is no currently selected customization project and the inspector opens the Select
Customization Project Dialog Box, select an existing customization project or create a new one.

Acumatica Customization Platform creates the Page item for the form, adds the item to the currently
selected customization project, and opens the form in the Screen Editor.

The platform assigns to the new item a name that corresponds to the form ID.
To Add a Page Item on the Customized Screens Page

To add a Page item for an existing form to a customization project by using the Customization Project
Editor, perform the following actions:

1. Open the customization project in the editor. (See To Open a Project for details.)
2. Click Screens in the navigation pane to open the Customized Screens page.
3. On the page toolbar, click Add Screen > Customize Existing Screen.

4. In the Customize Existing Screen dialog box, which opens, double-click the needed form in the
tree, which corresponds to the site map of the application.

The following screenshot demonstrates how you can select the Payments and Applications form
(Finance > Accounts Receivable > Work Area > Enter) in the Customize Existing Screen dialog
box.

| Managing Items in a Project | 168

Customize Existing Screen

* Select S

SELECT €

=3 Company 3

E]-rj Finance
-0 Taxes
+|=:| Cash Management
+|=:| Deferred Revenue
+|=:| General Ledger
+|=:| Currency Management

E]-rj Accounts Receivable
+- L2 Configuration
+|E| Reports

E]/_ Work Area

E]-rj Enter
= Contract Usage

=2 Invoices and Memos

= Sales Price Worksheets

= Cash Sales

-1 B Payments and Applic ations |

+|=:| Explore

+|=:| Manage -

Figure: Selecting the form in the Customize Existing Screen dialog box
As soon as you add the item, the Screen Editor opens for the form so that you can start changing the
form layout.

To go back to the Customized Screens page of the Customization Project Editor, click Screens on the
navigation pane. You can see that the added form is saved to the list of project items.

As an alternative to selecting a form in the tree, if you know the screen ID of the form, you can add
the appropriate item directly to the table of the Customized Screens page. To do this, perform the
following actions (shown in the screenshot below):

1. On the page toolbar, click Add Row (+).
2. In the Screen ID column of the new row, type the screen ID of the form.
3. On the page toolbar, click Save to save the item to the project.

The screenshot below shows the screen ID of the Journal Transactions form entered in the table:
GL301000. As soon as you specify the screen ID, press Tab on the keyboard to view the name of the
form, which appears in the Title column; make you sure you are adding the item for the needed form.

£ Screen I Title Is Hew Last Modified By Last Modified On

4| 5L.30.10.00

Customized Screens

| Managing Items in a Project | 169

c e X |:| 7 ADD SCREEN -

AR.30.30.00 Customers admin Ti27 2016
S0.30.10.00 Sales Orders admin Ti272016
S50.30.30.00 Invoices admin Ti272018

Figure: Adding the screen ID of an existing form to the table

To modify the layout of a form, open the Screen Editor for the form by clicking the Screen ID of the
form in the table or in the navigation pane of the Project Editor.

To Delete a Page Item from a Project

To remove from a customization project a Page Item created for an existing or custom form, perform
the following actions:

1.

2.

3.

4.

5.

Open the project in the Customization Project Editor. (See To Open a Project for details.)
Click Screens in the navigation pane to open the Customized Screens page.

In the page table, click the item for the form.

On the page toolbar, click Delete Row (X).

On the page toolbar, click Save to save the changes to the customization project.

To Add a New Custom Form to a Project

To add a new custom form to a customization project, perform the following actions:

1.

Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

Click Screens in the navigation pane to open the Customized Screens page.
On the page toolbar, click Add Screen > Create New Screen.

In the Create New Screen dialog box, which opens, specify the following parameters to create
the files for the new form:

e Screen ID: The unique identifier of the new form

e Graph Name: The name of the new class of the business logic code for the form (also called
graph)

e Graph Namespace: The namespace to which the new business logic class should be added
e Page Title: The title of the new form

e Template: The form template that provides the default set of containers on the form

| Managing Items in a Project | 170

e Site Map Parent: The parent node in the site map to which the new form should be added

5. In the dialog box, click OK.

Before you start editing the created screen in the Screen Editor, you must publish the
customization project.

For the new form, the system creates the following items and adds them to the customization project:
e The .aspx and .aspx.cs files, which appear in the Files list of the project items.

e The .cs file with the business logic code for the form, which appears in the Code list of project
items.

e The site map node, which appears in the Site Map list of project items.

To give users the ability to navigate to the form in Acumatica ERP, you need to specify
the position of the new form in the UI by using the Menu Editing mode and update the
SiteMapNode item, as described in To Update a Site Map Node in a Project. For details on the
Menu Editing mode, see Menu Editing Mode in the Interface Guide.

e The Page item, with a name that corresponds to the new screen ID; this item appears in the
Screens list of project items. This item contains the link to the new page content, which you can
later develop by using the Screen Editor.

To obtain the actual files in the file system, publish the customization project after you have added the
form to the project. After that, the following files are available on the file system:

® The .aspx and .aspx.cs files in the Pages/<First segment of ScreenID>/ folder of the website
® The .cs file with the business logic code in the app RuntimeCode folder of the website
You can develop business logic code for the custom form in Microsoft Visual Studio later.

The screenshot below shows the files of the custom form that has been added to the customization
project (through the Add Screen > Create New Screen command) with the following parameters:

e Screen ID: KW302010

e Graph Name: KeywordsMaint

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=4a789925-f02a-4c88-a7d7-9e1a651966a6

| Managing Items in a Project | 171

Solution Explorer > 1

@ o-2d 5@

Search Solution Explorer (Ctrl+;) F

|E| Solution 'AcumaticaDB500App500° (1 project)

4 B C\.\AcumaticaDB500App500Website\

4
Pl

3

i App_Code
@l App_RuntimeCode
c#* Customner.cs
O foldertbet
c# Graphl.cs
c* InventoryltemMaint.cs
c# PX_Objects_IN_Inventoryltermn_extensions.cs
o App_Themes
B Bin
B Controls
B CstPublished
B Customization
B Dashboards
B Icons
B MasterPages
il Pages
4 fm] KW

bRl KW302010.aspx
bl RapidByte

= Snnnde

Figure: Viewing the files of the custom form in Visual Studio solution

To Delete a Custom Form from a Project

To remove a custom form from a customization project, you have to delete all the items that have
been added to the project for the form.

To do this, perform the following actions:

Delete from the customization project the Page item that was added by the New Screen wizard.
(See To Delete a Page Item from a Project for details.)

Delete from the project the Code item that was added by the New Screen wizard. (See To Delete a
Code Iltem From a Project.)

Delete from the project the <FormID>.aspx and <FormID>.aspx.cs File items that were added by
the New Screen wizard. (For more information, see To Delete a Custom File From a Project.)

Delete from the project the SiteMapNode item that was added by the New Screen wizard. (See To
Delete a Site Map Node from a Project for details.)

If you added other items for the custom form, such as items for the mobile site map or custom
files, delete these items.

To delete multiple items from the customization project successively on a single page, you can use the
Edit Project Items page of the Customization Project Editor. (See To Delete Iltems from the Project on the
Edit Project Items Page for details.)

The system applies the changes to the file system as soon as you publish the customization project.

| Managing Items in a Project | 172

To Delete Items from the Project on the Edit Project Items
Page

You can delete multiple items from the customization project on the Edit Project Items page of the
Customization Project Editor. To do this, perform the following actions:

1. On the menu of the editor, click File > Edit Project Items.

2. In the table of the Edit Project Items page, which opens, click the item to be deleted, as the
following screenshot shows.

Q Acumatica
Publish Extension Library Source Control

i

>ustomization Projects roject ltems

Edit Project XML
- . [
Edit Project Items
Export Project Pac bject Name Type Desci Exc Createc Creat Last Last
By Date Modifie Modi
By On

~/pages/solso30... | Page

Generic Inquiries (1) [J | admin 10/27/21 admin 1120 &
Reports (1) 0 | ~/pages/sofs030... | Page [| admin 1W27/21 admin 1012772
Site Map (3) | ARBSOBBO.RPX | Report [|admin | 10/27/2| admin | 10/27/2
DB Scripts. [| Subscription Billi... | SiteMapNede [0 admin 10/27/21 admin 1002712
Svstern Locales 0 | Subscription Us... | SiteMapMNode [| admin 11/11/2(admin 1112

’)) [0 | Active Contracts SiteMapNode [J | admin 10/27/2| admin 1002772
Import.-'E%port Seenaros (1) O | ARTran Table [| admin 10/27/2| admin 1002772
Shared Filers b Contact Table [| admin 10/27/2| admin 1012772
flc.cgss Rights I | Contract Usage XportScenario [| admin 1027/21 admin 10/2772
e Source

Web Service Endpoints
<Table TableName="Contact">
<Column TableMame="Contact” ColumnName="UsrPersonalIDType” ColumnType="st
<Column TableMame="Contact” ColumnName="UsrPersonalIl” ColumnType="string
<Column TableMame="Contact” ColumnName="UsrCreditRecordverified” ColumnTy
</Table>

Analytical Reports

Figure: Using the Edit Project Items page to delete an item from the customization project
3. Press Delete on the keyboard to delete the selected row from the table.
4. If you need to delete multiple items from the project, repeat Steps 2-3 for each item.

5. On the page toolbar, click Save to save the change in the project.

To Add a Condition

You can construct a condition and then specify it as a property value for an action or a control, thus
changing the business logic of the form.

Before You Proceed
Conditions can be added to a specific screen. So before adding a condition, you should add the

corresponding screen item to the customization project. See To Add a Page Item for an Existing Form or To
Add a New Custom Form to a Project for details.

| Managing Items in a Project | 173

To Add a Custom Condition
To add a condition, do the following:

1. In the navigation pane of the Customization Project Editor, click Conditions under the screen node
you want to customize. The Conditions page opens.

2. On the page toolbar, click Add New Record.

3. In the Condition Properties dialog box, which opens, type the name of the condition and
configure the condition by adding rows and specifying field values in each row.

You can add rows from a predefined condition to a custom condition. A predefined condition is a
condition defined for a predefined workflow for the same screen. To add rows from a predefined
condition to a custom condition, do the following:

a. Select the Append Predefined Condition box.

b. In the Predefined Condition box, specify the predefined condition whose rows you want to
add.

c. In the Operator box, specify the logical operation between the rows of your custom condition
and the predefined condition.

4. Click OK.

When you save the added condition, it appears in the lists of possible values for the Disable and
Hide properties of a control or an action. You can also specify conditions for automatically run
actions and transitions. For details, see To Add a Workflow.

To Customize a Predefined Condition

A form can have a predefined condition. You can see the predefined conditions in the Condition Editor
of the selected form. You can customize a predefined condition by doing the following:

1. On the page toolbar of the Condition Editor page, click Add New Record.

2. In the Condition Properties dialog box, which opens, specify the following values:
e Condition Name: The internal name of the condition
e Append Predefined Condition: Selected
e Predefined Condition: The name of the condition you want to customize

e Operator: The logical operator to be applied between the predefined rows and the custom
rows of the condition

3. In the table of the dialog box, configure the condition by adding rows and specifying field values in
each row.

4. Click OK to close the dialog box.
To Display an Action When a Field Has a Specific Value (Example)

Suppose that you want an action to be hidden only when some elements have specific values: On
the Sales Orders (SO301000) form, you want the Print Sales Order/Quote action (which is a menu

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5

| Managing Items in a Project | 174

command on the Reports menu) to be hidden when the Total box equals zero and the Status is
Open. To configure this condition, do the following:

1.

10.

Add the Sales Orders form to the list of customized screens, as described in To Add a Page Item for an
Existing Form.

In the navigation pane of the Customization Project Editor, click Conditions under the SO301000
node.

The Conditions: SO301000 (Sales Orders) page opens.

On the page toolbar, click Add New Record.

In the Condition Properties dialog box, which opens, do the following:

a. In the Condition Name column, type the condition's name : AmountZero.
b. Add two rows with the following values:

e Row 1:
e Field Name: Total

e Condition: Eqguals
e Operation: 0

e Row 2:
e Field Name: Status

e Condition: Eqguals
e Value: Open
Click OK.
On the page toolbar, click Save.
Open the Action Editor for the screen: In the navigation pane, click Actions.
In the Action Editor, add the Print Sales Order/Quote action.

When adding an action, in the Action Properties dialog box, in the Hidden box select the
AmountZero value.
For details, see To Configure Actions.

Save your changes, and publish the customization project.

In Acumatica ERP, open a sales order with an Open status and zero total amount on the Sales
Orders form. Notice that the Reports menu is no longer shown on the toolbar.

Creating Workflows

You can customize a form by defining a workflow in the Customization Project Editor. A workflow is a
definition of how the state of an entity created on a particular form should change as a result of a user
performing an action. For example, a workflow can involve the changing of the status of an opportunity
based on the actions a user has performed on it.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5

| Managing Items in a Project | 175

The process of defining a workflow does not require coding. To define a workflow, you can use the
editors in the Screens section of the Customization Project Editor.

We recommend the following types of customization, based on the type of the form to be customized:

e For forms with predefined workflows: The customization of predefined workflows and the
customization of fields and actions

® For custom forms: Creation of new workflows

e For forms with automation steps: The customization of fields in the Field Editor and the
customization of actions in the Action Editor without the creation of a workflow

The automation step functionality and the workflow functionality cannot be used
simultaneously for a single form. Thus, to define workflows for a form, you should
deactivate any automation steps for this form first. For details, see To Deactivate
Automation Steps.

Workflow Inheritance

Some Acumatica ERP forms have predefined workflows, as described in Predefined Workflows. You can
define custom workflows from scratch or workflows based on the predefined workflow for the form.

A custom workflow based on a predefined workflow inherits all modifications of the predefined
workflow. You can view the difference between the predefined workflow and a custom workflow, and
cause the custom workflow to revert to the predefined workflow.

If a predefined workflow is changed in an update after the development of any custom
workflows based on the predefined workflow, each of these custom workflows will inherit the
changes. If you publish a customization project that contains a custom workflow based on a
predefined workflow and there is a newer version of the predefined workflow in the system,
a developer can upgrade the customized predefined workflow with the latest changes from
the system.

For details on updating a custom workflow based on a predefined workflow with the latest changes in
the system, see To Upgrade a Workflow.

Workflow Types

A workflow type defines the set of entities to which the workflow is applied. The applicable entity
depends on the particular form for which the workflow is defined; for example, on the Leads
(CR301000) form, leads are the applicable entity.

To apply a custom workflow to all entities, regardless of their property values, you set the workflow
type to DEFAULT. To apply a custom workflow to entities with a specific property value, you select the
Workflow-Identifying Field on the Workflows page and click Add Workflow on the page toolbar;

in the Add Workflow dialog box, which opens, you need to specify a type other than DEFAULT. For
example, to apply a workflow with a specific opportunity class, on the Workflows page, you select Class
ID in the Workflow Identifying Field box of the Summary area and click Add Workflow on the
page toolbar. Then in the Add Workflow dialog box, you select a type other than DEFAULT.

If you select the Allow Users to Modify Value check box and a user changes the workflow type for
an entity, the system does the following:

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ce564fa0-baca-4d9b-97a8-ec69910de4c2

| Managing Items in a Project | 176

If the current state of the entity does not exist in the new workflow, the system transfers the entity
to the initial state of this new workflow. The rules of the new workflow are then used for the entity.

If some of the states of the entity exist in the new workflow, they remain unchanged, and rules of
the new workflow are used for the entity.

Development of Workflows in an Extension Library

You can develop and customize workflows not only in the Customization Project Editor but also in
Visual Studio by using an extension library. To develop workflows, you should use the set of classes
that is located in the pPxX.Data.WorkflowAPI namespace. For details, see To Define a Workflow from Code.

Predefined Workflows

As of Acumatica ERP 2020 R2, the following forms have predefined workflows:

Opportunities (CR304000)
Cases (CR306000)

Leads (CR301000)

You can customize any of these predefined workflows in Customization Project Editor by adding a
new workflow based on a predefined one (for details, see To Customize a Predefined Workflow) or by
extending graphs and workflows in the Px.0Objects.CR.Workflows namespace. An example of a

workflow extension is shown in the following code.

public class OpportunityWorkflowExt

: PX.Data.PXGraphExtension<OpportunityWorkflow, OpportunityMaint>

Related Links

Workflow Editor

To Add a Workflow

When you define a workflow, you do the following:

1.

2.

Determine all possible states of an entity that users work with on the particular form.

Add all actions that can be performed with the entity in this state and all transitions associated
with each action, for each state.

A transition is the way the entity’s state and the values of the entity's properties should be
changed when the specific action is performed. A transition can also be triggered by an event
handler.

Optional: Define dialog boxes that contain the Ul elements whose settings should be specified, if a
user has to provide additional information for an entity to transition to a different state.

Optional: Specify which UI elements and actions on the applicable form are shown, enabled, and
required, for each state of the workflow.

Optional: Add new values for the fields.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5cb49cd5-2be8-4617-9341-958f1c5d6d53
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=a492a091-9649-4826-bcc3-dccdf8765efd
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ce564fa0-baca-4d9b-97a8-ec69910de4c2

| Managing Items in a Project | 177

You can define a single workflow for the whole form or multiple workflows, one for the entity with each
specific field value. You can configure the settings such as field properties, conditions, and actions,

for the whole form. For each of the workflows of the form, you configure the properties of actions and
fields for every state. These properties determine the appearance of the screen in a certain state.
Conditions can be used in the properties of actions and fields at the form level. At the workflow level,
conditions can be used to determine transitions, so that the transitions are performed only when the
conditions are fulfilled. Also, conditions can be used to determine actions, so that the actions are
performed automatically when the conditions are fulfilled.

You can configure the action and field properties for a form and its workflows at the same time. These
settings indicate whether a field is visible, enabled, or required, and whether an action is visible or
enabled, depending on the conditions specified for a form in any state or for a particular state. If
either at the workflow level or at the screen level, a field is disabled, hidden, or required, it becomes
disabled, hidden, or required, respectively, on the screen. If an action is disabled or hidden at one of
these levels, it becomes disabled or hidden, respectively, on the screen.

Before You Proceed

Before adding a workflow, you need to make sure the corresponding screen has been added to the
customization project. See To Add a Page Item for an Existing Form or To Add a New Custom Form to a Project
for details.

The automation steps and workflow functionality cannot work simultaneously for a single form. Thus, if
you want to define workflows for a form, you need to deactivate all automation steps for this form first.
For details, see To Deactivate Automation Steps.

To Add a Simple Workflow

A workflow is referred to as simple when it is the only workflow defined for a form, consists of only
states and transitions, and does not include dialog boxes. To add a simple workflow, do the following:

1. In the navigation pane of the Customization Project Editor, click Workflows under the screen
node you want to customize. The Workflows page opens.

2. On the page toolbar, click Add Workflow.
3. In the Add Workflow dialog box, which opens, specify the following settings:
e Operation: Create New Workflow
o Workflow Type: DEFAULT
e Workflow Name: The internal name of the workflow
4. Click OK.
This closes the dialog box and displays a new row for the workflow in the table on the page.
5. Click the link in the Workflow Name column.
The Workflows: <Workflow Name> page opens.
6. For each state of the entity, do the following:

a. On the toolbar of the States and Transitions pane, click + > Add State.

| Managing Items in a Project | 178

In the Add State dialog box, which opens, specify the one-letter state identifier and the
description of the state.

Click OK. The dialog box is closed, and the state is added on the States and Transitions
pane; it is also selected so that you can specify its properties, actions, and action parameters.

You can add a predefined state by clicking + > Add Predefined State in the
States and Transitions pane toolbar.

Configure the state by doing the following:

1.

On the State Properties tab, define the state of the entity in the following way: In the
Fields table, add fields and specify their properties for the selected state.

On the Actions tab, specify the actions that are available to a user when the entity has
the selected state.

By default, an action is placed as a menu command on the toolbar drop-down menu
(toolbar folder) which you have configured for the action in the Action Editor. If you want
to also place the action on the toolbar (as a button) outside the menu for the selected
state, select the Duplicate on Toolbar check box.

If you want an action to be automatically performed if a condition is met on a form, in the
Auto-Run Action column, specify the condition. If the entity has this state, every time a
user clicks Save on the form, the system will check the condition and perform the action if
the condition is met.

You can create a new workflow action in the Workflow Editor and in the Action
Editor. For details, see To Add a Workflow Action and To Configure Actions.

On the Handlers tab, specify the event handlers that are available when the entity has the
selected state.

For the state, add and configure transitions by doing the following:

1.

2.

On the toolbar of the States and Transitions pane, click + > Add Transition.

In the Add Transition dialog box, which opens, specify the following properties of the new

transitions:

e Specify whether the transition is Triggered by Action or Triggered by Event
Handler

e Trigger Name (required): The action or the event handler that initiates the transition

e Condition: A condition under which the transition can be performed

You must add a condition before you specify it here. Conditions are defined
on the Conditions page of the customized screen. For details, see To Add a
Condition.

e Target State (required): The target state of the transition
Click OK.

The dialog box is closed, and the transition appears in the States and Transitions pane.

| Managing Items in a Project | 179

4. On the Transition Properties tab, in the Fields to Update After Transition table, add
the fields that should change during this transition.

7. On the page toolbar, click Save.
Transition Steps

In the diagram below, you can see the steps that are performed during a transition to change an
entity's state from the original state to the target state, when a user selects an element in UI.

| Managing Items in a Project | 180

LEGEND

Required action

Action performed if an
optional setting was

Workflow entity 1 configured

Steps performed by the
user

O Steps performed by the

system

Workflow state: Original state

Invoke an action on the Ul

[P S ——

Performed automatically by the system

Workflow entity 1

Workflow state: Target state

Workflow entity 1

|
L F3 A = i Update field values —
< Condition 1 is met e] —
S - H | Workflow state: Target state 1
'

-~ -
~ - 4 A
o Shcoccoosoaoscoosonosoo0
No ¥
No ¥
- -~ .
- S Workflow entity 1
-7 - " T : Update field values — —_—
< .. Condition N is met _ 1 !
-~ - 5 I Warkflow state: Target state N
-~ ~ - - [} !
~__ - S B
No

Workflow entity 1

Workflow state: Target state

|
/

Figure: Steps in a transition (actions)

| Managing Items in a Project | 181

First, a user invokes an action on the UI (Item 1 in the diagram). If applicable, the dialog box you have
specified for the action is displayed, and the user enters the needed values in this dialog box (Item

2). Then the system updates the fields that you specified for the action (Item 3), if any. Optionally, if
the action is defined in a graph, the system applies the parameters that you specified on the Action
Parameters tab (Item 4) and invokes the action method (Item 5); only actions defined in a graph can
have a method to be invoked and parameters to be applied. If you have specified a condition for this
action, the condition is checked (Item 6).

In each transition, you can check for only one condition. To check for multiple conditions,
you have to define multiple transitions, one for each condition. The system checks transition
conditions in the order in which the transitions are defined in the Workflow Editor. Conditions
are defined on the Conditions page of the customized screen. For details, see To Add a
Condition.

Optionally, the system updates the fields you have specified on the Update Fields After Transition
table of the Transition Properties tab (Item 7). The system changes the entity's state to the target
state specified in the Target State box of the Transition Properties tab.

The following steps are performed only if you specified data on the corresponding tabs:
e Displaying a dialog box (Item 2)
e Updating the field values before the transition (Item 3)

e Applying action parameters to the action method (Item 4)

This step can be performed only if an action is in a graph and, thus, has an action to
apply parameters to.

® Checking for a condition (Item 6)
e Updating field values at the end of the transition (Item 7)

In the diagram below, you can see the steps that are performed during a transition to change an
entity's state from the original state to the target state, when an event is raised.

| Managing Items in a Project | 182

LEGEND

Required action

. Action performed if an
Entity 2

optional setting was
PN | user
l o Y

configured
1 Sty rf d by thi
Workflow entity 1 ty--7 H ~ O syzfesrfe ormed by the
1 Invoke an action on the Ul | ...
H H
. 1

Steps performed by the

Workflow state: Original state

Invoke the event handler Trigger an event in code

Workflow entity 1

Workflow state: Target state

. Workflow entity 1
e Condition 1 is met S > Update field values —_—
N - P - ' [Waorkflow state: Target state 1
|

Workflow entity 1

Workflow state: Target state N
Se "

v

Workflow entity 1

Waorkflow state: Target state

|
:

Figure: Steps in a Transition (event handlers)

First, a user invokes an action on the UI of some other entity (Item 1 in the diagram). This triggers an
event in the code (Item 2). Then the system invokes an event handler (Item 3) and updates the fields

that you specified for this event handler (Item 4), if any. Optionally, If you have specified a condition
for the event handler, the condition is checked (Item 5).

| Managing Items in a Project | 183

In each transition, you can check for only one condition. To check for multiple conditions,
you have to define multiple transitions, one for each condition. The system checks transition
conditions in the order in which the transitions are defined in the Workflow Editor. Conditions
are defined on the Conditions page of the customized screen. For details, see To Add a
Condition.

Optionally, the system updates the fields you have specified on the Field Update table of the Event
Handler Properties dialog box (Item 6). The system changes the entity's state to the target state
specified in the Target State box of the Transition Properties tab.

The following steps are performed only if you specified data on the corresponding tabs:
e Updating the field values before the transition (Item 4)

o Checking for a condition (Item 5)

e Updating field values at the end of the transition (Item 6)

To Add a Workflow Action

For each state of an entity, you can specify which actions are enabled for the current state and create
new workflow actions. A workflow action is a simplified type of an action that is not associated with a
graph method. A workflow action can be used only to change the state of an entity, display workflow

forms, and change the specified field values.

To learn about other types of custom actions and ways to create them, see To Configure
Actions.

To configure a workflow action, do the following:
1. Open the Workflow Editor as follows:

a. In the navigation pane of the Customization Project Editor, click Workflows under the screen
node you want to customize. The Workflows page opens.

b. In the list of workflows, click the name of the workflow for which you want to create an action.
The Workflows: <Workflow Name> page opens.
2. In the States and Transitions pane, select the state for which you want to create an action.
3. Open the Actions tab toolbar, click Create Action.
4. In the New Action dialog box, which opens, specify the following settings:
e Action Name: The internal name of the action
e Display Name: The name of the action to be displayed on the form
e Dialog Box: The dialog box that should be opened when the action is selected

You must define a dialog box before specifying it for the action. For details on creating a dialog
box, see To Add a Dialog Box.

e Toolbar Folder: The menu on the form toolbar that should include the action

5.

6.

| Managing Items in a Project | 184

If you want the action to be displayed on the toolbar as a button (outside of any menu), select
the On Top Level check box.

Click OK.

The system closes the dialog box and lists the new action on the Actions tab.

On the page toolbar, click Save.

To Add an Event Handler

For each state of an entity, you can specify which event handlers are enabled for the current state and
create new event handlers.

To create an event handler, do the following:

1.

In the navigation pane of the Customization Project Editor, click Event Handlers under the screen
node you want to customize.

In the Event Handlers page, which opens, click Add New Record on the page toolbar.

In the Event Handler Properties dialog box, which opens, specify the parameters of the event
handler (see To Configure Event Handlers for details).

Click OK to save you changes.

To add an existing event handler for a state, do the following:

1.

2.

3.

4.

In the navigation pane of the Customization Project Editor, in the list of workflows, click the name
of the workflow for which you want to add an event handler.

On the Handlers tab, click Add Row.
In the table row, which is added, select an event handler from the drop-down list.

Save your changes.

To configure an event handler for a screen, do the following:

1.

4.

In the navigation pane of the Customization Project Editor, click Event Handlers under the screen
node you want to customize.

In the Event Handlers page, which opens, click the name of the event handler you want to modify.

In the Event Handler Properties dialog box, which opens, modify the event handler properties as
needed. Also, in the Field Update table, you can add the fields that should be updated after the
event is processed.

Click OK to save you changes.

To Add Multiple Workflows for a Form

You can add multiple workflows for a particular form. In this case, each workflow is applied to all
entities that have a specific value of a selected field. For example, one workflow can be applied to
opportunities of one class (that is, an opportunity class selected on the Opportunities (CR304000) form),
and another workflow can be applied to opportunities of another class.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5cb49cd5-2be8-4617-9341-958f1c5d6d53

| Managing Items in a Project | 185

To add a workflow that is based on a specific value of a selected field, do the following:

1. In the navigation pane of the Customization Project Editor, click Workflows under the screen
node you want to customize. The Workflows page opens.

2. In the State Identifier box, select the field that defines the status of the applicable entity.

3. In the Workflow-Identifying Field box, select the field whose value identifies the workflow.

Only a text field can be specified as a workflow-identifying field.

4. If needed, select the Allow Users to Modify Value check box, so that the users can change the
workflow type (that is, the value of the workflow-identifying field) for an already created entity.

5. On the page toolbar, click Add Workflow.

6. In the Add Workflow dialog box which opens, specify the properties of the workflow, and, in the
Workflow Type box, select the value of the workflow-identifying field.

7. Define the states and transitions of the new workflow, as described in To Add a Simple Workflow.
To Customize a Predefined Workflow

You cannot directly modify a predefined workflow. To customize a predefined workflow, you instead
add a workflow based on a predefined workflow. A workflow based on a predefined workflow can be
referred to as inherited.

To create an inherited workflow in the Workflow Editor, do the following:

1. In the navigation pane of the Customization Project Editor, click Workflows under the screen
node you want to customize. The Workflows page opens.

2. On the page toolbar, click Add Workflow.

3. In the Add Workflow dialog box, which opens, specify the following:
e Operation: Extend System Workflow
e Base Workflow: The name of the predefined workflow
e Workflow Type: The type of the workflow

The type of a custom workflow may be different from the type of the predefined workflow
this workflow is based on. You can create several inherited workflows, and they can be of the
same type or different types. For example, you can create two workflows based on the same
predefined workflow: one for cases of the Hardware Support type and another one for cases
of the Software Support type if the support case type is specified as the workflow-identifying
field.

e Workflow Name: The internal name of the workflow
4. Click OK.
5. In the table, click the name the workflow.

The Workflows: <Workflow Name> page opens.

| Managing Items in a Project | 186

6. Analyze the states and transitions of the predefined workflow. Customize them as you need to, or
add new ones.

For states, transitions, actions, and event handlers of the predefined workflow, the Inherited option
is inserted in the Status column of each item. For states, transitions, and actions that you add in
your customized workflow, the New option is inserted in the Status column.

You can view the differences between the items of the predefined workflow and those of the
inherited workflow by clicking View Changes on the page toolbar. To return an item to the
predefined configuration, click Revert Changes on the page toolbar.

7. On the Workflows page, select the Active check box for the created workflow and save your
changes.

For details on upgrading predefined and inherited workflows to the latest changes in the system, see To
Upgrade a Workflow.

Related Links

e Workflow Editor

To Modify a Workflow by Using the Workflow Visual Editor

To modify a workflow by using a Workflow Visual Editor, you perform the following operations, which
are described in greater detail in the sections that follow:

® Adding a state

e Adding a transition
e Editing a state

e Editing a transition
e Deleting a state

e Deleting a transition

You switch between the diagram view and the tree view of a workflow by clicking Diagram View or
Tree View, respectively, on the page toolbar.

Before You Proceed

The ability to work with workflows by using the Workflow Visual Editor is supported for the following
forms:

® [eads (CR301000) form

® (Cases (CR306000) form

® Opportunities (CR304000) form
® Sales Orders (SO301000) form
® Shipments (SO0302000) form

® /nvoices (SO303000) form

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ce564fa0-baca-4d9b-97a8-ec69910de4c2
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=a492a091-9649-4826-bcc3-dccdf8765efd
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5cb49cd5-2be8-4617-9341-958f1c5d6d53
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f47cffcc-543e-469c-a204-a9c1e3da346d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0acc9738-f141-4ea0-a2be-f34ea9d1b63a

| Managing Items in a Project | 187

Before adding a workflow, you need to make sure the corresponding form (screen) has been added
to the customization project. See To Add a Page Item for an Existing Form or To Add a New Custom Form to a
Project for details.

You cannot modify the default workflow. Instead, you should create a new workflow based on the
default one, or create a new workflow from scratch. See To Add a Workflow for details on how to create a
workflow.

To Add a State

In the Workflow Visual Editor, you add a state to an entity in the same way as you do in the tree view:
You click + > Add State on the page toolbar and specify the state identifier and the description of the
state (for details, see To Add a Workflow).

You can add a predefined state by clicking + > Add Predefined State on the page toolbar.

To Add a Transition

You add a transition between two states in one of the following ways, which are described further
below:

e By clicking + > Add Transition on the page toolbar

e By clicking the plus button in a box with a state and drawing a line from it to another state

e By clicking an action or an event handler of a state and drawing a line from it to the required state
Using the Page Toolbar Button

For details on how to add a transition by using this method, see To Add a Workflow.

Using the Plus Button

You use this method if the action or an event handler does not trigger any outgoing transitions. After
you draw a line to the required state, the Add Transition dialog box opens with the Target State box
filled in. You also specify the following data in the dialog box:

e Triggered by Action or Triggered by Event Handler: Select the option button that indicates
how the transition is triggered.

e Trigger Name: Select a name or click Create and add a new one.

e Condition (optional): Specify when the transition is performed. If you select a condition, the
added transition has a diamond displayed above it.

You must add a condition on the Conditions page of the customized screen before you
specify it here. For details, see To Add a Condition.

An action or an event handler that triggers the transition is automatically added to the state (if is not
already there) and is displayed on the diagram. In the State dialog box, you add the actions that are
available for the state but do not trigger any transitions (see To Edit a State below). However, these
actions are not displayed in the diagram.

Clicking an Action or Event Handler and Drawing a Line

| Managing Items in a Project | 188

You use this method if the action or the event handler of a state triggers some transitions. After you
add a transition this way, you can modify it as needed by clicking the Edit button (see To Edit a
Transition below).

To Edit a State

To edit a state, you double-click the state or click the ellipsis in the upper-right corner of the state
and select Edit State in the context menu that is opened. In the State dialog box, which opens, you
specify the settings for the state as follows:

e (Clear the Active check box if the state should be unavailable for the current workflow.

e Select the Initial State of the Workflow check box if this should be the first state of the
workflow.

e On the Fields tab, add the fields that have properties that should be modified for the state.
e On the Actions tab, modify the actions available for the state as follows:
o Clear the Active check box if the action should be unavailable for the state.
e Select Duplicate on Toolbar if the action should be available on the form toolbar as a button.

e If you select a condition other than False in the Auto-Run Action column, the action is
triggered automatically when this condition is fulfilled.

To Edit a Transition

To edit a transition, you double-click it. Alternatively, you can click the transition and then click the Edit
button that is displayed above it. In the Transition dialog box, which opens, you specify the required
settings for the transition by performing the following actions:

o Clear the Active check box if the transition should be unavailable for the current workflow
e Specify whether the transition is Triggered by Action or Triggered by Event Handler
e Modify the Trigger Name, if needed

e Optional: Select a Condition under which the transition is performed.

e Modify the Target State, if needed.

® Add the fields that should be updated after the transition is performed.
To Delete a State

To delete a state, you select it and press the Delete button. Alternatively, you can click the ellipsis
in the upper-right corner of the state and select Delete State in the context menu that is displayed.
When you select this command, you need to confirm the deletion in the dialog box that is opened.

To Delete a Transition
To delete a transition, you select it and press the Delete button. Alternatively, you can select the

transition and click the bin icon that is displayed above it. You need to confirm the deletion in the
dialog box that is opened.

| Managing Items in a Project | 189

Related Links
® To Add a Workflow
e Workflow Editor

o Workflow Visual Editor

To Add a Dialog Box

You can add a workflow dialog box, which is shown to a user who selects a particular action. By using
the dialog box, the user provides additional values to perform the applicable action and change the
state of the entity associated with the form.

Before You Proceed

A dialog box is added to a specific screen. Thus, before adding a dialog box, you need to make sure the
corresponding screen has been added to the customization project. See To Add a Page Item for an Existing
Form or To Add a New Custom Form to a Project for details.

To Add a Dialog Box

To add a dialog box, do the following:

1. In the navigation pane of the Customization Project Editor, click Dialog Box under the screen
node you want to customize. The Dialog Boxes page opens.

2. In the Dialog Boxes pane, click Add.
3. In the New Dialog box dialog box, which opens, enter the name of the dialog box.
4. Click OK.
In the Dialog Boxes pane, the name of the new dialog box appears.
5. In the right pane, do the following:
a. In the Title box, specify the title of the dialog box you are adding.

b. In the Dialog Box Fields table, add the fields for which a user should provide values in the
dialog box.

You can add the following types of fields:

e Fields of the form where the dialog box is shown. These fields have the same UI control
and set of values as the corresponding fields on the form.

e Custom drop-down lists. You can configure the list of values displayed in the drop-down.
e Custom check boxes.
6. On the page toolbar, click Save.

Now that you have saved the added dialog box, you can specify it for a workflow action in the Action
Editor. For details, see To Add a Workflow and To Configure Actions.

| Managing Items in a Project | 190

Related Links
® Dialog Box Editor

® To Add a Workflow

To Modify Field Properties

You can modify the properties of an existing field and view its inheritance status in the Field Editor. To
do this, you should first add the field in the Field Editor. Then you will be able to modify the following
field properties:

® Disabled: Whether the field is disabled for editing

® Hidden: Whether the field is hidden on the form

® Required: Whether a user must provide a value for the field to be able to save a record
® Display Name: The name of the corresponding box displayed in the UI

Also, for the fields displayed as combo boxes, you can modify the list of possible values.
Before You Proceed

You configure fields for a particular screen. Thus, before you start configuring fields, you need to make
sure the corresponding screen has been added to the customization project. See To Add a Page Item for
an Existing Form or To Add a New Custom Form to a Project for details.

To Add a Field in the Field Editor
To add a field in the Field Editor, do the following:

1. In the navigation pane of the Customization Project Editor, click Fields under the screen node you
want to customize. The Fields page opens.

2. On the form toolbar, click Add New Record.

3. In the Add Field dialog box, which opens, specify the following values:
e Container: The form container where the box for the field is located

The DAC box is filled in automatically.

e Field Name: Internal name of the field

4. Select the field and click Add & Close.

5. On the page toolbar, click Save.

To Modify Field Properties

To modify the properties of a field, do the following:

1. On the Fields page, select the field.

2. If needed, modify the display name of the box in the Field Name column.

| Managing Items in a Project | 191

3. Select the needed values in the Disabled, Hidden, or Required columns.

If any conditions were defined in the Condition Editor for this screen, these conditions will also be
displayed in the list of possible values for the column.

4. On the page toolbar, click Save.

To View Changes Between the Predefined and Customized Field
You can view the changes to the field performed in the Field Editor by doing the following:

1. In the navigation pane of the Customization Project Editor, click Fields under the screen node you
want to customize. The Fields page opens.

2. In the table on the page, select the field for which you want to view changes.
3. On the form toolbar, click View Changes.

The Changes dialog box is shown. The original set of properties of the field is displayed in green.
Changes are displayed in red.

4. If you want to return the properties of the field properties to the original predefined settings, select
Revert Changes. In the Revert Changes dialog box, which opens, click OK to confirm the revert
process.

To Configure the Values of a Combo Box

For fields that are displayed as combo boxes, you can configure the list of values to be displayed in the
combo box. Do the following:

1. In the Field Editor, select the field whose values you want to configure.
2. On the page toolbar, click Combo Box Values.

3. In the Combo Box Values dialog box, which opens, analyze the list of fields that are displayed by
default, and do any of the following:

e In the Description column, change the displayed title of the value.
e To hide a value from the list of values to be displayed, clear the Active check box.

e To add a value, on the table toolbar, click Add Row, and specify the properties of the field in
the table.

4. Click OK to close the dialog box and add the field to the list of fields.
Related Links

® Field Editor

To Configure Actions

To define a workflow, you use the Action Editor. In the editor, you can create new actions, add
predefined actions, and configure the properties of the actions that have been added in the editor.
Actions added in the predefined workflow are automatically displayed in the editor, where you can
modify these actions' properties.

| Managing Items in a Project | 192

To understand which of the listed actions are predefined and which are new, you can refer to the
Status setting of each action. Predefined actions have the Inherited status, and all actions that you
have added to the Action Editor list (including existing graph actions) have the New status.

Before You Proceed

You configure actions for a particular screen. Thus, before you start configuring actions, you need to
make sure the corresponding screen has been added to the customization project. See To Add a Page
Item for an Existing Form or To Add a New Custom Form to a Project for details.

Types of Actions

You can add the following types of actions in the Action Editor:

e Actions that redirect a user to a different form or report

e Workflow actions: Actions that change the state of the applicable entity
e Actions that open a side panel

e Actions defined in a graph

The following table lists the types of redirect actions you can add and the screen ID you can specify for
an action of the type.

Action Type Screen ID

Run report The screen ID of the report that you want to run and to which
you want to redirect the user, such as Sales Order Summaryy
(50610500)

Navigation: Search records The screen ID of the form to which you want to redirect the user;

this is a form where a user can search for records, such as an in-
quiry or a generic inquiry. For example, you might specify this ac-
tion type with the screen ID SO3010PL, which is the ID of the sub-
stitute form for the Sales Orders entry form.

Navigation: Create record The screen ID of the form to which you want to redirect the user;
this is a form on which a user can create a new record. For exam-
ple, you might specify SO301000 as the screen ID (which is the ID
of the Sales Orders (SO0301000) data entry form).

Navigation: Side Panel The screen ID of a form that will be opened in a side panel when
a user clicks the action. You can specify the following types of
forms: dashboards, reports, and generic inquiries. For example,
you might specify CR3060PL as the screen ID (which is the ID of
the Cases (CR3060PL) data entry form).

To Create a New Action
You can create actions in the following ways:

e By clicking the Create Action button in the Add Transition dialog box when you are creating a
transition in the Workflow Editor

e By clicking the Create Action button in the Actions tab for the state selected in the Workflow
Editor

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=94bb06c1-de90-4402-81e3-cf6752d7c54f
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=19e4021c-1b84-49fd-be12-0320c5f1c7e5

| Managing Items in a Project | 193

By clicking the Create New button on the page toolbar of the Actions page

Other types of actions (redirect actions) can be created only in the Action Editor.

To create a new action in the Action Editor, do the following:

1.

In the navigation pane of the Customization Project Editor, click Actions under the screen node
you want to customize. The Actions page opens.

On the page toolbar, click Add New Record > Create New.

In the Action Properties dialog box, which opens, specify the following properties of the new
action:

Action Name (required): The internal name of the action that will be displayed in the Action
Editor and Workflow Editor.

Display Name (required): The name of the action that will be displayed on the applicable
Acumatica ERP form.

Destination Screen (required): The screen or report that should be opened when the action
redirects a user to a different screen.

Disabled: An option that indicates whether the action is disabled by default.
Hidden: An option that indicates whether the action is hidden by default.

In the Disable and Hide boxes, you can also specify a condition, depending on which the
action is disabled or hidden. For details, see To Add a Condition. If this action is used in a
workflow and its availability or visibility depends on the state of the applicable entity, you need
to configure these properties in this state. For details, see To Add a Workflow.

Dialog Box: The dialog box that should be displayed when the action is clicked. For details,
see To Add a Dialog Box.

Processing Screen: A processing form of Acumatica ERP on which the action will also be
available for mass processing.

Action Type: An option that indicates whether the action runs a report, redirects a user to a
particular form, or changes a state of an entity as a part of a workflow.

Toolbar Folder: The folder on the form toolbar that will contain the action.

Window Mode: If the action opens a new page, where the page should be displayed.

Depending on the type of the action you selected, do the following:

For a redirect action, specify the navigation parameters and fields to be updated when the
action is selected.

To be able to specify navigation parameters, you should first specify a value in the
Destination Screen box.

For a workflow action, specify the fields to be updated when the action is performed.

| Managing Items in a Project | 194

5. Click OK.

The dialog box is closed, and the new action appears in the table on the Actions page.

To Customize an Existing Action

If you need to customize an existing action (an action defined in a graph), such as changing the
action’s properties, first you need to add it to the Action Editor.

To add an action to the Actions page, do the following:

1. In the navigation pane of the Customization Project Editor, click Actions under the screen node
you want to customize. The Actions page opens.

2. On the page toolbar, click Add New Record > Add Existing.

3. In the Action Properties dialog box, which opens, in the Action Name box, select the internal
name of the action.

The current properties of the action are copied to the other elements of the Action Properties
dialog box.

4. If you want to modify the action properties before adding the action, specify the following values:

Display Name: The name of the action that will be displayed on the applicable Acumatica ERP
form.

Disabled: An option that indicates whether the action is disabled by default.
Hidden: An option that indicates whether the action is hidden by default.

In the Disable and Hide boxes, you can also specify a condition, depending on which the
action is disabled or hidden. For details, see To Add a Condition. If this action is used in a
workflow and its availability or visibility depends on the state of the applicable entity, you need
to configure these properties in this state. For details, see To Add a Workflow.

Dialog Box: The dialog box that should be displayed when the action is clicked. For details,
see To Add a Dialog Box.

Processing Screen: A processing form of Acumatica ERP on which the action will also be
available for mass processing.

Toolbar Folder: The folder on the form toolbar that will contain the action.

5. Depending on the type of the action you have selected, do the following:

For a redirect action, specify the navigation parameters and fields to be updated when the
action is selected.

To be able to specify navigation parameters, you should first specify a value in the
Destination Screen box.

For a workflow action, specify the fields to be updated when the action is performed.

For a graph action you are customizing, specify the action parameters.

6. Click OK.

| Managing Items in a Project | 195

The added action appears in the table of the Actions page.

Now you can change the properties of the action by selecting the action on the Actions page and
specifying its settings in the Action Properties dialog box.

To Change the Location of an Action in a Menu

When you add an action in the Action Editor, you specify a toolbar folder on a form where the action
should be displayed. By default, the action is added at the end of that folder. You can change the
location of the action in a folder by doing the following:

1. In the navigation pane of the Customization Project Editor, click Actions under the screen node
you want to customize. The Actions page opens.

2. On the page toolbar, click Reorder Actions.

3. In the Reorder Actions dialog box, which opens, in the Toolbar Folder box, select the folder
where the action is located.

The actions located in the selected folder are displayed in the dialog box.
4. Select the action you want to move.

5. Change the location of the action by using the Move Up and Move Down actions on the table
toolbar.

6. Click OK to close the dialog box.

7. On the page toolbar, click Save.
To View Changes Between the Predefined and Customized Action

All predefined actions of the applicable screen are displayed on the Actions page by default. If you have
modified a predefined action in the Action Editor, you can view the changes to the action by doing the
following:

1. In the navigation pane of the Customization Project Editor, click Actions under the screen node
you want to customize. The Actions page opens.

2. In the table, select an action.
3. On the form toolbar, click View Changes.

The Changes dialog box is shown. The original set of properties of the selected action is displayed
in green. Changes are displayed in red.

4. If you want to return the action properties to the original predefined state, click Revert Changes.

If you want to return all customized actions to the predefined properties, on the page
toolbar of the Actions page, click Revert All Changes.

To Remove an Action

You can only remove actions that have the New status—, that is, actions added by a user in the Action
Editor. To remove an action from the Actions page, do the following:

| Managing Items in a Project | 196

1. In the navigation pane of the Customization Project Editor, click Actions under the screen node
you want to customize. The Actions page opens.

2. In the table, select an action.
3. On the page toolbar, click Delete Row.

The action is removed from the Action Editor. If the action was created by using the Action
Editor, the action is removed completely. If the action was defined in a graph and added as an
existing action in the Actions Editor, it is removed only from the list on the Actions page, and all
modifications of the action are removed.

Related Links

® Action Editor

To Configure Event Handlers

To define a workflow, you use the Event Handler Editor. In the editor, you can create new event
handlers and configure the properties of the event handlers that have been added in the editor. Event
handlers added in the predefined workflow are automatically displayed in the editor, where you can
modify these event handlers' properties.

To understand which of the listed event handlers are predefined and which are new, you can refer to
the Status setting of each event handler. Predefined event handlers have the Inherited status, and all
event handlers that you have added to the Event Handler Editor list have the New status.

Before You Proceed

You configure event handlers for a particular screen. Thus, before you start configuring event handlers,
you need to make sure the corresponding screen has been added to the customization project. See To
Add a Page Item for an Existing Form or To Add a New Custom Form to a Project for details.

To Create an Event Handler

To create an event handler, you click Add New Record on the page toolbar and specify the following
parameters:

e Handler Name: The system name of the event handler.

e Display Name: The name of the event handler that is displayed in the diagram view of the
workflow.

e Event Source: The source object for the event handler. This is the DAC for which the event is
raised.

e Event Name: The name of the event that needs to be handled.

e Set the following parameters to specify how to get the object for which the workflow should be
used:

e Object From Event: A check box that indicates (if selected) that the primary data view of the
graph where the event has been raised, should be used. It is available only if the DAC on which
the event is raised coincides with the primary DAC of the current graph.

| Managing Items in a Project | 197

Parameter From Event: A check box that indicates (if selected) that the view that has been
transferred as the event parameter, should be used. It is available only if the type of the
parameter returned by the event coincides with the primary DAC of the current graph.

View From Graph: This check box is available only for predefined event handlers, if the code
for these event handlers contains the BQL for obtaining the entity for which the workflow
should be used.

Allow Multiple Entities: This check box is available only for predefined event handlers, if the
code for these event handlers contains the BQL for obtaining the entity for which the workflow
should be used. It indicates (if selected) that the workflow can be used for multiple entities, if
the BQL has returned multiple entities. If the check box is cleared, the workflow is used only
for the first entity.

Field Update table: The table where you can add fields that should be updated after the event is
processed. The table contains the following columns:

Column Description

Active A check box that indicates (if selected) that the field should
be updated after the event is processed.

Field Name The name of the field that should be updated.

From Schema A check box that indicates (if selected) that field value from
the database should be used.

New Value The new value for the field.

Status The status of the field update.

To Define a Workflow from Code

You can customize a workflow not only by using the built-in editors of the Customization Project Editor
but also by extending a graph. You can also define a new workflow. Acumatica Framework provides the
PX.Data.WorkflowAPI library to customize workflows.

To create a workflow from code, you define workflow objects and specify their properties. Then you
apply your changes to a workflow definition by using calling workflow methods.

Workflow Objects

A workflow definition may include the following objects:

Forms: Corresponds to a dialog box.

A Forms object can include fields, fields whose values a user should specify in the dialog box.

Conditions: Corresponds to a condition.

Actions: Corresponds to an action. An Actions object can include the following object:

FieldAssignments: A set of fields and their values which should be assigned when the action
is performed.

| Managing Items in a Project | 198

® Assignments: A set of fields and their values to perform navigation to another form. This
object can be used for redirecting actions only. For details, see Types of Actions.

® ParameterAssignments: A set of action parameters and their values which should be assigned
before the action method is invoked. This object can be used for graph actions only because
only those actions have a method to be invoked.

® Fields: Corresponds to a DAC field.
® Flows: Corresponds to a workflow.
A Flows object consists of states objects, each of which includes the following entities:
® Fields
® Actions
® Transitions
Workflow Methods
You can apply the following methods to each of the workflow objects:
e Add: The method adds an object to a workflow.
® Remove: The method removed an object from a workflow.
® Replace: The method replaces one object with another in a workflow.
® Update: The method updates the definition of an object in a workflow.
Customization of a Workflow
To customize a workflow from code, you need to do the following:
1. In a customization project, create an extension library to be able to develop code in Visual Studio.

For details on creating an extension library, see To Create an Extension Library. You can also develop
customization code in the Code Editor. For details on the Code Editor, see Code Editor.

2. In an extension library, create an extension of a graph where the workflow is defined.

For details on creating a graph extension in the Code Editor, see To Start the Customization of a Graph.
For details on graph extensions, see Graph Extensions.

3. In the graph extension, override the void Configure (PXScreenConfiguration config) method.

4. In the overridden method, get the context value of the workflow by calling the
config.GetScreenConfigurationContext method.

The method has two parameters: The first parameter refers to the graph type, and the second
parameter refers to the primary DAC of the form.

5. Declare the new entities you want to add to the workflow, such as dialog boxes, actions, and
states.

| Managing Items in a Project | 199

6. Apply the customization by calling the context.UpdateScreenConfigurationFor Or
context.ReplaceScreenCofigurationFor method. In the method's lambda expression, you apply
workflow methods to workflow entities. For example, add the entities you declared in Instruction 5.

7. Build the project and publish the customization project.

See detailed example in Customizing a Predefined Workflow from Code.

To Deactivate Automation Steps

Some forms of Acumatica ERP may use the functionality of automation steps, which are sets of
conditions for a document or entity that, when reached, cause particular actions to be performed

or restrictions on the values to be applied. The automation step functionality and the workflow
functionality cannot be used simultaneously for a single form. Thus, if you want to define workflows for
a form, you need to deactivate any automation steps for this form first.

If a form has automation steps defined for it, we do not recommend that you deactivate the steps and
create a workflow for the form because the behavior of this form may be unpredictable. For forms with
automation steps, we recommend only customization of fields in the Field Editor and actions in the
Action Editor without creation of workflows.

To Deactivate Automation Steps

To deactivate automation steps that have been defined for a form, do the following:

1. In Acumatica ERP, open the Automation Steps (SM205000) form.

2. In the Screen ID box, select the form for which you want to deactivate automation steps.
3. On the form toolbar, click Deactivate Steps.

All automation steps for the selected form are deactivated. The Active check box for all steps is
also cleared.

To Upgrade a Workflow

A customization project might contain custom workflows based on predefined workflows. These
workflows are referred to as inherited. You can manually update the workflow, as described below, or it
can be updated at runtime

If a customization project contains a workflow, the system checks whether the current version of all
predefined workflows (and inherited workflows) is up to date. The checking is performed every time a
customization project is opened in the Customization Project Editor. If the version of the workflow is
not up to date, the system prompts a customizer to upgrade the inherited workflows.

If a workflow has not been updated in the customization project, on a form with which the workflow
is associated, the workflow is updated at runtime. Thus, only the updated version of the workflow is
visible to users.

To Manually Upgrade a Worklfow
You can upgrade workflows manually in the customization project by doing the following:

1. In Customization Project Editor, open the Workflow Editor.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=21ea96fe-8883-47d3-bc58-3e764109826d

| Managing Items in a Project | 200

2. On the page toolbar, click Upgrade Predefined Workflow. If any conflicts occur during the
upgrade, the Upgrade Conflicts dialog box is shown.

3. If the dialog box is shown and you agree with the changes, click OK. The changes will be applied
to the customization project.

Related Links
® Creating Workflows

o Workflow Editor

Customized Data Classes

You use the Customized Data Classes page of the Customization Project Editor to manage DAC items in a
customization project.

A DAC item contains data in the XML format used by the platform to create an appropriate
extension for the original data access class.

The Customized Data Classes page displays the list of DAC items for existing data access classes of
Acumatica ERP added to the project.

On the page, you can perform several operations with the customized data access classes, as described
in the following topics:

® To Add a DAC Item for an Existing Data Access Class to a Project
® To Delete a DAC ltem from a Project
® To Convert a DAC Item to a Code Item

® To Upgrade Technology for Legacy DAC Customization

You cannot create a custom data access class on this page. Instead, you have to use the
Code page of the editor. Custom classes are added to the project as Code items. See To
Create a Custom Data Access Class for details.

You can use Microsoft Visual Studio to work with a DAC item of a customization project

that is currently published. During the project publication, the platform creates the

PX Objects <DACItemName> extensions.cs file with the item content in the app RuntimeCode folder
of the website. If you make changes to the code in Visual Studio, you have to update the item in the
customization project. See Detecting the Project Items Modified in the File System for details.

To Add a DAC Item for an Existing Data Access Class to a
Project

Before modifying an existing data access class, you have to add a DAC item for the class to the
customization project. This item is used to store the data of the class extension in XML format.
After the item is created, you can modify the class members by using the Data Class Editor. After the
customization project is published, the .cs file for the item is created in the file system, and you can

| Managing Items in a Project | 201

develop the C# code of the class extension in Microsoft Visual Studio. You can use the Data Class
Editor as well as Visual Studio to add custom fields to existing data access classes.

You can add a DAC item for an existing data access class to a customization project by using the
Element Inspector, or you can create and add the item on the Customized Data Classes page of the
Customization Project Editor.

The following sections provide detailed information:
® To Add a DAC Item by Using the Element Inspector

® To Add a DAC Item on the Customized Data Classes page

To Add a pAc Item by Using the Element Inspector
1. Open the form in the browser.
2. On the form title bar, click Customization > Inspect Element to launch the Element Inspector.

3. On the form, select a UI element for a field of the class to be customized to open the Element
Properties Dialog Box for the element.

The dialog box displays the name of the data access class that contains the selected element in the
Data Class box, as shown in the screenshot below.

4. In the dialog box, click Actions > Customize Data Fields.

Element Properties b4

Cantral Type: Text Edit

| Data Class: Contact |
Data Field: FullName
Wiew Mame: DefContact

Business Logic: CustormnerMaint

CUSTOMIZE | ACTIONS = CANCEL

Customize Business Logic...

Customize Data Fields...

Wiew Aspx Source. ..
Yiew Business Logic Source. ..

“iew Data Class Source...

Figure: Using the Element Properties dialog box to start customization of the class

If there is no currently selected customization project, the inspector opens the Select Customization
Project Dialog Box to force you to select an existing customization project or to create a new one.

Acumatica Customization Platform creates the DAC item for the class, adds the item to the currently
selected customization project, and opens the class in the Data Class Editor.

The platform assigns the new item the name of the data access class.
To Add a pAc Item on the Customized Data Classes page

1. Open the customization project in the editor. (See To Open a Project for details.)

| Managing Items in a Project | 202

2. Click Data Access in the navigation pane to open the Customized Data Classes page.

3. On the page toolbar, click Add New Record (+).

4. In the Select Existing Data Access Class dialog box, which opens, select the class in the Class

Name box.

You can type the class name in the Class Name box or search for the class by a part of its name,
as shown in the screenshot below. As soon as you add the class, the Data Class Editor opens for it so
that you can modify the fields of this class and add custom fields to it.

Customized Data Classes

& B = X r4 CONVERT TOEXTENSION UPGRADE ALL

Ef Name *Class Name

» CustomerPaymenthethod PX.Objects AR.CustomerPaymentMethod

Contact PX.0Objects. CR.Contact

Select Existing Data Access Class

Class Name GLt

2

PX_Objects_FA AssetBITransactions+Emor
2X.0Objects.FA Asset ransactions+£/8jran

2X.Objects.FA.
2X.0bjects. GL. GLBatchDocRelease+
2X.Objects.GL.
2X.0Objects. GL.
2X.0Objects. GL.
2X.0Objects. GL.
2X.0Objects. GL.
2X.0Objects. GL.
2X.0Objects. GL.
2X.0Objects. GL.
2X.0Objects. GL.
2X.0Objects. GL JounalWithSubEntry +

4

ranFilter

ax
axTran

ran

ranCode

ranDoc

rankey

ranR

rialBalanc elmportDetails

rialBalanc elmportMap

ranDoc U

ranDoc AP

DE Table
CustomerPaymentMethod
Contact

Figure: Adding an existing data access class to the project

5. On the page toolbar, click Save to save the item in the customization project.

As soon as you have modified the attributes of an existing field of the class or added a new field to the
class and saved the changes in Data Class Editor, the class is added to the customization project and
appears in the table of the Customized Data Classes page.

To go back to the Customized Data Classes page of the Customization Project Editor, select Data
Access on the navigation pane. You can see that the added item is saved to the list of project items.

To Delete a DAC Item from a Project

To remove changes to an existing data access class from a project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for

details.)

| Managing Items in a Project | 203

2. Click Data Access in the navigation pane to open the Customized Data Classes page.
3. In the page table, select the item to be deleted.

4. On the page toolbar, click Delete Row.

5. On the page toolbar, click Save to save the changes to the customization project.

If you added a bound custom field to an existing data access class, the platform includes the DAC and
Table items for this class in the customization project.

The Table item contains a description of custom columns added to a database table for
bound custom fields created in the appropriate data access class.

After you publish the customization project at least once, the database schema is changed. Changes to
the database schema aren't deleted when you delete the DAC and Table items and publish the project.
You have to remove the changes manually.

You can delete a DAC or Table item (or another item) from the customization project on the Edit
Project Items page of the Customization Project Editor. (See To Delete Items from the Project on the Edit
Project Items Page for details.)

To Convert a DAC Item to a Code Item

If you have a customized data access class that is added to the project as a DAC item, then you can
convert the class changes into the class extension code (a Code item) to complete the extension
development in the Code Editor or in Microsoft Visual Studio. (See Supported DAC Extension Formats for
details.)

To do this, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Data Access in the navigation pane to open the Customized Data Classes page.
3. In the page table, select the item to be converted, as the screenshot below shows.

4. On the page toolbar, click Convert to Extension.

| Managing Items in a Project | 204

This action can be applied for only data access classes customized using the technology
based on extensions. If you have legacy DAC customization, upgrade it before
converting DAC items to class extensions. See To Upgrade Technology for Legacy DAC
Customization for details.

File Project Publish Extensicn Library Source Control

212Upgraded 4 |Cu5tomized Data Classes |

» SCREENS ¢ v X B + P | CONVERT TO EXTENSION | UPGRADE ALL
-|paTa AccEss |
- | Name * Class Name DB Table
AP-APInveice APlInvoice PX_Objects AP APInvoice APRegister
AP.APPayment APPayment PX_Objects. AP APPayment APRegister
AP.APRegister APRegister PX.Objects. AP.APRegister APRegister
AP.APTran APTran PX.Objects. AP_APTran APTran
AP.BalancedAPDocumen | BajancedAPDocument PX_Objects AP BalancedAPDocument APRegister
AP.Standalone. APQuickC | | APQuickCheck PX Objects. AP Standalone. APQuickCheck Projection
CR.BAccount BAccount PX Objects CR BAccount BAccount
Contact PX Objects CR Contact Contact
~ CODE -
]
APlInvoiceEntry L]
APPrintChecks :
APOuwkCheckEntry‘!
Files

Generic Inquiries
Reports

Site Map

DB Scripts

Figure: Converting the DAC item to the Code item
The platform converts the XML content of the selected item to C# code, deletes the DAC item in the
customization project, adds the created code to the project as a Code item, and opens it in the Code
Editor, as shown in the following screenshot.

| Managing Items in a Project | 205

File Project Publish Extension Library Source Control

212Upgraded 4 | Code Editor: ContactExtensions |

-] v~ OPEN SCREEN VIEW SOURCE OVERRIDE METHOD MOVE TO EXTENSION LIB

AP APInvoice

1| using PX.Data;
2 | using PX.Data.EP;
AP.APPayment 3 |using PX.Objects.AP;
AP APRegister 4 [using PX.Objects.CR.MassProcess;
- 5 | using PX.0Objects.CS;
AP APTran 6 | using System;
AP BalancedAPDocumen 7 |using PX.TM;
. 8 | using PX.5M;
AP Standalone APQuickC 9| using PX.Objects.EP;
CR BAccount 16 | using System.Collections.Generic;
e 11 | using PX.0Objects;
- LOUE n 12 |using PX.Objects.CR;
APlInvoiceEntry u 13
) = 14 ||
APPrintChecks [15 | namespace PX.0Objects.CR
APQuickCheckEntry 16 |4) ,
- 17 [PXNonInstantiatedExtension]
| IContactExtensions | 18
Files 19 Ipublic class CR_Contact_ExistingColumn: PXCacheExtension<PX.0bjects.CR.Contact>
20| 1
Generic Inquiries 21
22 # i F
Reports > region Fax
Site Map 24 [PXDBString(5@)]
. 25 [PXUIField(DisplayName = "Fax #")]
DB Scripts 26 [Phonevalidation()]
System Locales 27 public string Fax{get:set;}
28
Import/Export Scenarics 29 #endregion
Shared Filters 30
. 31|}
Access Rights 32
Wikis 33|}
34
3 35

Figure: Viewing the result of the conversion

This operation is irreversible. After you convert the XML data to C# code, you will not be able to work
with the item in the Data Class Editor or convert it back to a DAC item. You will be able to edit the code
in Code Editor and Visual Studio.

The Convert to Extension action also affects all the inherited classes of the specified DAC
if the classes are customized.

The system obtains the name of the Code item from the DAC name by appending the Extensions
suffix to it. After the publication of the customization project, the actual customization code of

the class is available in the <DACName>Extensions.cs file in the App RuntimeCode folder of the
website. For example, if you apply the action to the cR.cContact class, as shown in the screenshots
above, the operation converts the DAC item to the Code item, automatically giving it the name of
ContactExtensions. The action removes the CrR.Contact DAC item class from the project and adds
the ContactExtensions Code item.

To Convert a DAC Item to an Extension Library

Only Code items can be moved to an extension library. To convert a DAC item to an extension library,
you should first convert the DAC item to a Code item.

Also, you might need to complete these instructions if you have a custom DAC or a DAC extension
developed in one customization and a DAC extension of this custom DAC or a higher-level DAC
extension in another customization. To eliminate dependency and to be able to use the DAC extension
in your project, you need to convert the DAC extension to an extension library.

| Managing Items in a Project | 206

To Convert a DAC Extension to an Extension Library
1. Convert the DAC item to a Code item, as described in To Convert a DAC Item to a Code Item.

2. Move the Code item to the extension library, as described in To Move a Code Item to the Extension
Library

To Upgrade Technology for Legacy DAC Customization

In Acumatica Customization Platform 4.2 and earlier versions, the customization of data access classes
was implemented through the direct Microsoft Intermediate Language (MSIL) injection of custom fields
into PX.0Objects.dll. This resulted in a complex process of publication in which the original library was
replaced with the modified version. In Acumatica Customization Platform 2020 R2, the customization
uses the technology based on class extensions and the DAC extension is compiled into a separate
library that is dynamically merged with the original DAC by the platform at run time.

If you do not need to change the contents of a customization project, there is no reason to

upgrade it. The system will successfully publish the project using the injection of custom fields into
PX.Objects.dll in the newer version of the system as well. However if you have to continue the
development of the project, we recommend that you upgrade the technology of DAC customization in
the project.

The following sections provide detailed information:

® To Upgrade a Legacy DAC Customization

® To Upgrade a Library with a Legacy DAC Customization
To Upgrade a Legacy DAC Customization

To upgrade the legacy DAC customization to the technology based on class extensions, perform the
following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Data Access in the navigation pane to open the Customized Data Classes page.

3. On the page toolbar, click Upgrade All, as shown in the following screenshot.

| Managing Items in a Project | 207

File Project Publish Extension Library Source Control

212Upgraded 4

Customized Data Classes |

» SCREENS (& Ll X o + 7 CONVERT TO EXTENSION | UPGRADE ALL

» DATA ACCESS

o B Name * Class Name DB Table

r LUUE > APInvoice PX.Objects AP APInvoice APRegister
Files APPayment PX.Objects. AP.APPayment APRegister
Genefic Inquiries APRegister PX.Objects AP APRegister APRegister
Reports APTran PX_Objects AP APTran APTran
Site Map BalancedAPDocument PX Objects AP BalancedAPDocument APRegister
DE Scripts APQuickCheck PX.Objects AP.Standalone APQuickCheck Projection
System Locales BAccount PX.Objects. CR.BAccount BAccount
Import/Export Scenarios Contact PX.Objects.CR.Contact Contact

Shared Filters
Access Rights

Wilrie

Figure: Upgrading legacy customization

This action launches the upgrade wizard, which processes all the project items of the DAC and Code

types to discover and update the following cases of DAC customization based on the MSIL injection
technology:

A field of a data access class does not contain the storageName attribute, which specifies the

storage type of the field. For more information about the storage types, see Create New Field Dialog
Box.

In the Acumatica Customization Platform, you must select the way a custom field will be
stored in the database when you add the field to a data access class.

The code contains a direct reference to a custom field of a row.

The code contains a direct reference to an abstract class of a DAC field.

See Using the Upgrade Wizard for details.

After the process is complete, the wizard opens the message box with the list of the items that have
been upgraded (see the screenshot below).

| Managing Items in a Project | 208

The page at localhost says:

The following Fields have been Upgraded:
CuryOrigWhTaxaAmt, DocDate,
VendorlLocationID, InvoiceNbr, CreatedByID,
UsrDeliverydate, LastModifiedByID,
UsrVoucherMbr, FinPeriodID, TranPeriodID,
FinPeriodID, DiscDate, CuryOrigDiscAmt,
CreatedDateTime, LastModifiedDateTime,
UsrInvoiceNbr, PayTypelD, DocType, RefNbr,
PaymentMethodID, VendorRefNbr,
CuryUnitCost, SubID, UsrEIN1099,
CreatedDateTime, UsrInt1099, UsrPSFCbuyerl,
CreatedByID, Fax

The following Code Files have been Upgraded:
APInvoiceEntry, APQuickCheckEntry,
PX.Objects.AP.APRegister

Figure: Viewing the list of upgraded items
If there is no legacy customization in the project, the wizard opens a message box with the relevant
information (see the screenshot below).

The page at localhost says:

No Legacy Fields in Project

MNo Field Referenceds were found in Code Files

B —

Figure: Viewing the message box that indicates no legacy customization in the project
To Upgrade a Library with a Legacy DAC Customization

If you have legacy customization of data access classes as a library (.d11) and have to modify the
customization project, you can add the source code of the library as Code items to the customization
project and then upgrade it as follows:

1. In the Microsoft Visual Studio project of the library, for each source code file that contains a data
access class customization, do the following:

a. In Visual Studio (or any text editor), open the file, select All, and copy the source code to the
clipboard.

b. Create a new Code item in the customization project.

c. Delete the code template from the created item.

| Managing Items in a Project | 209

d. Paste the clipboard content into the item and save the Code item to the customization project.
2. Upgrade the customization project.

3. Test the upgraded customization project to ensure that the project is valid and applies to the
system after publication.

4. If you need to move the source code back to the library, use the clipboard and the copy-paste
approach as well.

Using the Upgrade Wizard

While upgrading the DAC items, the wizard does the following:

® Adds the storageName attribute and sets its value to "ExistingColumn" for an existing field.
® Adds the storageName attribute and sets its value to "AddColumn” for a custom field.

e Finds and replaces all references to custom fields in the attributes of other customized
fields, such as a PxSelector, PXParent Or PXFormula. For example, the wizard inserts the
typeof (DACNameExt .usrFieldName) reference in the pxselector declaration instead of the
typeof (DACName.usrFileName) reference.

While upgrading items of the Code type, the wizard processes each item to find references to the
custom fields and replaces the references by using the following approach:

e The wizard updates the references to the abstract class of the DAC field from
DACName.usrFieldName to DACNameExt.usrFieldName, wWhere the DACNameExt is the name of the
new extension class.

e The wizard replaces the references to the field Row.UsrFieldName with a reference to the field
through the DAC extension: Row.GetExtension<DACNameExt> () .UsrFieldName.

For example, the following code contains the references to the APRegister.usrvVoucherNbr class and
doc.UsrVoucherNbr field, which is a field customized based on the MSIL injection technology.

sender.RaiseExceptionHandling<APRegister.usrVoucherNbr> (doc,
doc.UsrVoucherNbr,
new PXSetPropertyException("..."));

After technological upgrade for the customization of DAC classes in the project, the references will look
as the following code shows. Now the code refers to the usrvoucherNbr class of the APRegisterExt
extension class that will be generated during publication of the project.

sender.RaiseExceptionHandling<APRegisterExt.usrVoucherNbr> (doc,
doc.GetExtension<APRegisterExt> () .UsrVoucherNbr,
new PXSetPropertyException("..."));

Code

| Managing Items in a Project | 210

There might be a situation when a legacy customization includes two data access classes
with custom fields that have the same names, such as DACNamel.usrTheSameFieldName
and DACName?2.usrTheSameFieldName. When you upgrade the customization, the wizard
replaces the Row.usrTheSameFieldName references to each field by using the following
pattern: Row.GetExtension<DACNamelExt or DACName2Ext> () .usrTheSameFieldName.
The expression "GetExtension<DACNamelExt or DACName2Ext>" is invalid and causes

a compilation error. You are supposed to review these references and insert the correct
reference to the needed class, DACNamelExt Or DACName2Ext.

You use the Code page of the Customization Project Editor to manage Code items in the customization
project. On the page, you can perform the following operations with items:

e Add a new Code item of any of the following subtypes to the project:

New Graph: A new business logic controller that is derived from the pPXGraph<> class
New DAC: A data access class that is derived from the 1BglTable class

Graph Extension: A graph extension that is derived from the PXGraphExtension<> class
DAC Extension: A DAC extension that is derived from the pXCacheExtension<> class
Code File: Custom C# code

Customization Plug-in: A class that is derived from the CustomizationPlugin class

o Delete a Code item from the project

You can open the Code Editor for a Code item by clicking the object name of the item in the page table.

You can develop the customization code in the Code Editor. However we recommend that
you develop the code in Microsoft Visual Studio (as described in Integrating the Project Editor
with Microsoft Visual Studio) and use the editor for either minor code correction or the insertion
of ready portions of code.

To move the code from a Code item to the extension library that is bound to the customization project,
use the Move to Extension Lib action on the Code Editor toolbar.

For detailed information on working with Code items, see the following topics:

® To Create a Custom Business Logic Controller

® To Create a Custom Data Access Class

® To Customize an Existing Business Logic Controller

® To Customize an Existing Data Access Class

® To Add Custom Code to a Project

® To Add a Customization Plug-In to a Project

® To Delete a Code ltem From a Project

| Managing Items in a Project | 211

® To Move a Code ltem to the Extension Library

You can use Visual Studio to work with a Code item of a customization project that is currently
published. During the publication of the project, the platform creates the <CodeltemName>.cs file with
the item content in the App_RuntimeCode folder of the website. If you make changes to the code in
Visual Studio, you have to update the item in the customization project. See Detecting the Project Items
Modified in the File System for details.

To Create a Custom Business Logic Controller

You can add a custom business logic controller to a customization project on the Code page of the
Customization Project Editor.

To do this, perform the following actions:

1. Open the customization project in the editor. (See To Open a Project for details.)
2. Select Code in the navigation pane to open the Code page.

3. Click Add New Record (+) on the page toolbar.

4. In the Create Code File dialog box, which opens, select New Graph in the File Template box, as
the screenshot below shows.

5. In the Class Name box, specify the class name of the business logic controller to be created.

6. Click OK.

Create Code File

* File Template: Mew Graph -

* Clags Mame: | MyEILC|

I canceL

Figure: Adding a Code item for a custom graph to the project
The platform creates the code template of the class derived from the pXGraph<> class, saves the code
as a Code item of the project in the database, and opens the item in the Code Editor.

To Create a Custom Data Access Class

You can add a new data access class (DAC) to a customization project by generating the code from the
definition of a database table.

To create a custom data access class for a custom database table and add the created item to a
customization project, you have to generate the class template on the Code page of the Customization
Project Editor.

To do this, perform the following actions:

1. Create the needed custom table in the database by using a database management tool.

2. Generate the DAC code for the customization project as follows:

| Managing Items in a Project | 212

a. Open the customization project in the Project Editor.

b. In the navigation pane, click Code to open the Code page.

c. On the page toolbar, click Add New Record (+).

d. In the Create Code File dialog box, which opens, select New DAC in the File Template box.

e. In the Class Name box, specify the class name that corresponds to the name of the table
created in the database.

If you have just created the table, restart Internet Information Services (IIS) or
recycle the application pool to make sure that Acumatica ERP is aware of the new
table, because it caches the database schema once, when the domain starts.

f. Select the Generate Members from Database check box.
g. Click OK.
The platform does the following:

® Generates the data access class with members that correspond to the table columns. The
class is added to the namespace of the customization project.

e Adds the class to the customization project as a Code item.
® Saves the customization project.
® Opens the created item in the Code Editor.

You can use the Code Editor to modify the generated code. After you publish the customization
project, you can work with the custom data access class in MS Visual Studio.

In the Code Editor, define the key fields in the DAC. To include a data field in the key, in the type
attribute of the field, you have to add the 1sKey parameter, as the example below shows.

[PXDBString (15, IsKey=true)]

Add the table definition to the customization project by doing the following:
a. In the navigation pane of the Project Editor, click Database Scripts.
b. On the Database Scripts page, which opens, click Add > Custom Table Schema.

c. In the Add Custom Table Schema dialog box, which opens, select the custom table in the
Table box, and click OK.

The platform does the following:
e Adds the XML definition of the table to the customization project as an Sg/ item
e Saves the customization project

Every time you publish the customization project, the system checks whether a table with this
SQL definition exists in the database. If the table doesn't exist, the system creates the table.
If the table exists, the system adjusts the table schema if there is any difference between

| Managing Items in a Project | 213

the existing table schema and the table schema from the customization project (no data is
truncated).

To Customize an Existing Business Logic Controller

You can create the class extension for an existing business logic controller (BLC) and add the Code
item with the created code to a customization project in several ways, as described in the following
sections:

® To Add a Code Item by Using the Element Inspector
® To Add a Code Item by Using the Layout Editor
® To Add a Code Item on the Code page

If you need to extend the code of a BLC that has no webpage associated (such as ARReleaseProcess),
follow the instructions described in To Add a Code Item on the Code page.

As soon as you add the code item for customization of the business logic to the project, the system
generates an extension class for it and opens the code in the Code Editor. You can work with the
extension classes in the Code Editor. After you publish the customization project, you can develop the
code in MS Visual Studio.

To Add a code Item by Using the Element Inspector

Typically, you want to modify the business logic that is executed for a certain form of Acumatica ERP.

To add a Code item for customization of the business logic for an existing form to a customization
project by using the Element Inspector, perform the following actions:

1. Open the form in the browser.
2. On the form title bar, click Customization > Inspect Element to launch the Element Inspector.
3. On the form, select any UI element to open the Element Properties Dialog Box for the element.

The Business Logic box of the dialog box displays the name of the business logic controller that
provides business logic for the form, as shown in the screenshot below.

4. In the dialog box, click Actions > Customize Business Logic.

Element Properties b4

Cantral Type: Tab
Data Clags: Customer

Wiew Marme: CurrentCustarner

Business Logic: Custornerhaint |

CUSTOMIZE | ACTIONS ~ CANCEL

Custormize Data Fields...

Wiew Aspx Source. ..
Wiew Business Logic Source...

Wiew Data Class Source...

| Managing Items in a Project | 214

Figure: Using the Element Properties dialog box to customize the business logic for the form

5. If there is no currently selected customization project and the inspector opens the Select
Customization Project Dialog Box, select an existing customization project or to create a new one.

The platform creates the template of the class that is derived from the PXGraphExtension<> class,
saves the code as a Code item of the project in the database, and opens the item in the Code Editor, as

shown in the following screenshot.

File Publish Extension Library Source Control
YogiFon 4 Code Editor: NonStockltemMaint (Non-Stock ltems)
» SCREENS v OPENSCREEN VIEWSOURCE OVERRIDE METHOD NEW ACTION

Data Access

-~ CODE

MOVE TO EXTENSION LIB

| INOI‘IQf'"”‘ Maint
- — 21 | using CRLocation = PX.Objects.CR.Standalone.Llocation;
Files (5) 22 | using PX.Objects;

Generic Inquiries (1) 23 | using PX.Objects.IN;

Reports (1) 25 | namespace PX.Objects.IN
Site Map (3) g
Ip() =
DB Scripts 28 Ipublic class NonStockItemMaint_Extension:PXGraphExtensicn<NonStockItemMaint>
System Locales 2 1
‘ 3@
Impert/Expoert Scenarios (1) 31 #region Event Handlers
. 32
Shared Filters 33
Access Rights 34 ||
Wikis :? #endregion
o
Web Service Endpoints 37| %
. 38
Analytical Reports 39
4@ |}

Figure: Viewing the created code template in the Code Editor

To Add a code Item by Using the Layout Editor

Often, you start a customization of an Acumatica ERP form in the Screen Editor and you later want to
modify the business logic for this form. To customize the business logic of the form, you can add a

Code item to a customization project from the Layout Editor.

To do this, perform the following action:

1.

| Managing Items in a Project | 215

On the toolbar of the Layout Editor, click Actions > Customize Business Logic, as the following
screenshot shows.

Layout Editor; AR303000 (Customers)

Lol PREVIEVY CHANGES

c F Y Edit Aspx Add Controls | Add Data Fields | View ASPX
Open Screen
3 DataSource: CustomerMaint

Customize Busin

» Farm: BAccount
v @ Tab: CurrentCustomer
v & Dialogs

Customize Data Class Value

- bBase Properties

D ds
PageLoadBehavior
Primaryiew BAccount
TypeMame P.Objects AR. Customerh...
“isible True
- Ext Properties
3 ClientEvents

Figure: Starting the customization of the business logic from the Layout Editor

The platform creates the template of the class that is derived from the PXGraphExtension<> class,
saves the code as a Code item of the project in the database, and opens the item in the Code Editor.

To Add a code Item on the Code page

If you know the name of the business logic controller to be customized, you can create a Code item
with the graph extension template on the Code page of the Customization Project Editor by using the
Create Code File dialog box.

To do this, perform the following actions:

1.

2.

Open the customization project in the editor. (See To Open a Project for details.)
Click Code in the navigation pane to open the Code page.
Click Add New Record (+) on the page toolbar.

In the Create Code File dialog box, which opens, select Graph Extension in the File Template
box, as the screenshot below shows.

In the Base Graph box, select the class name of the business logic controller to be customized.

Click OK.

| Managing Items in a Project | 216

CODE
E Object Hame Description i B Last Modified On
> ARReleaser Ikl B/2/2015
Cust hlai 87272016
LElomeraL File Ternplate: | Graph Extension -
S0lnvoiceEnt 87272016
S00rderEntr: * Base Graph: o

Select - Base Graph

SELECT € ol |[arod o

& FullHame 1
P, Objects. AR, cumentEng

» P .Objects AR. cumentRelease

Figure: Adding a Code item with the graph extension to the project

The platform creates the template of the class that is derived from the PXGraphExtension<> class,
saves the code as a Code item of the project in the database, and opens the item in the Code Editor.

To Customize an Existing Data Access Class

If you know the name of the data access class to be customized, you can create a Code item with the
DAC extension template on the Code page of the Customization Project Editor by using the Create
Code File dialog box.

To do this, perform the following actions:

1. Open the customization project in the editor. (See To Open a Project for details.)
2. Click Code in the navigation pane to open the Code page.

3. Click Add New Record (+) on the page toolbar.

4. In the Create Code File dialog box, which opens, select DAC Extension in the File Template box,
as the screenshot below shows.

5. In the Base DAC box, select the name of the data access class to be customized.

6. Click OK.

| Managing Items in a Project | 217

CODE
E Object Hame Description Last Modified By Last Modified On
* ARDocumentRelease adrmin 8/3/2016
ARReleaseProcess Create Code File 87372016
Custornertdaint 87272016
. * File Template: DAL Extension - 8209016
ollimaiceEntry

SO0rderEntry + Base Dac: 8/2/2016

Select - Base Dac

SELECT € = |Hm |

B Fulllame t
» P Objects. S0, woice

P . Objects. S0. voice+ARRegister

P . Objects. S0. voiceDiscountDetail

P . Objects. S0. wvoiceFilter

P . Objects. S0O. vaicePrintFarmFilter

Figure: Adding a Code item with the DAC extension to the project

The platform creates the template of the class that is derived from the pXCacheExtension<> class,
saves the code as a Code item of the project in the database, and opens the item in the Code Editor.

To Add Custom Code to a Project

You can add a .cs file with some custom code to a customization project. To do this, perform the
following actions:

1. Open the customization project in the editor. (See To Open a Project for details.)
2. Click Code in the navigation pane to open the Code page.
3. Click Add New Record (+) on the page toolbar.

4. In the Create Code File dialog box, which opens, select Code File in the File Template box, as
the screenshot below shows.

5. In the Class Name box, specify the name of the new class to be added to the project.

6. Click OK.

| Managing Items in a Project | 218

Create Code File

* File Template: Code File -

* Clags Mame: My ClassMarng|

[ok EAEN

Figure: Adding a Code item for a custom graph to the project

The platform creates the code template of the new class, saves the code as a Code item of the project
in the database, and opens the item in the Code Editor, as the following screenshot shows.

File Publish Extension Library Source Control

YogiFon 4 Code Editor: MyClassName
» SCREENS v OPENSCREEN VIEWSOURCE OVERRIDEMETHOD — NEWACTION — MOVE TQ EXTENSION LIS
» DATA ACCESS

using System;

~ CODE

ARDocurmentRelease namespace YogiFon

i

1
2
3
ARReleaseProcess 4
5 public class NMyClassName
]
7
g

Customeriaint
S0Invoice afy
S0InvoiceEntry 1o
S00rderEntry 12
Files 13

i

B

Generic Inouiries ar

Figure: Viewing the custom code file added to the project

To Add a Customization Plug-In to a Project

As a part of a complex customization, you might need to make changes to the website beyond the
customization project. For example, you might need to change the website configuration. In such
situations, you can add a customization plug-in to the project with the code to be executed at the end
of the publication process.

To add a customization plug-in, perform the following actions:

1. Open the customization project in the editor. (See To Open a Project for details.)
2. Click Code in the navigation pane to open the Code page.

3. Click Add New Record (+) on the page toolbar.

4. In the Create Code File dialog box, which opens, select Customization Plug-in in the File
Template box, as the screenshot below shows.

5. In the Class Name box, enter the name of the plug-in to be added to the project.

6. Click OK.

| Managing Items in a Project | 219

Create Code File

* File Template: Custamization Plugin -

* Class Name: | My Plugir|

[ok EAEN

Figure: Adding a customization plug-in to the project

The system generates the plug-in code by template, as shown below.

using System;
using PX.Data;
using Customization;

namespace YogiFon
{
//The customization plug-in is used to execute custom actions after the customization
project has been published
public class MyPlugin: CustomizationPlugin
{
//This method is executed right after website files are updated, but before the website
is restarted
//The method is invoked on each cluster node in a cluster environment
//The method is invoked only if runtime compilation is enabled
//Do not access custom code published to bin folder; it may not be loaded yet
public override void OnPublished()
{
this.WriteLog ("OnPublished Event");

//This method is executed after the customization has been published and the website is
restarted.

public override void UpdateDatabase ()
{
this.WriteLog ("UpdateDatabase Event");

When a customization project that contains a customization plug-in has been published, the
corresponding .cs file is created in the App RuntimeCode folder of the website.

| Managing Items in a Project | 220

The Acumatica Customization Platform uses the App RuntimeCode folder to keep the CS
code of the DAC and Code items of all the published customization projects. By default, at
run time, the platform compiles the code of this folder in a separate library and dynamically
links the library to the Acumatica ERP application. (See Run-Time Compilation for details.) If
you set the UseRuntimeCompilation key in the <appSettings> section of the web.config
file (located in the website folder) to False, the platform uses the App Code/Caches folder
instead the aApp RuntimeCode one for the customization code. In this case, the OnPublished

method of a customization plug-in cannot be executed. Execution of the UpdateDatabase
method does not depend on the UseRuntimeCompilation key value.

To Delete a Code Item From a Project

To remove a Code item from a project, perform the following actions:

1.

4.

5.

Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

Click Code in the navigation pane to open the Code page.
In the page table, click the item to be deleted.
On the page toolbar, click Delete Row (X).

On the page toolbar, click Save to save the changes to the customization project.

You can delete a Code item from the customization project on the Edit Project Items page of the

Customization Project Editor. (See To Delete Iltems from the Project on the Edit Project Items Page for details.)

If you are working in Microsoft Visual Studio, to update the files in the file system, publish the
customization project. The .cs file of the deleted Code item will be removed from the file system.

To Move a Code Item to the Extension Library

You can develop customization code either as Code items in a customization project or as source code
included in an extension library project in Microsoft Visual Studio. Some part of a customization may
exist in the Code items of a customization project, while another part can be in an extension library
that is included in the customization project as DLL file. (See Extension Library for details.)

To move the code from a Code item to an extension library, perform the following actions:

1.

Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

Click Code in the navigation pane to open the Code page.
In the page table, click the name of the item to be moved to open the Code Editor for the item.

On the editor toolbar, click Move to Extension Lib.

| Managing Items in a Project | 221
Before you launch the operation, be sure that the customization project is bound to an
existing extension library. (See Customization Project Editor for details.)

For more information about the operation, see Move to Extension Lib Action. Also, see Extension Library
(DLL) Versus Code in a Customization Project for our recommendations about where you should keep your
customization code.

Custom Files

You can add to a customization project any custom file located in the website folder of your instance
of Acumatica ERP. When you add a file to a project, the Acumatica Customization Platform stores a
copy of the file in the database as a File item. A File item contains the path to the custom file and the
GUID of the file content in the file storage of the database. The path is relative to the website folder.
The platform then includes a copy of the file from the database in the deployment package.

You must include in a customization package any custom files that you need to use with
your instance of Acumatica ERP and publish this package on this instance. If you instead
copy the files to the website folder of your instance of Acumatica ERP manually, the files will
be removed while the instance is being updated.

You use the Custom Files page of the Customization Project Editor to manage File items in the
customization project. The page displays the list of File items included in the project.

When you publish or export the project, the platform compares each file in the project (in the
database) with the original file in the file system and detects the files that have been modified in
the file system. If a modified file is found, there is a conflict, and the platform gives you the option
to update the files in the project or discard the changes (and use the files from the database). See
Detecting the Project Items Modified in the File System for details.

On the Custom Files page, you can perform the operations with items described in the following topics:
® To Add a Custom File to a Project
® To Update a File Item in a Project

® To Delete a Custom File From a Project

To Add a Custom File to a Project

To add a custom file to a customization project, do the following:
1. In the file system, place the file in an appropriate folder within the website folder.
For example, if you need to add an extension library file, place it in the Bin folder of the website.

2. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

3. Click Files in the navigation pane to open the Custom Files page.

4. On the page toolbar, click Add New record (+).

| Managing Items in a Project | 222

5. In the Add Files dialog box, which opens, find the file in the table and select the check box in the
Selected column for it, as shown in the following screenshot.

You can select multiple custom files to add them to the project at the same time.

File Project Publish Extension Library Source Control
EcommerceSept1 « Custom Files

» SCREENS (& -~ DETECT MODIFIED FILES X

~ DATA ACCESS
E [Object Name Description Last Last

IN Inventoryltem

o s @ ™ Add Files
Inventory ltemMaint @ | File#App_Dat:
MonStockltermMaint @ | File#Bin\ECFF
I Files {3} E Selected Path Modified Size
Generic Inquiies O App_Data\CheckinFiles.xml 3/25/2015 | 1973
Reports App_Datalmaintlog.txt 3/26/2015 | 89332
_ O App_Data\RollbackFiles\Bin\PX. Objects dil 3/24/2015 | 16178688
Site Map O App_Data\UpdateStatus xml 31252015 | 109
DE Scrpts (2) App,_DatalWebsitelD190467961 txt 31012015 | 36
System Locales O App_RuntimeCode\POOrderEntry.cs 3/19/2015 | 890
Import/Export Scenarios O App_RuntimeCode\PX_Objects_PO_POOrder.cs | 3232015 | 2853
Shared Filters o[v Bin\KeyWords.dl 32412015 | 5632 |
Access Rights] Bin\KeyWords.pdb 324/2015 | 11776
Wikis O Bin\Microsoft. Practices. Servicelocation pdb 3/24/2015 | 24064
Web Service Endpoints O Bin'\PX_Api.OData.pdb 3/24/2015 | 185856
O Bin\PX Bulkinsert. pdb 312412015 | 430768
O Bin\PX.CCProcessing.pdb 32412015 | 318976
CANCEL

Figure: Adding a custom file to the project

For any files other than the ones placed in the Bin folder, you can click Refresh on the
toolbar of the Add Files dialog box to make the system update the list of files in the
table. If you have changed files in the Bin folder of the website, you should refresh the
page in the browser by pressing F5 on the keyboard.

6. In the dialog box, click Save to save each selected file to the customization project as a File item.
If you modify the file added to a customization project in the file system, you have to update the

appropriate File item in the project.

To Update a File Item in a Project

If you have modified a file of a customization project in the file system and need to use the modified
version of the file in the project, you have to update the copy of the file in the database. To do this,
perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

| Managing Items in a Project | 223

2. Click Files in the navigation pane to open the Custom Files page.
3. On the page toolbar, click Detect Modified Files, as shown in the screenshot below.

4. In the Modified Files Detected dialog box, which opens, ensure that the Conflict check box is
selected for the file.

Q Acumatica

File Publish Extension Library Scurce Control
YogiFon 4 Custom Files
& L X + DETECT MODIFIED FILES
B [Object Name Description Last Last
Modified Modified
By On
I Files (5) S : .

' B » 11 App_Data\Mobilelincludes\AR405000.xml.inc admin 52712016
Generic Inquiries @ App_Data\Mobile\YogiFonMSM xml admin 6/1/2016
Reports SIRN=TINI Modified Files Detected = % Nl
Site Ma
DIBeSv F{_p " @ | Page Some files have been modified in the file system. Please resolve the conflicts 016

cripts (1)

_ @ | Page | UPDATE CUSTOMIZATION PROJECT | DISCARD ALL CHANGES 16
System Locales
Import/Export Scenarios B Selected Conflict Path
Shared Filters > v C:\Training\YogiFon_st_01\App_Data\Mobileline ludes\AR£09000.xm...
Access Rights V| C:\Training\YogiFon_st_01\App_Data\Mobile\YogiFonMSM._xml
Wikis O C:\TrainingYogiFon_st_01\App_RuntimeCode\ARReleaseProcess.cs

Web Service Endpoints v C:\Training\YogiFon_st_01App_RuntimeCode\PX_Objects_AR_AR
Analytical Reports O C:\Trainigayoai i j R_Con
U C-\Train PX_Objects_AR_ARTran_extensions.cs p_SO-
O C:\Train e —— A N.cs
O C:\Training\YogiFon_st_01\App_RuntimeCode\SOOrderEntry.cs
O C:\Training\YogiFon_st_01\Bin\YegiFen_Cede.dll
O C:\Training\YogiFon_st_01\Pages\ARVARA405000.aspx
O C:\Training\YogiFon_st_01\Pages\ARVAR405000.aspx.cs

Figure: Updating files in the project

5. If multiple files in the project were changed, and you do not want to update some files at the
moment, clear the selection of these files in the Selected column.

6. On the toolbar of the dialog box, click Update Customization Project to update the selected
files.

If you click Discard All Changes, the Acumatica Customization Platform resolves the conflict by
overriding the file in the file system using the file copy in the database.

If you make changes to custom files added to a customization project in the file system, the platform
does not publish or export the project while a file in the file system differs its copy in the database.

You have to resolve all such conflicts before publication or export of the project. See Detecting the Project
Items Modified in the File System for details.

Detecting the Project Items Modified in the File System

In the website folder in the file system, the platform tracks changes that you make to the following
files:

| Managing Items in a Project | 224

o Files with the customization code added to the customization project as DAC items
e Files with the customization code added to the project as Code items
e Custom files added to the project

If you make changes to these files in the file system, you have to update them in the project before
you publish the project or export the deployment package of the project.

When you run the project publication process or export the project, the Acumatica Customization
Platform compares each file in the project (in the database) with the original file and detects the files
modified in the file system. If a modified file is found, there is a conflict, and the platform opens the
Modified Files Detected dialog box to give you the option to update the files in the project or discard
the changes and use the files from the database.

If you have used the File Editor of the Customization Project Editor to modify a File item in

a customization project and saved the changes in the database, the changes are not saved
in the original file in the file system. Then if you click Detect Modified Files on the toolbar
of the Files page, the platform does not detect a conflict because the file in the database

is newer. The platform automatically updates the original file during the publication of the
customization project.

The Modified Files Detected dialog box lists all custom and customized files in the website folder.
The Conflict check box means that the file version in the file system differs from the file version in the
customization project. This could happen, for example, if you have modified the customization code

in a file by using MS Visual Studio and the change is not yet reflected in the customization project.

You have to resolve all conflicts in the project before you publish the project or export the deployment
package of the project.

In the dialog box, you can invoke the following actions for conflicting files:

e Update Customization Project: Updates the customization project with the file version from the
file system.

e Discard All Changes: Keeps the file version that exists in the customization project and discard
the changes in the file system.

These actions are performed on the selected files—that is, all conflicting files for which you have

selected the check box in the Selected column.

You can invoke one action for one individual file and another action for another file. For example,

you can first select the files that you want to update in the customization project and click Update
Customization Project. Then you can click Discard All Changes to cancel the changes made to all
other conflicting files.

Make sure you have updated all appropriate files before removing all remaining conflicts. If you discard
changes, after you publish the customization project, the platform updates all selected conflicting files
from the database, therefore the files will return to the original state in the file system.

No conflicts will appear in the Modified Files Detected dialog box until a file included in the
customization project is modified in the file system again.

To Delete a Custom File From a Project

To delete a custom file from a customization project, perform the following actions:

| Managing Items in a Project | 225

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Files in the navigation pane to open the Custom Files page.
3. In the page table, click the item to be deleted.
4. On the page toolbar, click Delete Row (X).

5. On the page toolbar, click Save to save the changes to the customization project.
The File item is deleted from the project. The file remains in the file system and you can add it back to
the project, if needed.

If you either publish the customization project after the File item is deleted or unpublish all
customizations of the website, the platform deletes the original file in the file system.

Generic Inquiries

You use the Generic Inquiries page of the Customization Project Editor to manage GenericInquiryScreen
items in the customization project.

A GenericInquiryScreen item contains the data set of a custom or customized generic inquiry
form.

The Generic Inquiries page displays the list of the generic inquiries added to the customization project.
On the page, you can perform the operations described in the following topics:

® To Add a Generic Inquiry to a Project

® To Delete a Generic Inquiry from a Project

® To Update Generic Inquiry ltems in a Project

® 7o Navigate to the Generic Inquiry Form

To Add a Generic Inquiry to a Project

You can add to a customization project a custom or customized generic inquiry—the generic inquiry
that is saved in the database for the current tenant. To do this, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Generic Inquiries in the navigation pane to open the Generic Inquiries page.
3. On the page toolbar, click Add New Record (+), as shown in the screenshot below.

4. In the list of generic inquiries in the Add Generic Inquiries dialog box, which opens, select the
check box for each generic inquiry form that you want to include in the project.

| Managing Items in a Project | 226

The Add Generic Inquiries dialog box displays all the custom and customized generic
inquiries that exist in your instance of Acumatica ERP. You can select multiple generic
inquiries to add them to the project simultaneously.

5. In the dialog box, click Save to add the selected generic inquiry or inquiries to the customization

project.
Q Acumatica
File Project Publish Extension Library Source Control
YogiFon 4 Generic Inquiries
(& Lal X RELOAD FROM DATABASE MANAGE
E Object Name Description Last Modified By Last Modified On
> Active Subscribers i

Files Add Generic Inquiries
Generic Inquiries (1)

1l .
Reports

i *Inquiry Title Last LastModi

Site Map BO Last
DE Scripts By
System Locales Active Subscribers admin 6/23/2015
Import/Export Scenarios (1) O Alex's First Test admin 52112015
Shared Filters ? Subscription Usage Details admin 5/20/2015
Access Rights
Wikis

Web Service Endpoints

SAVE | CANCEL

Figure: Adding the generic inquiry to the customization project

The system adds to the project the data for each selected generic inquiry, and you can see each new

GenericInquiryScreen item in the Project Items table of the ltem XML Editor, as shown in the following
screenshot.

| Managing Items in a Project | 227

E [y | Object Name Type Des Excluded Created By Creation Last Modified Last
Date By Modified On
L | PX.Objects AR.ARTran DAC O admin 52002015 admin 5/20/2015 -
| PX.Objects.CR.Contact DAC O admin 5/20/2015 admin 5/20/2015
L | Active Subscribers Genericlnguiry Screen O admin 6/23/2015 admin 6/23/2015
|>I [y Subseription Usage Details GenericlnquiryScreen O admin 6/23/2015 admin 6/23/2015
L | CustomerMaint Code O admin 52002015 admin 6/2/2015
@ | SOInvoiceEntry Code O admin 5/20/2015 admin 52002015
L | ~/pages/ar/ar303000.aspx Page O admin 5/20/2015 admin 6/23/2015
i | ~/pages/so/so303000.aspx Page | admin 512012015 admin 6/23/2015 -
Source
</GIRelation> -
<GIResult>
<row LineNbr="6" Field="tranDate" Caption="D
<row LineNbr="7" " Field="billableQty" Caption-
<row LineNbr= " Field="uOM" Width="128" IsV{}
</GIResult>
</row>
</GITable>
<GIbhere»
<row LineNbr= IsActive " DataFieldName="Contract.CONTRTYPE_Attributes” Conditi
<row LineNbr= sActive OpenBrackets="{(" DataFieldName="Contract.cust
<row LineNbr= shActive DataFieldName="[Customer]™ Condition="NU" IsExpressioi
<row LineNbr= sActive OpenBrackets " DataFieldName="Contract.cont
<row LineNbr= sActive DataFieldName="[Contract]” Condition="NU" IsExpressio
<row LineNbr="&" IsActive="1" DataFieldName="PMTran.tranDate" Condition="B " IsExpre
</GIWhere>
<SiteMap>
<row Position="616"|Title="Subscription Usage Details"|Url="~/GenericInquiry/Generi
</5iteMap>
</row>
</GIDesign>
</data>
</data-set>
<iGenericInquiPyScreen4

Figure: Viewing the new GenericInquiryScreen item

included in the project

The system automatically includes in the customization project information about the
workspace to which the generic inquiry have been added in the UI along with other
information about the generic inquiry.

To Delete a Generic Inquiry from a Project

To remove a GenericInquiryScreen item from a project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for

details.)

2. Click Generic Inquiries in the navigation pane to open the Generic Inquiries page.

3. In the page table, click the item to be deleted.

4. On the page toolbar, click Delete Row (X).

5. On the page toolbar, click Save to save the changes to the customization project.

If you delete a GenericInquiryScreen item from the project, the generic inquiry remains in the system
unless you delete the inquiry by using the Generic Inquiry (SM208000) form.

If you have added a site map node for a custom inquiry form to the project and removed the inquiry
from the project, you should delete the appropriate SiteMapNode item. (See To Delete a Site Map Node

from a Project for details.)

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5388c653-eac4-4f43-b769-163cd037ab09

| Managing Items in a Project | 228

To Update Generic Inquiry Items in a Project

If you have used the Generic Inquiry (SM208000) form to change a generic inquiry included in the
customization project, you have to update the appropriate item in the project. To do this, perform the
following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. C(Click Generic Inquiries in the navigation pane to open the Generic Inquiries page.
3. On the page toolbar, click Reload From Database.

The platform updates all the GenericInquiryScreen items of the project by using the appropriate data
from the database.

To Navigate to the Generic Inquiry Form

When you are working with the Customization Project Editor, you may need to open the Generic Inquiry
(SM208000) form in the browser. You can use this form, for example, to create a new generic inquiry,
to customize an existing one, or to manage existing generic inquiries in Acumatica ERP.

To open the Generic Inquiry form from the Customization Project Editor, perform the following actions:
1. Select Generic Inquiries in the navigation pane to open the Generic Inquiries page.
2. On the page toolbar, click Manage Inquiries.

As soon as you save a new inquiry on the Generic Inquiry form, you can add the inquiry as a
GenericInquiryScreen item to the project.

You can limit the list of tables available for constructing generic inquiries on the Generic
Inquiry form. See Limiting the List of Tables Available for Generic Inquiries for details.

Limiting the List of Tables Available for Generic Inquiries

You can limit the list of database tables available for constructing generic inquiries on the Generic Inquiry
(SM208000) form in the production environment. To do this, in the development environment, use the
following approach:

1. Create the GITables.xml configuration file to specify the Allowed and Hidden collections of masks
for the full names of the database tables, as described in GITables.xml File Content.

2. Save the configuration file to the App Data folder of the website.

3. Add the file to a customization project as a File item. (See To Add a Custom File to a Project for
details.)

The platform automatically checks whether this file exists in the App Data folder. If the customization
project is published in the production environment, the platform applies the file content when a user
selects a table for a generic inquiry on the Generic Inquiry form.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5388c653-eac4-4f43-b769-163cd037ab09
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5388c653-eac4-4f43-b769-163cd037ab09
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5388c653-eac4-4f43-b769-163cd037ab09
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5388c653-eac4-4f43-b769-163cd037ab09
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5388c653-eac4-4f43-b769-163cd037ab09
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5388c653-eac4-4f43-b769-163cd037ab09
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5388c653-eac4-4f43-b769-163cd037ab09
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5388c653-eac4-4f43-b769-163cd037ab09

| Managing Items in a Project | 229

GITables.xml File Content

The configuration file is in XML format and includes the GITables element only. This element must
include the Allowed section and can also contain the Hidden section. Each section is a collection of
Table elements.

The Allowed collection specifies the list of tables that are available for use in generic inquiries
constructed on the Generic Inquiry form. If a table isn't included in the Allowed collection, it doesn't
appear in the list for selection on the Table tab of the form. You can also add the Hidden section to the
configuration file. This section specifies the tables you want to exclude from the list.

If a table is allowed and not hidden (as illustrated by the green area in the figure below), it is
included in the list of the tables available for constructing generic inquiries on the Generic Inquiry form.
Otherwise, the table is not displayed in this list of tables.

Allowed

All Tables

Each Table element of the Allowed and Hidden sections contains the FullName attribute, which
specifies the table name or the mask for a set of tables.

The attribute value is a string that can contain the following wildcard characters:
e An asterisk (*), which matches any number of characters (or no characters)
e A question mark (?), which matches exactly one character

The example below shows how to exclude the tables by using the px.0bjects.CR.BAccount and
PX.*Contact* masks.

<?xml version="1.0" encoding="utf-8"?>
<GITables>
<Hidden>
<Table FullName="PX.Objects.CR.BAccount" />
<Table FullName="PX.*Contact*" />
</Hidden>
<Allowed>
<Table FullName="*" />
</Allowed>
</GITables>

According to the mask with contact, users will not be able to use any tables that contain the word
Contact in the table name in their inquiries (for example, the PX.0Objects.CR.Contact table).

To limit the list of database tables by using only the al1owed collection, you can empty or remove
the Hidden section. The following example shows how to include only the tables that matched the
PX.0Objects.IN.* mask.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5388c653-eac4-4f43-b769-163cd037ab09
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5388c653-eac4-4f43-b769-163cd037ab09

| Managing Items in a Project | 230

<?xml version="1.0" encoding="utf-8"?>
<GITables>

<Allowed>
<Table FullName="PX.Objects.IN.*" />
</Allowed>

</GITables>

Custom Reports

You use the Custom Reports page of the Customization Project Editor to manage Report items in the
customization project.

A Report item contains the data set of a custom report created with Acumatica Report
Designer.

The Custom Reports page displays the list of the custom reports that have been added to the
customization project.

On the page, you can perform the operations described in the following topics:

To Add a Custom Report to a Project
To Delete a Custom Report from a Project

To Navigate a Custom Report in a Project

To Add a Custom Report to a Project

You can add an Acumatica Report Designer custom report to a customization project. Before adding a
report to a project, you have to construct the report in Acumatica Report Designer and save the report
to the database. (For more information about reports, see Acumatica Report Designer Guide.

To add a custom report to a project, perform the following actions:

1.

Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

Click Reports in the navigation pane to open the Custom Reports page.
On the page toolbar, click Add New Record (+), as shown in the screenshot below.

In Name box of the Select Report from Database dialog box, which opens, select the report
that you want to include in the project.

If a custom report is created in Acumatica Report Designer and saved as a file in the file
system, you cannot add the report to a customization project as a Report item.

In the dialog box, click OK to add the selected report to the customization project.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=24b77bbe-0eb3-4d37-9350-071ae5743571

| Managing Items in a Project | 231

Q Acumatica

File Publish Extension Library Source Control
YogiFon 4 Custom Reports
» SCREENS = L X RELOAD FROM DATABASE
Data Access
Cod E Object Name Description Last Modified By Last Modified On
ode > ARB50660.RPX admin 7/28/2016
Files (5)

Select Report from Database

Generic Inquiries (2)

| Reports (1) Name practivity. rpx
Site Map (3) Select - Name
DE Scripts
System Locales SELECT C = | o
Import/Expert Scenarios (1) & ReportFileName t
Shared Filters ar641000.rpx
Access Rights ar641001.rpx
Wikis arb61000.mx
Web Service Endpoints ¥ pmactivity.rpx
Analytical Reports pmbudgetgraph. rpx

pminvoices. rpx

pPMpos. rpx

Figure: Adding a custom report to the project

To give users the ability to navigate to the custom report in Acumatica ERP, you have to add
the appropriate site map node to the customization project, as described in To Add a Site Map
Node to a Project.

To Delete a Custom Report from a Project

To remove a custom report from a project, perform the following actions:

1.

4.

5.

Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

Click Reports in the navigation pane to open the Custom Reports page.
In the page table, click the item to be deleted.
On the page toolbar, click Delete Row (X).

On the page toolbar, click Save to save the changes to the customization project.

If you have added a site map node for the custom report to the project, you also have to delete the
appropriate SiteMapNode item. (See To Delete a Site Map Node from a Project for details.)

| Managing Items in a Project | 232

To Navigate a Custom Report in a Project

If you have used Acumatica Report Designer to change a custom report included in the customization
project, you have to update the appropriate item in the project. To do this, perform the following
actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Reports in the navigation pane to open the Custom Reports page.
3. On the page toolbar, click Reload From Database.

The platform updates all the Report items that are added to the customization project.

Dashboards

You use the Dashboards page of the Customization Project Editor to manage Dashboard items in the
customization project.

A Dashboard item contains the data set of a custom or customized dashboard.

The Dashboards page displays the list of the dashboards that have been added to the customization
project.

On the page, you can perform the operations described in the following topics:
® To Add a Dashboard to a Project

® To Delete a Dashboard from a Project

® To Update Dashboard Items in a Project

® To Navigate to the Dashboard Form

To Add a Dashboard to a Project

You can add to a customization project a custom or customized dashboard—the dashboard that is
saved in the database for the current tenant. To do this, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Dashboards in the navigation pane to open the Dashboards page.
3. On the page toolbar, click Add New Record (+).

4. In the list of dashboards in the Add Dashboards dialog box, which opens, select the check box for
each dashboard that you want to include in the project.

| Managing Items in a Project | 233

The Add Dashboards dialog box displays all the custom and customized dashboards
that exist in your instance of Acumatica ERP. You can select multiple dashboards to add
them to the project simultaneously.

5. In the dialog box, click Save to add the selected dashboards to the customization project.

The system adds to the project the data for each selected dashboard, and you can see each new
Dashboard item in the Project Items table of the /tem XML Editor.

Alongside with Dashboard item, the system adds Generic Inquiry, Site Map, and Wiki items for
inquiries, site map nodes, and wiki pages associated with the dashboard. If an inquiry, a site map
node, or a wiki page is already added to the customization project, it is not duplicated.

The system automatically includes in the customization project information about the
workspace to which the dashboard have been added in the UI along with other information
about the dashboard.

To Delete a Dashboard from a Project

To remove a Dashboard item from a project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Dashboards in the navigation pane to open the Dashboards page.

3. In the page table, click the item to be deleted.

4. On the page toolbar, click Delete Row (X).

5. On the page toolbar, click Save to save the changes to the customization project.

If you delete a Dashboard item from the project, the dashboard remains in the system unless you
delete the dashboard by using the Dashboards (SM208600) form.

If a site map node or a generic inquiry was added for a custom dashboard to the project (manually or
automatically), and you removed the dashboard from the project, you should delete the appropriate
Site Map, Generic Inquiry, or Wiki item manually. (See To Delete a Site Map Node from a Project for
details.)

To Update Dashboard Items in a Project

If you have used the Dashboards (SM208600) form to change a dashboard included in the
customization project or changed its design by modifying the set of widgets, you have to update the
appropriate item in the project. To do this, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click bashboards in the navigation pane to open the Dashboard page.

3. On the page toolbar, click Reload From Database.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=04a14a8d-72c8-47b7-9da6-0722c561e7df
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=04a14a8d-72c8-47b7-9da6-0722c561e7df

| Managing Items in a Project | 234

The platform updates all the Dashboard items of the project by using the appropriate data from the
database.

To Navigate to the Dashboard Form

When you are working with the Customization Project Editor, you may need to open the Dashboards
(SM208600) form in the browser. You can use this form, for example, to create a new dashboard, to
modify settings of an existing one, or to manage existing dashboards in Acumatica ERP.

To open the Dashboards form from the Customization Project Editor, perform the following actions:
1. Select Dashboards in the navigation pane to open the Dashboards page.
2. On the page toolbar, click Manage Dashboards.

As soon as you save a dashboard on the Dashboards form, you can add the dashboard as a Dashboard
item to the project.

Site Map

You use the Site Map page of the Customization Project Editor to manage SiteMapNode items in the
customization project.

A SiteMapNode item contains the data set of a custom site map node for a custom form
or report included in the customization project. The item also includes information about
the location of the form or report in the UI (such as workspace to which the form or report
included).

The Site Map page displays the list of the custom site map nodes that have been added to the
customization project.

On the page, you can perform the operations described in the following topics:
® To Add a Site Map Node to a Project

® To Delete a Site Map Node from a Project

® To Update a Site Map Node in a Project

® 7o Navigate to the Site Map Form

To Add a Site Map Node to a Project

If, for a custom form or report, you have changed the workspace in the UI and saved these changes
in the database for the current tenant, you can add these changes to a customization project as a
SiteMapNode item. To do this, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Site Map in the navigation pane to open the Site Map page.

3. On the page toolbar, click Add New Record (+), as shown in the screenshot below.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=04a14a8d-72c8-47b7-9da6-0722c561e7df
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=04a14a8d-72c8-47b7-9da6-0722c561e7df
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=04a14a8d-72c8-47b7-9da6-0722c561e7df

4.

5.

The system adds to the project the data from the database for each selected site map node. You can

| Managing Items in a Project | 235

In the list of site map nodes in the Add Site Map dialog box, which opens, select the check box for
each screen that you want to include in the project.

The Add Site Map dialog box displays all the custom site map nodes that have been
created in the site map of Acumatica ERP and the nodes that have been modified in the
site map. You can select multiple custom site map nodes to add them to the project
simultaneously.

In the dialog box, click Save to add each selected site map node to the customization project.

File Project Publish Extension Library Source Control
YogiFon9 4 Site Map

c B = X RELOAD FROM DATABASE

¥ Active Subscribegs
Add SiteMap

Files

Generic Inquiries (1)

Reports c
|| Site Map (1) Elnl ScreeniD

DB Scripts O CT.90.00.00
System Locales O G1.00.00.08

Impert/Expert Scenarios (1) O RM.00.00.03
Shared Filters G1.00.00.06

Access Rights ’3| G1.00.00.07

Wikis O RM.00.00.01

Web Service Endpoints g RIM.00.00.02

MANAGE SITE MAP

E Object Name Description Last Modified By Last Modified On

Title

Subscription Billing Details

Page for Alex's First Test

Profit and Loss Computers & Software
Active Subscribers

Subscription Usage Details

Balance Sheet Software & Computers
Profit & Loss Budget Performance

SAVE CANCEL

Figure: Adding the site map node to the customization project

view each new SiteMapNode item in the Project Items table of the item XML Editor.

To Delete a Site Map Node from a Project

To delete a site map node from a customization project, perform the following actions:

1.

4.
5.

If you delete a SiteMapNode item from the project, the node remains in the site map unless you delete

Open the customization project in the Customization Project Editor. (See To Open a Project for

details.)
Click Site Map in the navigation pane to open the Site Map page.
In the page table, click the item to be deleted.

On the page toolbar, click Delete Row (X).

On the page toolbar, click Save to save the changes to the customization project.

the node on the Site Map (SM200520) form.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=44b364ef-7810-400b-b1c6-8f471c249401

| Managing Items in a Project | 236

To Update a Site Map Node in a Project

If you have used the Site Map (SM200520) form or a workspace of the UI of Acumatica ERP to change a
site map node included in the customization project, you should update this node in the project. To do
this, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Select Site Map in the navigation pane to open the Site Map page.

3. On the page toolbar, click Reload From Database.
The platform updates all the SiteMapNode items of the project by using the appropriate data from the
database.

To Navigate to the Site Map Form

You might need to add to Acumatica ERP a site map node for a custom form, inquiry, or report that you
develop for a customization project. To create a custom site map node or modify an existing node, you
use the Site Map (SM200520) form of Acumatica ERP.

To open the Site Map form from the Customization Project Editor, perform the following actions:
1. Click Site Map in the navigation pane to open the Site Map page of the editor.
2. On the page toolbar, click Manage Site Map.

As soon as you save changes to an existing site map node or create a custom node on the Site Map
form, you can add the node as a SiteMapNode item to the customization project.

Database Scripts

With the Acumatica Customization Platform, you can use custom SQL scripts for the following changes
to the database in the scope of a customization project:

e The creation of custom tables
e The creation of views, indexes, and other database objects
e The insertion of data into tables

e The increasing of the size of a text column of a table
See Changes in the Database Schema for details.

You use the Database Scripts page of the Customization Project Editor to manage Sq/ and Table items in
the customization project.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=44b364ef-7810-400b-b1c6-8f471c249401
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=44b364ef-7810-400b-b1c6-8f471c249401
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=44b364ef-7810-400b-b1c6-8f471c249401
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=44b364ef-7810-400b-b1c6-8f471c249401

| Managing Items in a Project | 237

An Sqgl item contains a custom database table definition or a custom SQL script that has to
be executed while the customization project is published. A Table item contains a description
of the custom columns added to a table for bound custom fields created in the appropriate
data access class.

The Database Scripts page displays the list of the custom SQL scripts and customized tables that have
been added to the customization project.

When you create a custom table in the database, we recommend that you add the table schema to
the customization project, as described in To Add a Custom Table to a Project. To create other database
objects or insert data into the tables, you have to compose the corresponding SQL script and add the
script to the customization project, as described in To Add a Custom SQL Script to a Project.

On the Database Scripts page, you can perform various operations, as described in the following
topics:

® To Add a Custom Table to a Project

® To Update Custom Tables in the Project

® To Add a Custom Column to an Existing Table

® To Increase the Size of a Column in an Existing Table
® To Add a Custom SQL Script to a Project

® To Edit a Custom SQL Script

® To Delete an Sql or Table Item From a Project

To Add a Custom Table to a Project

You use the Database Scripts page of the Customization Project Editor to add a custom table to a
customization project. You can add a custom table to a project by adding the table schema or by
adding a custom SQL script.

Adding the table schema is the optimal way of adding custom tables to the project. When you publish
the customization project, the platform executes each SQL script of the project to update the database.
If an Sg/ item contains a custom database table definition, to update the database with the table
schema, the Acumatica Customization Platform checks whether a table with this name already exists in
the database. If the table exists, the platform generates SQL statements to alter the existing table so
that it matches the schema. The platform doesn't drop the existing table, and it keeps any data in it.
This helps to deploy a newer version of the customization project to a system that is already in use. If
the table doesn't exist, the platform generates SQL statements to create the table. SQL statements are
generated in the SQL dialect of the database management system. Therefore, if you add custom tables
to the project by adding the table schema, you keep the customization project independent from the
database management system that hosts the database of Acumatica ERP.

Alternatively, you can add custom tables by adding a custom SQL script that creates the table in the
project, as described in To Add a Custom SQL Script to a Project.

| Managing Items in a Project | 238

The creation or modification of the System tables is forbidden. A customization project
containing such changes will not pass validation tests. For details on the System tables, see
System and Application Tables.

To Add a Custom Table to a Customization Project

1. Create the needed table in the database by using a database administration tool, such as SQL
Server Management Studio.

You have to use a haming convention that provides unique names for your custom
tables so that they do not have the names of existing tables of Acumatica ERP.

2. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

3. Click Database Scripts in the navigation pane to open the Database Scripts page.

4. On the page toolbar, click Add > Custom Table Schema.

5. In the Add Custom Table Schema dialog box, which opens, select the custom table in the Table
box and click OK.

Acumatica Customization Platform generates the table schema and adds the schema to the
customization project as an Sq/ item.

Below is an example of the Sq/ item that contains the table schema of the custom table RBProduct.

<Sgl TableName="RBProduct" TableSchemaXml="#CDATA">

<col
<col
<col
<col
<col
<col
<col
<col

<CDATA name="TableSchemaXml"><! [CDATA [<table name="RBProduct">
name="ProductID" type="Int" identity="true" />
name="ProductCD" type="NVarChar (15)" />
name="ProductName" type="NVarChar (50)" />
name="Active" type="Bit" />
name="StockUnit" type="NVarChar (20)" />
name="UnitPrice" type="Decimal (19,6)" />
name="MinAvailQty" type="Decimal (25,6)" />
name="TStamp" type="Timestamp" />

<index name="RBProduct PK" clustered="true" primary="true" unique="true">
<col name="ProductID" />
</index>
</table>]]></CDATA>
</Sql>

To Update Custom Tables in the Project

After you have added a custom table to the project, you might want to continue making changes to the
table by using a database administration tool, such as SQL Server Management Studio. We recommend
that you update the table schema in the customization project before you export the deployment
package of the project or publish the project.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=509aefc2-387b-4284-8ff8-ad5fc9b725be

| Managing Items in a Project | 239

To Update the Schema of Custom Tables in the Project

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Database Scripts in the navigation pane to open the Database Scripts page.
3. On the page toolbar, click Reload From Database.

The platform regenerates the database table schema of all the custom tables added to the project.

To Add a Custom Column to an Existing Table

You use the Database Scripts page of the Customization Project Editor to add custom columns of an
existing table of Acumatica ERP to a customization project. If you add custom fields to a data access
class by using the Data Class Editor, you do not need to add the custom columns to the database table
manually; Acumatica Customization Platform adds these columns automatically. You may need to add a
column manually if you added a custom field to a data access class in code.

We recommend that you not write custom SQL scripts to add changes to the database schema. If
you add a custom SQL script, you must adhere to platform requirements that apply to custom SQL
scripts, such as the support of multitenancy and the support of SQL dialects of the target database
management systems. If you use the approach described in this topic, during the publication of the
customization project, the platform generates SQL statements to alter the existing table so that this
statement conforms to all platform requirements.

To Add a Custom Column to an Existing Table

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Database Scripts in the navigation pane to open the Database Scripts page.
3. On the page toolbar, click Add > Custom Column to Table.

4. In the Add Custom Column to Table dialog box, which opens, specify the table to which the
column should be added and the name and type of the new column, and click OK. Acumatica
Customization Platform adds the columns to the customization project as a Table item.

To Increase the Size of a Column in an Existing Table

You use the Database Scripts page of the Customization Project Editor to increase the size of a text
column of an existing table of Acumatica ERP.

If you publish the customization project, the changes remain in the Acumatica ERP database
even if you unpublish the project.

To Increase the Size of a Column

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. In the navigation pane, click Database Scripts to open the Database Scripts page.

| Managing Items in a Project | 240

3. On the page toolbar, click Add > Column Length Increase.
4. In the Column Length Increase dialog box, which opens, specify the following:
a. The table in which the column should be altered (Table).

b. The name of the column that should be altered (Field Name).

Only text fields are available in the list because only their length can be changed.

The Data Type field displays the current type and size of the specified column.
c. The new length of the text field (New Length).
5. Click OK to save your changes and exit the dialog box.

Acumatica Customization Platform creates a script to alter the column in the application database. You
can see the change entry on the Database Scripts page with the Custom Columns type.

To Add a Custom SQL Script to a Project

With the platform, you can add to a customization project an SQL script to be executed during the
publication of the project. However, we recommend that you avoid doing this.

A possible result of a custom SQL script is the loss of the integrity and consistency of the
application data.

If you do add a custom SQL script, you must adhere to the following requirements for the script:

® Because Acumatica ERP supports multitenancy, you must create an SQL script that correctly
creates a database object that properly specifies and uses the company mask.

e You must correctly specify the attributes for the script so that the script can be executed on the
target database servers: MySQL Server, Microsoft SQL Server, or both. For details about attributes,
see Using the SQL Script Attributes.

To Add a Custom SQL Script to a Customization Project

1. Prepare, debug, and test the SQL script with a database administration tool, such as SQL Server
Management Studio. (See Creating a Custom SQL Script for details.)

2. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

3. Click Database Scripts in the navigation pane to open the Database Scripts page.
4. On the page toolbar, click Add > Script.

5. In the Script Name box of the SQL Script Editor, which opens, specify the name of the script to be
used as the object name of the customization item. (The name can contain only English characters
and digits.)

6. Optional: In the Priority box, specify the priority of the script. By default, the priority is 0.

7. For each batch that you want to add, do the following:

| Managing Items in a Project | 241

a. Click Specify Database Engine, and in the Attribute box, select one of the following
options:

® Skip Batch on MySQL Server, which adds the --[mysgl: Skip] attribute to the end of the
text in the text area of the script editor.

® Skip Batch on Microsoft SQL Server, which adds the -- [mssgl: Skip] attribute to the end
of the text in the text area of the script editor.

e Use Interpreter, which adds the --[vmsgl] attribute to the end of the text in the text area
of the script editor.

For more information on the database script attributes, see Using the SQL Script Attributes.
b. In the text area of the editor, below the added attribute, enter the SQL script.
8. In the editor, click OK to add the script to the customization project.

If a custom script causes an error, the error message will appear during the publication process when
the system executes the custom scripts.

Related Links
® Creating a Custom SQL Script
® Using the SQL Script Attributes

® Writing Custom SQL Scripts for Interpretation

Creating a Custom SQL Script

To create database objects other than custom tables or to insert data into tables, you can add custom
SQL scripts to a customization project. When you publish the project, the Acumatica Customization
Platform executes the custom SQL scripts added to the project.

When you publish a customization project that contains a database script, the Acumatica
Customization Platform executes the script during the first publication. The platform keeps
information about each script that has been executed at least once and has not since been
changed in the database, and omits the repeated execution of these scripts for optimization
purposes. If you run the Publish with Cleanup operation, the platform cleans all the
information about previously executed scripts of the customization project, and executes
this script once more while publishing the project. See Customization Project Editor for details.

As you write scripts, keep the following guidelines in mind:

® You have to use a naming convention that provides unique names for your custom objects so that
they do not have the same as existing database objects do.

e A script can be executed multiple times. Therefore, in the script, you have to check whether an
object already exists before you create a new one; otherwise, an error will occur when the script
runs on a database that already contains the object.

You can prepare the script directly in the dialect of the target database or prepare the script for on-the-
fly interpretation by Microsoft SQL Server or MySQL, depending on the target database. So you have
the following options:

| Managing Items in a Project | 242

e Insert the SQL script prepared for the target database, which is Microsoft SQL or MySQL.:
During the publication of the project, the Acumatica Customization Platform executes the script
as it is. You can use all the functionality of the SQL dialect of the target database, but this script
causes the customization project to depend on the database management system that hosts the
database of Acumatica ERP.

You can use SQL script attributes to skip the script batch execution on a database management
system. See Using the SQL Script Attributes for details.

e Insert the SQL script with support for interpretation for the target database: Prepare
the script in the Microsoft SQL Server dialect, and insert the script with the -- [vmSql]
attribute. During the publication of the project, the system analyzes the script, generates the
corresponding SQL statements in the dialect of the target database, and executes the statements.
A customization project that includes only these scripts remains independent from the database
management system that hosts the database of Acumatica ERP. However, the interpreter supports
a relatively limited set of SQL language elements. See Writing Custom SQL Scripts for Interpretation for
details.

In the script for interpretation, you have to place the --[vmSqgl] attribute before each batch of the
SQL script to be interpreted.

Using the SQL Script Attributes

You can decorate a batch of an SQL script with various attributes to control the batch execution.

An SQL batch is a portion of an SQL script located between two Go statements.

Attributes are based on the line preceding the batch in the following format.

--[Attribute (Parameterl = Valuel, Parameter2 = Value2)]

Also, it is possible to specify that an attribute is effective only when the script is executed on a
particular platform (MySQL Server or Microsoft SQL Server). To achieve this, add to the beginning of
the attribute name a short database platform name followed by a colon, as follows.

--[mysgl: Attribute (Parameterl = Valuel, Parameter2 = Value2)]
--[mssgl: Attribute (Parameterl = Valuel, Parameter2 = Value2)]

The currently used platform names are azure, mssql, and mysql.

We recommend that you use the following attributes for batches in SQL scripts.

Attribute Description Para- Examples
meters

Native The script batch will be execut- |- --[mssgl: Native]
ed against the database with-
out any changes or attempts to
parse and interpret it. You can
use SQL clauses that are specific
to the target platform.

| Managing Items in a Project | 243

Attribute Description Para- Examples
meters

Skip A script batch can be skipped - --[mysqgl: Skip]
when the upgrade is being exe-
cuted on a specific platform.

SmartExecute The whole batch will be execut- |- --[SmartExecute]
ed once for every tenant. (In-
ter-tenant visibility mechanisms
(CompanyMask) are used.) You
write your code in T-SQL, and it
will be passed to the interpreter.

VmSql The decorated script batch will - —-[VmSql]
be interpreted as T-SQL, and

a corresponding script for the
current database engine will be
generated and executed on the
database. The number of cor-
rectly translated clauses is a
limited subset of T-SQL.

You can create an SQL script that is executed properly on the MySQL database platform and Microsoft
SQL database platform, as shown in the example below. This script contains two batches and
demonstrates how to use SQL script attributes to control the execution of the batches.

--[mysqgl: Skip]
--[mssgl: Native]

IF OBJECT ID('dbo.Viewl', 'V') IS NOT NULL DROP VIEW [Viewl];
CREATE VIEW [Viewl] AS (SELECT TOP 10 * FROM [AccountClass])
GO

--[mysgl: Native]

--[mssgl: Skip]

DROP VIEW IF EXISTS “Viewl ;

CREATE VIEW ‘Viewl ' AS (SELECT * FROM "AccountClass’™ LIMIT 10)
GO

Writing Custom SQL Scripts for Interpretation

In custom scripts for interpretation, you can use the data types and SQL statements that are listed
below.

Data Types

The following data types of Microsoft SQL Server are supported for interpretation:
® Dit

® char, nchar, varchar, and nvarchar

® smallint, int, and bigint

® date, datetime, and datetime?

| Managing Items in a Project | 244

® uniqueidentifier

® decimal and double

The following data types of MySQL Server are supported for interpretation:
® Dbinary, varbinary, and longblob

® char, varchar, and longtext

® +tinyint, smallint, int, and bigint

® timestamp and datetime

® decimal and double

SQL Statements

If you prepare a script for interpretation, you can use the following elements of Transact-SQL.:
® CREATE, ALTER, and DROP statements

® SELECT, INSERT, UPDATE, and DELETE statements with WHERE clauses

® Logical operators: NOT, AND, OR, and EXISTS

e Control-of-flow keywords: 1F...ELSE and BEGIN...END

® [EXxpressions: CASE, COALESCE, and NULLIF

e String functions: LEN, CONCAT, REPLACE, CHAR, RTRIM, LTRIM, SUBSTRING, UPPER, LOWER,
REPLICATE, and DATALENGTH

e Arithmetic operators: +, —, *, and /

e Mathematical functions: CEILING, ROUND, and FLOOR

e Date and time functions: GETDATE, DAYADD, DATEPART, and DATALENGTH
e Aggregate functions: ABS, MIN, MAX, SUM, and COUNT

e Conversion functions: CAST and CONVERT

e System functions: ISNULL and NEWID

® System variables: @@ROWCOUNT, @RIDENTITY, and @QRFETCH_ STATUS

e Cryptographic functions: HASHBYTES with MD5 only

® |ocal variables

e Cursors

® Scalar subselect

| Managing Items in a Project | 245

The EXISTS operator can be applied to the sys.tables, sys.column, and sys.indexes
objects. The DATALENGTH function can be applied to a string or binary object, and the
function returns the object length in bytes.

VmSQL Variables

In the script for interpretation, you can use the @e@is mssgl, @@Ris_azure, and @@Ris mysgl
variables. The following table contains the values of these variables for Microsoft SQL Server, Microsoft
Azure SQL Database, and MySQL Server.

SQL Server @@Ris_mssql @@QRis_azure @@Ris_mysql
MS SQL Server 1 0 0
MS Azure SQL Database 1 1 0
MySQL Server 0 0 1

Error Messages
Unsupported data types cause the following error: Cannot figure out DbType for SqlDataTypeOption.
Unsupported elements can cause the following errors:

e Date interval ... not recognized: This indicates that the dates are specified in an unknown format in
the functions that work with datetime formats.

e Unknown algorithm in hashbytes ... not implemented: If you get this error, an unknown algorithm
is specified in the HASHBYTES function. Currently, the interpreter supports MD5 only.

® function ... not implemented: This means that the script contains an unknown function that cannot
be interpreted.

To Edit a Custom SQL Script

You can edit a custom SQL script once it is added to a customization project. To do this, perform the
following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Database Scripts in the navigation pane to open the Database Scripts page.

3. In the table on the page, click the row of the script to be edited.

On the page toolbar, click (Edit) to open the SQL Script Editor for the selected item.

| Managing Items in a Project | 246

You can click the name of a Script item in the Object Name column of the table to open
the SQL Script Editor for the item.

To Delete an Sql or Table Item From a Project

To delete an Sg/ or Table item from a customization project, perform the following actions:

1.

Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

Click Database Scripts in the navigation pane to open the Database Scripts page.

In the table on the page, click the row of the item to be deleted.

X
On the page toolbar, click (Delete Row).

The item is removed from the customization project. The database objects that have been created or
altered if you have published the customization project remain in the database.

System Locales

You use the System Locales page of the Customization Project Editor to manage Locale items in the
customization project.

A Locale item contains the data set of a system locale, which is a set of parameters that
defines the language and other local preferences—such as how to display numbers, dates,
and times in the user interface—for a group of users.

The System Locales page displays the list of the system locales that have been added to the
customization project.

On the page, you can perform various operations, as described in the following topics:

To Add a System Locale to a Project
To Delete a System Locale from a Project
To Update a Custom System Locale in a Project

To Navigate to the System Locales Form

To Add a System Locale to a Project

You can add a system locale to a customization project. To do this, perform the following actions:

1.

Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

Click System Locales in the navigation pane to open the System Locales page.

On the page toolbar, click Add New Record (+), as shown in the screenshot below.

| Managing Items in a Project | 247

4. In the list of system locales in the Add Locale dialog box, which opens, select the check box for
each locale that you want to include in the project.

The Add Locale dialog box displays all the system locales that exist in your instance
of Acumatica ERP. You can select multiple system locales to add them to the project
simultaneously.

5. In the dialog box, click OK to add each selected locale to the page table.

6. On the page toolbar, click Save to save the changes to the customization project.

System Locales

& Lo X RELOAD FROM DATABASE MANAGE LOCALES

E Object Name Description Last Modified By Last Modified On
* deDE admin 9/15/2016
Add Locale mps
E Selected Locale Name *Locale Name in Locale Language
O de-DE German
O en-US English

iy

o_ ja-JP Japanise

“ CANCEL

Figure: Adding the system locale to the customization project

The system adds to the project the data from the database for each selected system locale. You can
view each new Locale item in the Project Items table of the item XML Editor, as shown in the following
screenshot.

| Managing Items in a Project | 248

Edit Project ltems

"ol
E [y = Object Name Type Description Exclude Created By Creation Last Modified Last
Date By Modified
on
R e e SencregoT - - Srrreare agrm Srrreare
I | ARReleaseProcess Code O admin 9/1/2016 admin 9/1/2016 “
I | CustomerMaint Code O admin 9/1/2016 admin 9/1/2016
@ | SOInvoiceEntry Code O admin w1206 admin 9/1/2016
0 | SOOrderEntry Code O admin w12016 admin 9172016
O | de-DE Locale | admin 9/15/2016 admin 9/15/2016
0 |ja—JP Locale O admin W15/2016 admin 9/15/2016
0 | ~/pages/ar/ar303000.aspx | Page O admin 12016 admin 9/1/2016
0 | ~/pages/solso303000.aspx | Page O admin w2016 admin 9/1/2016
0 | ARB50660.RPX Report O admin 9/1/2016 admin 9/1/2016 v
Source
<Localer
<data-set>

<relations format-version="3" relations-version="28168181" main-table="Locale">
<link from="LocalizationTranslation (Locale)" to="Locale (LocaleName)" />
<link from="LocalizationTranslation (IdValue)}" to="LocalizationValue (Id)" type="ToMaster
<link from="LocalizationResource (Idvalue)” to="LocalizationValue (Id)" />
¢link from="LocalizationResourceByScreen (IdRes, IdValue)}" to="LocalizationResource {Id,
</relatiocns>
<layout>
<table name="Locale">
<table name="LocalizationTranslation" uplink="(LocaleMame)} = (Locale)
</table>
<table name="LocalizationValue™>
<table name="LocalizationResource” uplink="(Id) = (Idvalue)">
<table name="lLocalizationResourceByScreen" uplink="(Id, IdValue) = (IdRes
</table>
</table>
</layout>
<data>
<Locale>
<row LocaleName="ja-JP" Description="Japanise" TranslatedName="Japanise" IsActive
</Locale>
</data>
«</data-set>
</Locale>

/e

Figure: Viewing the XML code of the Locale item included in the project

To Delete a System Locale from a Project

To remove a Locale item from a project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click System Locales in the navigation pane to open the System Locales page.
3. In the page table, click the item to be deleted.

4. On the page toolbar, click Delete Row (X).

5. On the page toolbar, click Save to save the changes to the customization project.

If you delete a Locale item from the project, the system locale remains in the system unless you delete
the locale by using the System Locales (SM200550) form.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6b40927b-3288-4ccd-bd7f-786fb246b9ac

| Managing Items in a Project | 249

To Update a Custom System Locale in a Project

If you have used the System Locales (SM200550) form to change a system locale included in a
customization project, you have to update the appropriate item in the project. To do this, perform the
following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click System Locales in the navigation pane to open the System Locales page.
3. On the page toolbar, click Reload From Database.

The platform updates all the Locale items of the project by using the appropriate data from the
database.

To Navigate to the System Locales Form

You might need to add a system locale to Acumatica ERP during customization. To manage system
locales in Acumatica ERP, you use the System Locales (SM200550) form.

In the Customization Project Editor, to open the System Locales form, perform the following actions:
1. Click System Locales in the navigation pane to open the System Locales page of the editor.
2. On the page toolbar, click Manage Locales.

As soon as you add a system locale to the system on the System Locales form, you can add the locale
as a Locale item to the customization project. For more information about system locales, see System
Locales in the User Guide.

Import and Export Scenarios

You use the Import and Export Scenarios page of the Customization Project Editor to manage
XportScenario items in the customization project.

An XportScenario item contains the data set of a custom export or import scenario used to
perform data migration between a legacy application and Acumatica ERP.

The Import and Export Scenarios page displays the list of the integration scenarios that have been
added to the customization project.

On the page, you can perform a variety of operations, including the following:
® To Add an Integration Scenario to a Project

® To Delete an Integration Scenario from a Project

® To Update an Integration Scenario in a Project

® To Navigate to the Import Scenarios Form

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6b40927b-3288-4ccd-bd7f-786fb246b9ac
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6b40927b-3288-4ccd-bd7f-786fb246b9ac
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6b40927b-3288-4ccd-bd7f-786fb246b9ac
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6b40927b-3288-4ccd-bd7f-786fb246b9ac
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6b40927b-3288-4ccd-bd7f-786fb246b9ac
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6b40927b-3288-4ccd-bd7f-786fb246b9ac

| Managing Items in a Project | 250

To Add an Integration Scenario to a Project

You can add a custom integration scenario to a customization project. To do this, perform the following
actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Import/Export Scenarios in the navigation pane to open the Import and Export Scenarios
page.

3. On the page toolbar, click Add New Record (+), as shown in the screenshot below.

4. In the list of integration scenarios in the Add Import or Export Scenario dialog box, which
opens, select the check box for each scenario that you want to include in the project.

The Add Import or Export Scenario dialog box displays all the custom integration
scenarios that exist in your instance of Acumatica ERP. You can select multiple
integration scenarios to add them to the project simultaneously.

5. In the dialog box, click OK to add each selected integration scenario to the page table.

6. On the page toolbar, click Save to save the changes to the customization project.

Q Acumatica

File Publish Extension Library Source Control
YogiFon 4 Import and Export Scenarios
c Lal X RELOAD FROM DATABASE MANAGE SCENARIOS
E Object Name Description Last Modified By Last Modified On
» ContractUsage admin 91/2016
Files
Generic Inquiries (2) Add Import or Export Scenario 0 X
Reports (1) B selected * Name
Site Map (2) ContractUsage
DB Scripts (3) Export ARM Row Set

Import ARM Column Set
Impert ARM Row Set
Import GL Transactions

System Locales
I Import/Export Scenarios (1)
Shared Filters

w
DDiDDD

Access Rights Import Report Definitions

Wikis
Web Service Endpoints

Analytical Reports

Figure: Adding an integration scenario to the customization project

The system adds to the project the data from the database for each selected integration scenario. You
can view each new XportScenario item in the Project Items table of the ltem XML Editor, as shown in the
following screenshot.

| Managing Items in a Project | 251

Edit Project Items

"2
B [Object Name Type Desc Exclud Created Creation Last Last
By Date Modified By Modified
On

0 | APAddress Sql O admin 9132016 | admin 9/13/2016 |~
@ | MyScript Sql O admin 9132016 | admin 9/14/2016
@ | Script_For_Interpreter Sql O admin 16/2016 | admin 9/16/2016
@ | ARTran Table O admin 12016 admin 9172016
I | Contact Table | admin 9/1/2016 admin 9/1/2016
I | SOOrder Table O admin 9/1/2016 admin 9/1/2016
I | HelpRoot_Customize WikiArticle O admin 3152016 | admin 9/19/2016
O | ContractUsage XportScenario O admin 1/2016 admin 9/19/2016

(d | Import ARM Row Set XportScenario O admin 192016 admin 9/19/2016

Source

<XportScenario»
<data-set>

<relations format-version="3" relations-version="28168181" main-table="SYMapping">»
<link from="SYMapping (ProviderID, NoteID)}" to="S¥Provider (ProviderID, MoteID)" t
<link from="SYMapping (MoteID)" to="Note (NoteID)" type="ToMaster" />
<link from="SY¥Provider (NoteID)" to="Note (NoteID)" type="ToMaster" />
<link from="SYProviderField (ProviderID)" to="SYProvider (ProviderID}" />
<link from="SYProviderField (NoteID)" to="Note (NoteID)" type="Note" />
¢link from="SYProviderObject (ProviderID)" to="SYProvider (ProviderID)}" /:»
¢link from="SYProviderObject (NoteID)" to="Note (NoteID)}" type="Note" />
<link from="SYProviderParameter (ProviderID)" to="SYProvider (ProviderID)" />
<link from="SYProviderParameter (NoteID)" to="Note (MoteID)" type="Note" />
<link from="SYMappingCondition (MappingID)" to="SYMapping (MappingID)" />
<link from="SYMappingCondition (MoteID)}" to="Note (NoteID)" type="Note" />
<link from="SYMappingFisld (MappingID)" to="SYMapping (MappingID)" />
<link from="SYMappingFisld (NoteID)" to="Note (NoteID)" type="Note" />
¢<link from="SYImportCondition (MappingID)" to="SYMapping (MappingID)" />
<link from="SYImportCondition (MoteID)" to="Mote (MoteID)}" type="Note" />

</relations>

<layout>
<table name="S¥Mapping"» v

Figure: Viewing the XML code of the XportScenario item included in the project
An XportScenario item contains all the data required for the integration scenario. Therefore, the item

includes the data of the data provider.

To Delete an Integration Scenario from a Project

To remove an XportScenario item from a project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Import/Export Scenarios in the navigation pane to open the Import and Export Scenarios
page.

3. In the page table, click the item to be deleted.
4. On the page toolbar, click Delete Row (X).
5. On the page toolbar, click Save to save the changes to the customization project.

If you delete an XportScenario item from the project, the integration scenario remains in the system
unless you delete the scenario by using the Import Scenarios (SM206025) form.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=254e8347-6bac-469d-8f14-dbe383740475

| Managing Items in a Project | 252

To Update an Integration Scenario in a Project

If you have used the Import Scenarios (SM206025) form to change an integration scenario included in a
customization project, you have to update the appropriate item in the project. To do this, perform the
following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Import/Export Scenarios in the navigation pane to open the Import and Export Scenarios
page.

3. On the page toolbar, click Reload From Database.

The platform updates all the XportScenario items of the project by using the appropriate data from the
database.

To Navigate to the Import Scenarios Form

You might need to add an import or export scenario to Acumatica ERP during customization. To
manage import scenarios in Acumatica ERP, you use the Import Scenarios (SM206025) form.

In the Customization Project Editor, to open this form, perform the following actions:

1. Select Import/Export Scenarios in the navigation pane to open the Import and Export Scenarios
page.

2. On the page toolbar, click Manage Scenarios.
To manage export scenarios in Acumatica ERP, you use the Export Scenarios (SM207025) form.

As soon as you add an integration scenario to the system on the Import Scenarios or Export Scenarios
form, you can add the scenario as an XportScenario item to the customization project. For more
information about integration scenarios, see the Preparing Data for Import and Export by Using Scenarios in
the Integrations guide.

Shared Filters

Users can create reusable filters, which are available on processing and inquiry forms in Acumatica
ERP, to filter the data in the table part of the form; these filters can be reused anytime after creation.
Reusable filters can be shared among all users of the system.

You use the Shared Filters page of the Customization Project Editor to manage SharedFilter items in the
customization project.

A SharedFilter item contains the data set of a custom reusable shared filter created on a
processing or inquiry form of Acumatica ERP.

The Shared Filters page displays the list of the custom reusable shared filters that have been added to
the customization project.

On the page, you can perform several operations, as described in the following topics:

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=254e8347-6bac-469d-8f14-dbe383740475
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=254e8347-6bac-469d-8f14-dbe383740475
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=deef5450-afa4-41bf-9eb6-9c47eeca0336
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=254e8347-6bac-469d-8f14-dbe383740475
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=deef5450-afa4-41bf-9eb6-9c47eeca0336
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=f4d438bd-9c2a-40ea-b9bf-6df0c6cbce6a

| Managing Items in a Project | 253

To Add a Shared Filter to a Project
To Delete a Shared Filter from a Project
To Update a Shared Filter in a Project

To Navigate to the Filters Form

To Add a Shared Filter to a Project

You can add a custom reusable shared filter to a customization project. To do this, perform the
following actions:

1.

Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

Click Shared Filters in the navigation pane to open the Shared Filters page.
On the page toolbar, click Add New Record (+), as shown in the screenshot below.

In the list of integration scenarios in the Add Shared Filter dialog box, which opens, select the
check box for each filter that you want to include in the project.

The Add Shared Filter dialog box displays all the custom shared filters that exist in
your instance of Acumatica ERP. You can select multiple shared filters to add them to
the project simultaneously.

In the dialog box, click OK to add the selected filter or filters to the page table.

On the page toolbar, click Save to save the changes to the customization project.

Shared Filters

& X RELOAD FROM DATABASE MANAGE FILTERS

E Object Name Description Last Modified By Last Modified On
» Test&GIODOOO1 admin 9/19/2016
Add Shared Filter [X
| selecte Name UserName Screen|D
O Test admin G1000001
o[| mySharedFitter admin GL505510

| Managing Items in a Project | 254

CANCEL

Figure: Adding the shared filter to the customization project

The system adds to the project the data from the database for each selected shared filter. You can view
each new SharedFilter item in the Project Items table of the /tem XML Editor, as shown in the following

screenshot.

"2
E [y Object Name Type Descri Excluc Created By Creation Last
Date Modified
L D 0 L) e LYY woue] UrTr I TLUTO aurr -
O | de-DE Locale O admin ¥15/2016 | adn
O enus Locale O admin Y192016 | adn
| ja-JP Locale O admin 9/15/2016 | adm
0 | ~/pages/ar‘ar303000.aspx Page O admin Y1216 | adn
U | ~/pages/sols0303000.aspx Page O admin 9112016 | adn
O | ARB50660.RPX Report O admin V192016 | adm
O | Profit & Loss Budget Performance | ReportDefinition O admin 9/19/2016 | adn
@ | RMODDODA ScreenWithRights O admin 9/19/2016 | adnm
0] IMySharedFiIter&GLS[]SS‘l[] SharedFilter O admin V192016 | adn
@ | Test&GI00O001 SharedFilter O admin Y192016 | adnm
I | Subscription Billing Details SiteMapNode O admin 912016 | adn
| Finance SiteMapNcde O admin 3192016 | adn
[0 | Active Contracts SiteMapN ode O admin Y1216 | adn ™

Source

Edit Project Items

| Managing Items in a Project | 255

»

<SharedFilter:

¢data-set>
<relations format-version="3" relations-version="28166181" main-table="FilterH
<link from="FilterRow (FilterID}" to="FilterHeader (FilterID)" />
</relations>
<layout>
<table name="FilterHeader":>»
<table name="FilterRow" uplink="(FilterID) = (FilterID)" />
</table>
</layout>
<data>
¢FilterHeader:>
<row FilterID="417" UserName="admin" ScreenID="GL585518" ViewN w

»

Figure: Viewing the XML code of the SharedFilter item included in the project

To Delete a Shared Filter from a Project

To remove a SharedFilter item from a project, perform the following actions:

1.

Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

Click Shared Filters in the navigation pane to open the Shared Filters page.
In the page table, click the item to be deleted.
On the page toolbar, click Delete Row (X).

On the page toolbar, click Save to save the changes to the customization project.

If you delete a SharedFilter item from the project, the custom reusable shared filter remains in the
system unless you delete the filter. You can delete the filter by using the Filters (CS209010) form, as
described in Advanced Filters: To Remove an Advanced Filter, or by using the form to which the filter is
applied, as described in Filtering and Sorting in Acumatica ERP: Process Activity.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ed46ae19-b15e-4383-87de-2f068f42ef2d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c4827cff-b65e-4800-91a9-814009ac9c94
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=833941e3-38d7-433e-a932-78d7a0cc8467

| Managing Items in a Project | 256

To Update a Shared Filter in a Project

If you have used the Filters (CS209010) form or the form to which the filter is applied to change a
shared filter included in a customization project, you have to update the appropriate item in the
project. To do this, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Shared Filters in the navigation pane to open the Shared Filters page.
3. On the page toolbar, click Reload From Database.

The platform updates all the SharedFilter items of the project by using the appropriate data from the
database.

To Navigate to the Filters Form

You might need to add or change a reusable shared filter in Acumatica ERP during a customization. To
manage shared filters in Acumatica ERP, you use the Filters (CS209010) form.

In the Customization Project Editor, to open this form, perform the following actions:
1. Click Shared Filters in the navigation pane to open the Shared Filters page.
2. On the page toolbar, click Manage Filters.

For more information about reusable filters, see Saving of Filters for Future Use in the Interface Guide.

Access Rights

In Acumatica ERP, you can control access to system objects at broad and granular levels, down to the
control of form elements, such as buttons, text boxes, and check boxes. Users are assigned to roles,
and you give these roles the appropriate levels of access rights to system objects—suites, modules,
forms, and form elements.

You use the Access Rights page of the Customization Project Editor to manage ScreenWithRights items in
the customization project.

A ScreenWithRights item contains the data set of custom access rights of roles to a form,
down to the control of form elements.

The Access Rights page displays the list of the custom access rights of roles that have been added to
the customization project.

On the page, you can perform several operations, as described in the following topics:
® To Add Access Rights to a Project
® To Delete Access Rights from a Project

® To Update Access Rights in a Project

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ed46ae19-b15e-4383-87de-2f068f42ef2d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ed46ae19-b15e-4383-87de-2f068f42ef2d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c5d6bff8-2f29-49af-bb5a-fe876efe07fd

| Managing Items in a Project | 257

® To Navigate to the Access Rights by Screen Form

To Add Access Rights to a Project

When you create or change the access rights by screen, role, or user in an instance of Acumatica ERP,
these changes are saved in the database for the current tenant.

You can add to a customization project the access rights of roles by screen that are saved in the
database for the current tenant. To do this, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Access Rights in the navigation pane to open the Access Rights page.
3. On the page toolbar, click Add New Record (+), as shown in the screenshot below.

4. In the Add Access Rights for Screen dialog box, which opens, in the list of custom access
rights of roles by screen, select the check box for the access rights that you want to include in the
project.

The Add Access Rights for Screen dialog box displays all the custom access rights of
roles that exist in your instance of Acumatica ERP. You can select multiple access rights
of roles to add them to the project simultaneously.

5. In the dialog box, click OK to add the selected access rights of roles to the page table.

6. On the page toolbar, click Save to save the changes to the customization project.

| Managing Items in a Project | 258

Access Rights

Cc L X RELOAD FROM DATABASE ~ MANAGE ACCESS RIGHTS

E Object Name Description Last Modified By Last Modified On
* RMO00OO01 admin 15/2016
RMO0OD03 admin 9202016
B selecte ScreenlD Title
RMO0D001 Balance Sheet Scoftware & Computers
0 RMO00002 Profit and Loss Software & Computers
RMOO0003 Profit and Loss Budget Performance

n CANCEL

Figure: Adding the access rights to the customization project

The system adds to the project the data from the database for the selected access rights of roles. You

can view each new ScreenWithRights item in the Project Items table of the Iitem XML Editor, as shown in
the following screenshot.

| Managing Items in a Project | 259

Edit Project Items

"2
B [Object Name Type Descri Exc Created Creati Last
By Date Modifie
By
O | ARB50660.RPX Report [J | admin Y19/201 ad o
[| Profit & Loss Budget Performance | ReportDefinition [| admin 919/201 ad
@ | RMODDOOA ScreenWithRights [J | admin 9/19/201 ad
[l IRM[][]EI[][]2 ScreenWithRights [admin 9/20/201 ad
@ | RMODDOD3 ScreenWithRights [J | admin 9/20/201 ad
@ | MySharedFilter&GL505510 SharedFilter [J | admin 9/19/201 ad
O | Test&GI0D0D001 SharedFilter [J | admin 919201 ad
[| Subscripticn Billing Details SiteMapNode [J | admin V201€ ad _
e A e = , | nranend bl
Source

<ScreenlithRightss»
¢<data-set>
<relations format-version="3" relations-versicn="281681@1" main-table="
<link from="RolesInCache (ScreenID)” to="SiteMap (ScreenID)" />
¢link from="RolesInGraph (ScreenID)” to="SiteMap (ScreenID)" />
<link from="RolesInMember (ScreenID)" to="SiteMap (ScreenID}" /
<link from="Roles (Rolename, ApplicationName)" to="RolesInCache
<link from="Roles (Rolename, ApplicationName)" to="RolesInGraph
¢link from="Roles (Rolename, ApplicationName}" to="RolesInMembe
</relations>
<layout>
<table name="SiteMap">
<table name="RolesInCache” uplink="(ScreenID) (Screen
<table name="RolesInGraph” uplink="(ScreenID) (Screen
¢<table name="RolesInMember"” uplink="(ScreenID} = (Scree
</tahles

»

Figure: Viewing the XML code of the ScreenWithRights item included in the project

A ScreenWithRights item contains all the data required for the access rights of roles to the screen.
Therefore, the item includes the data of all the roles applied to the screen.

To Delete Access Rights from a Project

To remove a ScreenWithRights item from a project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Access Rights in the navigation pane to open the Access Rights page.

3. In the page table, click the item to be deleted.

4. On the page toolbar, click Delete Row (X).

5. On the page toolbar, click Save to save the changes to the customization project.

If you delete a ScreenWithRights item from the project, the customization of the access rights of roles
remain in the system unless you delete the changes of access rights from the database.

| Managing Items in a Project | 260

To Update Access Rights in a Project

If you have used Acumatica ERP forms to change access rights included in a customization project, you
have to update the appropriate items in the project. To do this, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Access Rights in the navigation pane to open the Access Rights page.
3. On the page toolbar, click Reload From Database.

The platform updates all the ScreenWithRights items of the project by using the appropriate data from
the database.

To Navigate to the Access Rights by Screen Form

You might need to change the access rights of roles in Acumatica ERP during customization. To manage
access rights of roles by screen in Acumatica ERP, you use the Access Rights by Screen (SM201020)
form.

To open this form from the Customization Project Editor, perform the following actions:
1. Click Access Rights in the navigation pane to open the Access Rights page.
2. On the page toolbar, click Manage Access Rights.

As soon as you change the access rights of roles in Acumatica ERP, the system saves the changes in
the database for your tenant, and you can add the access rights as a ScreenWithRights item to the
customization project. For more information about the access rights of roles, see Managing User Access
in the System Administration Guide.

Wikis

You use the Wikis page of the Customization Project Editor to manage WikiArticle items in the
customization project.

A WikiArticle item contains the data set of a custom wiki and all the articles created within
this wiki.
The Wikis page displays the list of the custom wikis that have been added to the customization project.
On the page, you can perform several operations, as described in the following topics:
® To Add a Custom Wiki to a Project
® To Delete a Custom Wiki from a Project
® To Update a Custom Wiki in a Project

® To Navigate to the Wiki Form

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=8ee2b0b2-2d66-4e0c-80ce-ac825690c36a
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=58acde23-caf5-4a49-9e39-d8bd48779f16

| Managing Items in a Project | 261

To Add a Custom Wiki to a Project

In Acumatica ERP, you can create a new wiki or modify the properties of an existing one. For example,
you can change the access rights to wiki folders and edit the list of categories available for the wiki.
Any change to wikis is saved for the appropriate wiki in the database for the current tenant.

You can add to a customization project the wiki that are saved in the database for the current tenant.
To do this, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Wikis in the navigation pane to open the Wikis page.
3. On the page toolbar, click Add New Record (+), as shown in the screenshot below.

4. In the list of custom wikis in the Add Wiki Page dialog box, which opens, select the check box for
each wiki that you want to include in the project.

The Add Wiki Page dialog box displays all the custom wikis that exist in your
instance of Acumatica ERP. You can select multiple wikis to add them to the project
simultaneously.

5. In the dialog box, click OK to add the selected wiki to the page table.

6. On the page toolbar, click Save to save the changes to the customization project.

| Managing Items in a Project | 262

Wikis

Cc X RELOAD FROM DATABASE ~ MANAGE WIKIS

E Object Name

Description Last Modified By Last Modified
On
*» HelpRoot_Customize admin Y192016
Add Wiki Page Ox
C
B O * Wiki 1D * Name Last Last
Modifi | Modified
By
HelpReoot_Customize Wy Wiki admin | 9192016
o[| HelpRoot_KB MyArticle admin | 9/21/2016

LAY CANCEL

Figure: Adding the custom wiki to the customization project

The system adds to the project each selected wiki. You can view each new WikiArticle item in the
Project Items table of the Iltem XML Editor, as shown in the following screenshot.

| Managing Items in a Project | 263

Edit Project Items

"2
B [Object Name Type Descripti Excl Created Creatic Last Last
By Date Modified Modifie
By On
i | Active Contracts SiteMapNode LI | admin 9/1/2016 | admin 91z
0 | APAddress Sql [J | admin 9/13/201¢ admin 913/
@ | MyScript Sql [J | admin 9/13/201¢ admin 914/
O | Script_For_Interpreter Sql [J | admin 9/16/201¢ admin 916/
@ | ARTran Table [J | admin 91/2016 | admin 9172
@ | Contact Table [J | admin 9/1/2016 | admin 9172
L | SOOrder Table [0 | admin %/1/2016 | admin 9/1/2
0 | HelpRoot_Custemize WikiArticle [| admin 9/19/201¢ admin 919
0] IHeIpRoot_KB WikiArticle [admin 21/201¢ admin 921
O | ContractUsage XportScenario [J | admin 9/1/2016 | admin 919 -
b
Source

<WikiArticles
¢<data-set>
<relations format-version="3" relations-versicn="28168181" main-table="Wi
<link from="WikiAccessRights (PageID)" to="WikiPage (PageID)" />
<link from="WikiPagelanguage (PageID)" to="WikiPage (PageID)" />
¢link from="WikiRevision (PagelD, Language, PageRevisionID)}" to="

<link from="WikiRevision (UID}" to="Dual (UID)" type="NewUID" />
<link from="WikiPage (PageID)" to="WikiDescriptor (PageID)" type=
¢link from="WikiDescriptor (PageID)" to="WikiDescriptorExt (Pagel
<link from="WikiCss (CssID)" to="WikiDescripter (CssID)" />

<link from="WikiFileInPage (PageID, Language, PageRevisionID)" to:

¢link from="WikiFileInPage (FileID)" to="UploadFile (FileID)" tym
<link from="UploadFileRevision (FileID, FileRevisionID)" to="Uploc w

>

Figure: Viewing the XML code of the WikiArticle item included in the project

A WikiArticle item contains all the data required to recreate the corresponding wiki in any instance of
Acumatica ERP.

To Delete a Custom Wiki from a Project

To remove a WikiArticle item from a project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Wikis in the navigation pane to open the Wikis page.

3. In the page table, click the item to be deleted.

4. On the page toolbar, click Delete Row (X).

5. On the page toolbar, click Save to save the changes to the customization project.

If you delete a WikiArticle item from the project, the custom wiki remains in the system unless you
delete the wiki by using the Wiki (SM202005) form.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=99e5f44c-69b3-469f-857a-a333882d110b

| Managing Items in a Project | 264

To Update a Custom Wiki in a Project

If you have changed a wiki included in a customization project by using Acumatica ERP forms, you
have to update the appropriate item in the project. To do this, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Wikis in the navigation pane to open the Wikis page.
3. On the page toolbar, click Reload From Database.

The platform updates all the WikiArticle items of the project by using the appropriate data from the
database.

To Navigate to the Wiki Form

You might need to add a new wiki or edit an existing one in Acumatica ERP during customization. To
manage wikis in Acumatica ERP, you use the Wiki (SM202005) form.

To open this form from the Customization Project Editor, perform the following actions:
1. Click Wikis in the navigation pane to open the Wikis page.
2. On the page toolbar, click Manage Wikis.

As soon as you create or change a wiki in the system, the system saves this wiki in the database for
the current tenant, you can add the wiki as a WikiArticle item to the customization project. For more
information about wikis, see Managing Wikis in the System Administration Guide.

Web Service Endpoints

Acumatica ERP provides web services for integration with external systems. Through the web services
of Acumatica ERP, external systems can get data records from Acumatica ERP and process these
records; new or updated records can also be saved to Acumatica ERP. You can configure contract-
based web service endpoints in an instance of Acumatica ERP and include the new configuration in a
customization project as an EntityEndpoint item.

You use the Web Service Endpoints page of the Customization Project Editor to manage EntityEndpoint
items in the customization project.

A EntityEndpoint item contains the data set of a custom contract-based web service
endpoint.

The Web Service Endpoints page displays the list of the custom contract-based web service endpoints
that have been added to the customization project.

On the page, you can perform several operations, as described in the following topics:
® To Add a Custom Web Service Endpoint to a Project

® To Delete a Custom Web Service Endpoint from a Project

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=99e5f44c-69b3-469f-857a-a333882d110b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=a7187950-7068-464d-8935-ce38c79d789f

| Managing Items in a Project | 265

To Update a Custom Web Service Endpoint in a Project

To Navigate to the Web Service Endpoints Form

To Add a Custom Web Service Endpoint to a Project

To add a custom contract-based web service endpoint to a customization project, perform the following
actions:

1.

Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

Click Web Service Endpoints in the navigation pane to open the Web Service Endpoints page.
On the page toolbar, click Add New Record (+), as shown in the screenshot below.

In the list of custom contract-based web service endpoints in the Add Entity Endpoint dialog box,
which opens, select the check box for each endpoint that you want to include in the project.

The Add Entity Endpoint dialog box displays all the custom contract-based web
service endpoints that exist in your instance of Acumatica ERP. You can select multiple
endpoints to add them to the project simultaneously.

In the dialog box, click OK to add each selected endpoint to the page table.

On the page toolbar, click Save to save the changes to the customization project.

Web Service Endpoints

& o L + RELOAD FROM DATABASE MANAGE ENDPCINTS
E Object Name Description Last Modified By Last Modified On
Add Entity Endpoint P
&
B * Endpoint Version * Endpoint Name
2 £.00.002 AP_EP
? 6.00.001 My TestEndpoint

SAVE | CANCEL

Figure: Adding the custom contract-based web service endpoint to the customization project

The system adds to the project the data from the database for each selected web service endpoint .
You can view each new EntityEndpoint item in the Project Items table of the /item XML Editor, as shown
in the following screenshot.

| Managing Items in a Project | 266

Edit Project Items

[o
B [Object Name Type Descript Exc Created Creatic Last Last
By Date Modified Modifi
By On

i |G.[]0.[][]1&MyTestErL. EntityEndpoint admin 11/14/20 admin 11/14/201

O
i | 6.00.002&AP_EP EntityEndpoint [0 | admin 11/14/20| admin 11/14/207
@] | App_Data\Mobilelin... | File [| admin 11/11/207 admin 1/11/201
@ App_Data\MobilelY... | File [| admin 1117207 admin 111201
@ | BintYogiFen_Code.dll | File [| admin 11/11/207 admin 111201
@1 | Pages\AR\ARA4050 File [| admin 11/11/207 admin 11/11/201
[d] | Pages\AR\AR4090... | File [| admin 11/11/207 admin 111201
[| Active Contracts Genericlngui... [0 | admin 10/27/20) admin 10/27/207
| enUs Locale [| admin 11/14/20) admin 11/14/1207 -
Source
<EntityEndpoint:>
<Endpoint xmlns:xsd="http://www.w3.org/20@1/XMLSchema” xmlns:xsi="http://vaw.w3 .

<TopLevelEntity name="MyEndpoint" screen="AR3@3208" />
<TopLevelEntity name="NonStock_Endpoint™ screen="IN2e2868" />
</Endpoint>
</EntityEndpoint>

Figure: Viewing the XML code of the EntityEndpoint item included in the project

To Delete a Custom Web Service Endpoint from a Project

To remove a EntityEndpoint item from a project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Web Service Endpoints in the navigation pane to open the Web Service Endpoints page.
3. In the page table, click the item to be deleted.

4. On the page toolbar, click Delete Row (X).

5. On the page toolbar, click Save to save the changes to the customization project.

If you delete a EntityEndpoint item from the project, the custom contract-based web service endpoint

remains in the system unless you delete the endpoint by using the Web Service Endpoints (SM207060)
form.

To Update a Custom Web Service Endpoint in a Project

If you have used the Web Service Endpoints (SM207060) form to change a custom contract-based web
service endpoint included in a customization project, you have to update the appropriate item in the
project. To do this, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Web Service Endpoints in the navigation pane to open the Web Service Endpoints page.

3. On the page toolbar, click Reload From Database.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c620452-c947-4bd6-a9eb-2a8fc04226be
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c620452-c947-4bd6-a9eb-2a8fc04226be

| Managing Items in a Project | 267

The platform updates all the EntityEndpoint items of the project by using the appropriate data from the
database.

To Navigate to the Web Service Endpoints Form

You might need to configure contract-based web service endpoints in Acumatica ERP during
customization. To manage contract-based web service endpoints in Acumatica ERP, you use the Web
Service Endpoints (SM207060) form.

To open this form from the Customization Project Editor, perform the following actions:

1. Click Web Service Endpoints in the navigation pane to open the Web Service Endpoints page of
the editor.

2. On the page toolbar, click Manage Endpoints.

As soon as you configure a web service endpoint on the Web Service Endpoints form, the system

saves the endpoint data in the database for the current tenant, and you can add the endpoint as a
EntityEndpoint item to the customization project. For more information about the contract-based web
services API, see Configuring the Contract-Based REST and SOAP API in the Integration Development
Guide.

Analytical Reports

Analytical reports are used to display the consolidated and summarized data in a view defined by the
report designer at the report design stage. The analytical reports are used to provide the summarized
and aggregated values in a variety of views: the data in the analytical report can be displayed in the
monthly, yearly, and quarterly views, and the data can provide information from the point of view of
departments, selected account classes, and other dimensions.

In Acumatica ERP, you can modify defined analytical reports, create a new analytical report, and
delete existing reports. You can add the analytical reports that have been created or modified to the
customization project as ReportDefinition items.

You use the Analytical Reports page of the Customization Project Editor to manage ReportDefinition items
in the customization project.

A ReportDefinition item contains the data set of a custom analytical report, including the
data of a predefined sets of rows, columns, and units.

The Analytical Reports page displays the list of the custom analytical reports that have been added to
the customization project.

On the page, you can perform a variety of operations, as described in the following topics:
® To Add a Custom Analytical Report to a Project

® To Delete a Custom Analytical Report from a Project

® To Update a Custom Analytical Report in a Project

® To Navigate to the Report Definitions Form

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c620452-c947-4bd6-a9eb-2a8fc04226be
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c620452-c947-4bd6-a9eb-2a8fc04226be
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c620452-c947-4bd6-a9eb-2a8fc04226be
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=91dda8ed-5e92-48a5-a176-9a255506d0d6

| Managing Items in a Project | 268

To Add a Custom Analytical Report to a Project

You can add a custom analytical report to a customization project. To do this, perform the following
actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Analytical Reports in the navigation pane to open the Analytical Reports page.
3. On the page toolbar, click Add New Record (+), as shown in the screenshot below.

4. In the list of custom analytical reports in the Add Report Definition dialog box, which opens,
select the check box for each report that you want to include in the project.

The Add Report Definition dialog box displays all the custom analytical reports that
exist in your instance of Acumatica ERP. You can select multiple custom analytical
reports to add them to the project simultaneously.

5. In the dialog box, click OK to add each selected analytical report to the page table.

6. On the page toolbar, click Save to save the changes to the customization project.

Analytical Reports

& L X RELOAD FROM DATABASE ~ MANAGE REFORT DEFINITIONS

E Object Name Description Last Modified By Last Modified On
¥ Profit & Loss Budget Performance admin 9192016
Add Report Definition 0O X
&
BO *Code * Description Last Modified By LastModifiedDateT
O CBSS Balance Sheet Software & Computers admin 12/6/2015
CPLEBUDG Profit & Loss Budget Performance admin 12/6/2015
O CPLCONS Profit and Loss Software & Computers admin 12/6/2015
O DPL Profit and Loss admin 12/8/2014
O DPLF Profit & Loss Comparative admin 12/8/2014
@ DPLO P&L - Quarterly admin 12/8/2014

CANCEL

Figure: Adding the custom analytical report to the customization project

The system adds to the project the data from the database for each selected custom analytical report.

You can view each new item in the Project Items table of the ltem XML Editor, as shown in the following
screenshot.

Edit Project Items

| Managing Items in a Project | 269

"2
E [y Object Name Type Description Exclud Created By Creation Last
Date Modified E
O ja-JP Locale O admin 9/15/2016 | admir ©
U | ~/pages/arfar303000.aspx Page O admin 1/2016 admir
O | ~/pages/so/s0303000.aspx Page O admin 912016 admir
O | ARB50660.RPX Report O admin 9192016 | admir
(dy IP&L—Quariedy ReportDefinition O admin 9/21/2016 | admir
@ | Profit & Loss Budget Perf... | RepertDefinition O admin 9/19/2016 | admir
@ | RMODDOOM ScreenWithRights O admin 192016 | admir
@ | RMDDDOD2 ScreenWithRights O admin 920/2016 | admir
@ | RMOOD0D3 ScreenWithRights O admin Y20/2016 | admir »
»
Source
<ReportDefinition>
<data-set>

<relations format-version="3"
¢link from="RMColumn

relations-version="2@168181" main-table="RMReport
(ColumnSetCode)™ to="RMColumnSet (ColumnSetCode)™
<link from="RMColumn (NoteID)" to="Note (NotelID)}" type="Note" />

<link from="RMColumn (NoteID)" to="RMColumnkKvExt (RecordID}" type="Rowk
<link from="RMColumnHeader (ColumnSetCode, ColumnCode)™ to="RMColumn (C
<link from="RMColumnHeader (MoteID)" to="Note (MoteID)}" type="Note" />
<link from="RMColumnHeader (MotelID)" to="RMColumnHeaderKvExt (RecordID)
<link from="RMColumn (DataSourcelID)” to="RMDataSource (DataSourceID)" t
¢link from="RMRow (DataSourceID)}" to="RMDataSource (DataSourcelID)" type
<link from="RMUnit (DataSourceID)™ to="RMDataSocurce (DataSourceID)" typ
<link from="RMReport (DataSourcelID)” to="RMDataSource (DataSourceID)" tw

4

Figure: Viewing the XML code of the ReportDefinition item included in the project

A ReportDefinition item contains all the data required to recreate the corresponding analytical report in
any instance of Acumatica ERP.

To give users the ability to navigate to the custom analytical report in Acumatica ERP, you
have to add the appropriate site map node to the customization project, as described in To
Add a Site Map Node to a Project.

To Delete a Custom Analytical Report from a Project

To remove a ReportDefinition item from a project, perform the following actions:

1.

4.

5.

Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

Click Analytical Reports in the navigation pane to open the Analytical Reports page.
In the page table, click the item to be deleted.
On the page toolbar, click Delete Row (X).

On the page toolbar, click Save to save the changes to the customization project.

If you delete a ReportDefinition item from the project, the analytical report remains in the system
unless you delete the report by using the Report Definitions (CS206000) form.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=3ab2cb25-bcec-4a3e-b095-e4ce351875b5

| Managing Items in a Project | 270

To Update a Custom Analytical Report in a Project

If you have used the Report Definitions (CS206000) form to change an analytical report included in a
customization project, you have to update the appropriate item in the project. To do this, perform the
following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. Click Analytical Reports in the navigation pane to open the Analytical Reports page.
3. On the page toolbar, click Reload From Database.

The platform updates all the ReportDefinition items of the project by using the appropriate data from
the database.

To Navigate to the Report Definitions Form

You might need to add an analytical report to Acumatica ERP during customization. To manage
analytical reports in Acumatica ERP, you use the Report Definitions (CS206000) form.

To open this form from the Customization Project Editor, perform the following actions:
1. Click Analytical Reports in the navigation pane to open the Analytical Reports page.
2. On the page toolbar, click Manage Report Definitions.

As soon as you add a new analytical report to the system or change an existing analytical report on the
Report Definitions form, the report is saved in the database for the current tenant, and you can add the
report to the customization project as a ReportDefinition item. For more information about analytical
reports, see Managing Analytical Reports in the Reporting Tools Guide.

Push Notifications

Push notifications are notifications in JSON format that are sent by Acumatica ERP to notification
destinations when specific data changes occur in Acumatica ERP. External applications can receive the
notifications and process them to retrieve the information about the changes.

For more information about push notifications in Acumatica ERP, see Configuring Push Notifications.

You can add the push notification definitions to a customization project as PushNotification items.

A PushNotification item contains the data set of a push notification definition. A push notification
definition includes the push notification destination and the data query, which defines the data changes
for which Acumatica ERP sends notifications.

You use the Push Notifications page of the Customization Project Editor to manage PushNotification items
in the customization project. This page displays the list of the push notification definitions that have
been added to the customization project.

On the page, you can perform a variety of operations, as described in the following topics:
® To Add Push Notification Definitions to a Project

® To Delete Push Notification Definitions from a Project

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=3ab2cb25-bcec-4a3e-b095-e4ce351875b5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=3ab2cb25-bcec-4a3e-b095-e4ce351875b5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=3ab2cb25-bcec-4a3e-b095-e4ce351875b5
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=6998580f-25d2-42ba-bde5-668c2bf1f551
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d8d2835f-5450-4b83-852e-dbadd76a5af8

| Managing Items in a Project | 271

To Update Push Notification Definitions in a Project

To Navigate to the Push Notifications Form

To Add Push Notification Definitions to a Project

You can add any number of push notification definitions to a customization project as PushNotification
items. A PushNotification item contains all the data required to recreate the corresponding push
notification definition in any instance of Acumatica ERP.

To add a push notification definition to the project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for

details.)
In the navigation pane, click Push Notifications to open the Push Notifications page.
On the page toolbar, click Add New Record (+).

In the list of push notification definitions in the Add Push Notifications dialog box, which has
opened, select the unlabeled check box in the row of each definition that you want to include in the
project.

The Add Push Notifications dialog box displays all the push notification definitions that
are configured in your instance of Acumatica ERP.

Click OK to add each selected notification definition to the page table and close the dialog box.
On the page toolbar, click Save to save your changes to the customization project.

For each data query that defines the data changes for which Acumatica ERP should send
notifications in the added push notification definition or definitions, do one of the following:

e If the data query has been defined with a generic inquiry, add the generic inquiry to the
customization project, as described in To Add a Generic Inquiry to a Project.

e If the data query has been defined with a built-in definition, make sure that the built-in
definition is available in the customization project: The built-in definition can be added as
either a Code item (if the definition is added directly to the customization project as a class) or
a File item (if the definition is added to the customization project as a class in a DLL file).

Optional: In the Customization Project Editor, click File > Edit Project Items on the menu. In
the Project Items table of the Item XML Editor, verify that the system has added to the project the
data from the database for each selected push notification definition. For details on the Item XML
Editor, see Item XML Editor.

To Delete Push Notification Definitions from a Project

To remove a PushNotification item or multiple PushNotification items from a project, perform the
following actions:

Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

| Managing Items in a Project | 272

2. In the navigation pane, click Push Notifications to open the Push Notifications page.
3. In the page table, click the item to be deleted.

4. On the page toolbar, click Delete Row (X).

5. Repeat the two previous steps for each item to be deleted.

6. On the page toolbar, click Save to save your changes to the customization project.

If you delete a PushNotification item from the project, the push notification definition
remains in the system unless it is deleted on the Push Notifications (SM302000) form.

To Update Push Notification Definitions in a Project

If a push notification included in a customization project has been changed (or if multiple push
notification definitions have been changed) on the Push Notifications (SM302000) form, you have to
update the appropriate item (or items) in the project. To do this, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. In the navigation pane, click Push Notifications to open the Push Notifications page.
3. On the page toolbar, click Reload From Database.

The platform updates all the PushNotification items of the project with the data in the database.

To Navigate to the Push Notifications Form

You might need to add a push notification definition to Acumatica ERP during customization. To
manage push notifications in Acumatica ERP, you use the Push Notifications (SM302000) form. For more
information about push notifications, see Configuring Push Notifications in the Integration Development
Guide.

To open this form directly from the Customization Project Editor, perform the following actions:
1. In the navigation pane, click Push Notifications to open the Push Notifications page.
2. On the page toolbar, click Manage Notifications.

This opens the Push Notifications form, where you can select a particular push notification definitions or
create a new one.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ba35054f-3485-415e-9785-da1195cb708b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ba35054f-3485-415e-9785-da1195cb708b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ba35054f-3485-415e-9785-da1195cb708b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d8d2835f-5450-4b83-852e-dbadd76a5af8
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ba35054f-3485-415e-9785-da1195cb708b

| Managing Items in a Project | 273

As soon as you add a new push notification definition to the system or change an existing
push notification definition on the Push Notifications form, the push notification definition is
saved in the database for the current tenant. You can add the definition to the customization
project, as described in To Add Push Notification Definitions to a Project. If you have changed

a push notification definition that is already included in a customization project, you have

to update the appropriate item in the project, as described in To Update Push Notification
Definitions in a Project.

Business Events

To configure the system to monitor a business process, on the Business Events (SM302050) form,
you define a business event that relates to this business process and that causes the system to
perform an action or multiple actions in the system. The business event is a data change or a set of
conditions checked for on a schedule. For details on the business events, see Business Events: Data
Change Processing and Business Events: Scheduled Event Processing.

You can add the business events to a customization project as BpEvent items. A BpEvent item contains
the data set of a business event. The item includes the following information:

e The general information about the business event (such as its name and type)
e The trigger conditions of the business event

e The schedule of the business event (if the conditions of the business event are checked for on a
schedule)

e The generic inquiry parameters (if any parameter values have been specified for the business
event)

e The email notification templates (if the business event has email notification templates as
subscribers)

e The link to the GenericInquiryScreen item related to the business event, which the system adds to
the customization project as a separate item

e The links to the XportScenario items related to the business event, which the system adds to the
customization project as separate items (if the business event has import scenarios as subscribers)

You use the Business Events page of the Customization Project Editor to manage BpEvent items in the
customization project. This page displays the list of the business events that have been added to the
customization project.

On the page, you can perform a variety of operations, as described in the following topics:
® To Add Business Events to a Project

® To Delete Business Events from a Project

® To Update Business Events in a Project

® To Navigate to the Business Events Form

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=ba35054f-3485-415e-9785-da1195cb708b
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d83a15de-e962-4b94-9f5f-51f501a96b47
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=83582d78-a752-4175-af4f-3cec6150aca0
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=83582d78-a752-4175-af4f-3cec6150aca0
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=85c42962-1673-41f7-a895-5ec94b1467ca

| Managing Items in a Project | 274

To Add Business Events to a Project

You can add any number of business events to a customization project as BpEvent items. A BpEvent
item contains all the data required to recreate the corresponding business event in any instance of
Acumatica ERP.

To add a business event to the project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. In the navigation pane, click Business Events to open the Business Events page.
3. On the page toolbar, click Add New Record (+).

4. In the list of business events in the Add Business Events dialog box, which has opened, select
the unlabeled check box in the row of each business event that you want to include in the project.

The Add Business Events dialog box displays all the business events that are
configured in your instance of Acumatica ERP.

5. Click OK to add each selected business event to the page table and close the dialog box.

6. Optional: In the Customization Project Editor, click File > Edit Project Items on the menu. In
the Project Items table of the Item XML Editor, verify that for each selected business event, the
system has added to the project the data of the business event from the database (BpEvent item),
the related generic inquiry (GenericInquiryScreen item), and, if the business scenario has any
import scenarios as subscribers, the import scenario (XportScenario item) for each import scenario
subscriber. For details on the Item XML Editor, see ltem XML Editor.

To Delete Business Events from a Project

To remove a BpEvent item or multiple BpEvent items from a project, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. In the navigation pane, click Business Events to open the Business Events page.
3. In the page table, click the item to be deleted.

4. On the page toolbar, click Delete Row (X).

5. Repeat the two previous steps for each item to be deleted.

6. On the page toolbar, click Save to save your changes to the customization project.

If you delete a BpEvent item from the project, the business event remains in the system
unless it is deleted on the Business Events (SM302050) form.

7. If you want to remove from the customization project the generic inquiry that the removed
business event used, perform the instructions in To Delete a Generic Inquiry from a Project.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d83a15de-e962-4b94-9f5f-51f501a96b47

| Managing Items in a Project | 275

8. If you want to remove from the customization project any of the import scenario scripts that the
removed business event used, for each import scenario script, perform the instructions in To Delete
an Integration Scenario from a Project.

To Update Business Events in a Project

If a business event included in a customization project has been changed (or if multiple business
events have been changed) on the Business Events (SM302050) form, you have to update the
appropriate item (or items) in the project. To do this, perform the following actions:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. In the navigation pane, click Business Events to open the Business Events page.
3. On the page toolbar, click Reload From Database.

The platform updates all the BpEvent items of the project with the data in the database.

If you have changed the generic inquiry used in the business event or the import scenario of
the business event, you need to update each changed item separately on the corresponding
page of the Customization Project Editor, as described in To Update Generic Inquiry Items in a
Project and To Update an Integration Scenario in a Project, respectively. If you have changed the
notification template of the business event, the system updates the notification template in
the customization project automatically when you update the business event.

To Navigate to the Business Events Form

You might need to add a business event to Acumatica ERP during customization. To manage business
events in Acumatica ERP, you use the Business Events (SM302050) form. For more information about
business events, see Using Business Events in the User Guide.

To open this form directly from the Customization Project Editor, perform the following actions:
1. In the navigation pane, click Business Events to open the Business Events page.
2. On the page toolbar, click Manage Business Events.

This opens the Business Events form where you can select a particular business event or create a new
one.

As soon as you add a new business event to the system or change an existing business
event on the Business Events form, the business event is saved in the database for the
current tenant. You can add the business event to the customization project, as described
in To Add Business Events to a Project. If you have changed a business event that is already
included in a customization project, you have to update the appropriate item in the project,
as described in To Update Business Events in a Project.

Mobile Application

An Acumatica mobile client application uses the Mobile API to access the data of the forms that are
mapped for mobile apps in the instance of Acumatica ERP. The metadata of the mobile site map is

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d83a15de-e962-4b94-9f5f-51f501a96b47
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d83a15de-e962-4b94-9f5f-51f501a96b47
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=85d4ed6e-f498-4683-86f9-bdb5a2164c6d
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d83a15de-e962-4b94-9f5f-51f501a96b47
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=d83a15de-e962-4b94-9f5f-51f501a96b47

| Managing Items in a Project | 276

used to configure the user interface of the mobile client application. You can expose any form of
Acumatica ERP on your mobile device if the mobile site map includes the metadata for the form.
Accessing and using Acumatica ERP mobile app is provided by the Acumatica Mobile Framework.

You can customize the Acumatica ERP mobile app by adding new screens to it or updating existing
screens. You perform customization of the mobile app using the Mobile Application page of the
Customization Project Editor.

On the page you can perfrom a variety of operations, as described in the following topics:
® To Add a Form To Mobile Site Map

® To Update Main Menu of a Mobile App

® To Update a Mobile App Screen

® To Remove a Screen of a Mobile App

® To Reverse Changes Made to Mobile App

For details on how to customize a mobile app using Acumatica Mobile Framework see in the Working with
Mobile Framework guide.

To Add a Form To Mobile Site Map

Suppose that you need to add to the mobile app a screen that corresponds to an Acumatica ERP form.
The form ID is XXX. The desired mobile screen has to contain the Date and Description fields and the
Insert and Delete actions of the original XXX form of Acumatica ERP.

L
o, .
— a0 . Acumatica ERP Server
l. .-
. .
— & 4"} Mobile API
Mobile
Application
pp Acumatica ERP Site
| S— o R s e G -
. I XXX - | izati
Acumatica Mobile Client Screen o Customization Project
1
s - H
| Main Menu Actions Container H Main Menu Screen XXX
| 1
1 H e 1
1 item item item | 1| save ! sitemap { add screen XXX {
XXX vy 22z | H add folder F1 { add field "ID"
! ' 1| Cancel add ftem XXX add field "Description”
[J || Insert 1) add recordAction "Save"
,,,,,,,,,,,,,,,,, !))
Lo i
Screen XXX ! ‘l__‘ i NameX Container E)
field ID H 1
' ' 1
field Description v | R H
i | - H
! recardAction Save | | 1| Description |
| Vo Date H
| | recordAction Cancel | | . o
M e e 2 L L]
1 H | VS =
[3 :
e memmmmmme J Mmmmmmcm—————————— J M e e e e m e mmmm e — e ———————————————— J

Figure: Use of MSDL to configure a screen in the mobile app

The diagram shows how the Acumatica Mobile Framework uses the MSDL code to configure the XXX
screen in the mobile app. (See Configuring the Mobile Site Map for details.) You declare the desired
screen, containers, fields, actions and other objects by using Mobile Site Map Definition Language
(MSDL) in the Customization Project Editor. The objects you want to be displayed on the mobile app
screen must be present on the original Acumatica ERP form (See Getting the WSDL Schema).

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5dacbf34-ac82-41b4-b498-839c173f587c
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=5dacbf34-ac82-41b4-b498-839c173f587c
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=64460c7d-b5da-4872-958f-9c1f290168bc
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=a36c007a-a860-4808-8da1-4721f7616acb

| Managing Items in a Project | 277

After you publish your customization project, the screen you have defined using MSDL appears in the
mobile app.

To Add a Screen to the Mobile Site Map

1. Get the WSDL schema for the original XXX screen of Acumatica ERP, as described in Getting the
WSDL Schema.

2. Open the Customization Project Editor.
3. On the page toolbar of the Mobile Application page, click Customize > Add New Screen.

4. In the Add New Screen dialog box, which opens, enter the form ID of the Acumatica ERP form
(and thus of the corresponding screen in the mobile app) that you want to add to the mobile app,
and click OK.

The Add: <screen_name> page opens. The row with the add screen and its details appears in the
list of modified screens on the Mobile Application page of the Customization Project Editor.

5. Notice that the initial code of the screen includes only one add instruction.

add screen <screen ID> ({

you can add commands here
ObjectAttribute = Value

}

(See add for details about the instruction.)

6. Implement the code of the new screen in the Commands area of the Add page. For details, see
Screens.

While implementing the code, use the WSDL schema to understand which actions and fields are
available for the form you are adding. For details, see Getting the WSDL Schema.

7. Save your changes.

Your commands are applied to the site map. If any errors have occurred, you can see them in the
Errors area of the page. If your changes have been applied successfully, you can see the updated
site map of the main menu in the Result Preview area of the form.

8. On the Update: MENU page, add a shortcut for the new screen in the main menu, as illustrated in
the following code.

add item <screen ID> {

visible = True

displayName = "screen title" }

9. Save your changes, and publish the project.

To Update Main Menu of a Mobile App

You can update the main menu of the customized Acumatica mobile app by using the Customization
Project Editor.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=a36c007a-a860-4808-8da1-4721f7616acb
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=a36c007a-a860-4808-8da1-4721f7616acb
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=bd8dcd67-29fa-461b-9ccc-f438e53c1b30
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=29a4f3b6-e302-47d7-b714-5fa58c321b05
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=a36c007a-a860-4808-8da1-4721f7616acb

| Managing Items in a Project | 278

To Update the Main Menu of a Mobile App
1. Open the Customization Project Editor.
2. On the page toolbar of the Mobile Application page, click Customize > Update Main Menu.

The Update: MENU page opens. The Update MENU appears in the list of modified screens on the
Mobile Application page of the Customization Project Editor.

3. In the Result Preview area of the Update: MENU page, explore the original code of the main
menu.

4. In the Commands area of the Update: MENU page, implement your code using Mobile Site Map
Definition Language (MSDL). For details, see Main Menu.

5. Save your changes.

Your commands are applied to the menu. If any errors have occurred, you can see them in the
Errors area of the form. If your changes have been applied successfully, you can see the updated
site map of the main menu in the Result Preview area of the form.

6. Publish your customization project.

To Update a Mobile App Screen

You can update an existing screen of a customized mobile app by using the Customization Project
Editor.

To Update a Screen of a Mobile App
1. Open the Customization Project Editor.
2. On the page toolbar of the Mobile Application page, click Customize > Update Existing Screen.

3. In the Update Existing Screen dialog box, which appears, specify the ID of the screen you want
to update, and click OK.

The Update: <screen_name> page opens. The new update screen with its details appears in the
list of modified screens on the Mobile Application page of the Customization Project Editor.

4. Explore the original code of the screen in the Result Preview area of the Update page.

5. Implement your code using Mobile Site Map Definition Language (MSDL) in the Commands area
of the Update page. For details, see Screens.

6. Save your changes.

Your commands are applied to the site map. If any errors have occurred, you can see them in the
Errors area of the page. If your changes have been applied successfully, you can see the updated
site map of the main menu in the Result Preview area of the form.

7. Publish the customization project.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=c7e5bca7-aebc-4c40-878e-94535fa91c9e
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=29a4f3b6-e302-47d7-b714-5fa58c321b05

| Managing Items in a Project | 279

To Remove a Screen of a Mobile App

You can remove a screen of a customized mobile app by using the Customization Project Editor.

To Remove a Screen of a Mobile App

1.

2.

Open the Customization Project Editor.
On the page toolbar of the Mobile Application page, click Customize > Remove Existing Screen.

In the Remove Existing Screen dialog box, which appears, specify the ID of the screen you want
to remove, and click OK.

The selected screen is removed. The Remove <screen_name> row appears in the list of modified
screens on the Mobile Application page of the Customization Project Editor.

To Reverse Changes Made to Mobile App

When you are customizing the mobile site map in the Customization Project Editor, you might need
to go back to the out-of-the-box site map and base functionality. You can return to the original

site map to one tenant or to all tenants without removing the other changes you have made in the
customization project.

To Reverse Changes Made to the Mobile Site Map

1.

2.

3.

Open the Customization Project Editor.
Click Mobile Application in the navigation pane to open the Mobile Application page.

If you want to reverse the changes to the current tenant only, on the page toolbar, click Clear
Current Tenant. If you want to reverse the changes to all tenants, on the page toolbar, click
Clear All Tenants.

The mobile app customization is unpublished from the selected tenants.

To return to your changes, publish your customization project, as described in To Publish the Current
Project.

User-Defined Fields

The Customization Project Editor includes the User-Defined Fields page, which is shown in the
screenshot below. On this page, you can do the following:

Update fields properties that have been updated by users in an instance of Acumatica ERP by
clicking the Reload From Database action.

Add a new user-defined field based on existing attributes. For details on defining attributes, see
Attributes.

View detailed information about a user-defined field.
Modify the list of screens on which the field is displayed.

Remove an existing user-defined field.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=51966695-681a-4ca7-9365-d1b5058a1596

| Managing Items in a Project | 280

You can add a user-defined field either on the applicable form of Acumatica ERP or on the User-Defined
Fields page of the Customization Project Editor. Any user-defined fields you add in the Customization
Project Editor are added to the current customization project with all other items; when the project has
been completed, it can be exported and imported.

ScreenActions « User-Defined Fields

» SCREENS & & X + Vi RELOAD FROM DATABASE MANAGE
Data Access
E Attribute ID Description Screen ID Last Modified Last
Code By Modified On
Files > BURDEN Project Burden Perce.. AP301000 2dmin admin 1/9/2019
Generic Inguiries i i
COLOR Color S0303000,30302000,S03010... admin admin 1/9/2019
Reports
Dashboards
Site Map

Database Scripts
System Locales
Import/Export Scenarios
Shared Filters
Access Rights
Wikis
Web Service Endpoints
Analytical Reports
Push Notifications
Business Events
Mobile Application

| User-Defined Fields (2)

Figure: The User-Defined Fields page
Related Links

® Attributes

To Add a User-Defined Field to a Customization Project

To add a user-defined field to customization project, you can use a field previously defined in
Acumatica ERP, or create a field in Customization Project Editor. After that you can include the field in
the current customization project.

To Add a New User-Defined Field

To add a new user-defined field, proceed as follows:

1. On the navigation pane of the Customization Project Editor, click User-Defined Fields to open the
User-Defined Fields page.

2. On the page toolbar, click Add New Record.

3. In the Add User-Defined Fields dialog box, which opens, select an attribute for the user-defined
field you are adding, and click Save.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=51966695-681a-4ca7-9365-d1b5058a1596

| Managing Items in a Project | 281

The user-defined field appears in the list on the User-Defined Fields page, and the dialog box is
closed. Now you need to specify the IDs of the screens on which the field will appear. By default,
the added field appears with all screens where it is used in the instance.

In the row with the user-defined field, click the link in the Attribute ID column.

In the Edit Attribute dialog box (see the following screenshot), which opens, select the forms for
which you want to save the fields in the customization project.

In this dialog box, you can see only the IDs of the screens for which the user-defined
field was added. To add a user-defined field to a screen, on the title bar of the screen,
select Customization > Manage User-Defined Fields and add the field.

User-Defined Fields

C a X o+ p RELOAD FROM DATABASE MANAGE

E Attribute ID Description Screen ID Last Modified Last
By Modified On
BURDEN Project Burden Perce... AP301000 admin admin 1/9/2019
> COLOR Caolor S0303000,50302000,503010... admin admin 1/9/2019
Edit Attribute m X
C
E Screen ID
1 AP30.10.00
® 50.30.10.00
50.30.20.00
1 50.30.30.00

SAVE CANCEL

Figure: The Edit Attribute dialog box

Click Save to save your changes, close the dialog box, and return to the User-Defined Fields page.

The selected form IDs are listed in the Screen ID column of the user-defined field you edited, as
shown in the following screenshot.

| Managing Items in a Project | 282

User-Defined Fields %
C & x + & RELOAD FROM DATABASE MANAGE
E Attribute ID Description Screen ID Last Modified Last
By Modified On
BURDEN Project Burden Perce... AP301000 admin admin 1/9/2019
> COLOR Color S0303000,AP301000 admin admin 1/9/2019

Figure: The list of user-defined fields after being edited
7. On the page toolbar, click Save.
Related Links

® To Add User-Defined Fields to a Form

Webhooks

The Customization Project Editor includes the Webhooks page, which is shown in the screenshot below.
On this page, you can do the following:

e Update webhook properties that have been updated by users in an instance of Acumatica ERP by
clicking the Reload from Database action.

e Add a webhook registered on the Webhooks (SM304000) form to the customization project.

For details on adding a webhook to a customization project, see To Add a Webhook to a Project. For
details on implementing and registering webhooks, see Configuring Webhooks.

e View detailed information about a webhook.

e Make the implementation class of the webhook unavailable for editing in the instance where the
customization project is published. To do this, you select the Predefined box for the webhook.

® Remove an existing webhook from the customization project.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=810b4857-2ffe-4764-aebf-4d657334f0be
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=0302a6bd-3eab-45d2-a0ed-dba3ea03b917
https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=40deeeee-fb24-4331-8f59-793fb5c08fb7

| Managing Items in a Project | 283

Customization Project Editor Back Reload
File Publish Extension Library Source Control
CustomWebhooks « Webhooks
Screens O) X + RELOAD FROM DATABASE MANAGE WEBHOOKS
Data Access
Code B Pre Object Name Implementation Class Description Last Modified Last
By Modified
Files on
Generic Inquiries > Test webhook PX.Api.Webhooks.DummyWebHook adminadmin 217/2020
Reports
Dashboards
Site Map

Database Scripts
System Locales
Import/Export Scenarios
Shared Filters
Access Rights
Wikis
Web Service Endpoints
Analytical Reports
Push Notifications
Business Events
Mobile Application
User-Defined Fields

I Webhooks (1)

Figure: The Webhooks page

Related Links

® Configuring Webhooks

To Add a Webhook to a Project

You can save a webhook to a customization project after you have created and tested the webhook.
You perform the steps outlined in this topic to include a webhook in a customization project.

To Add a Webhook to a Project
To add a webhook to a customization project, do the following:

1. Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

2. In the navigation pane, click Webhooks to open the Webhooks page.
3. On the page toolbar, click Add New Record.

4. In the Add Webhooks dialog box, select the webhooks you want to include in the customization
project.

5. Click OK.

The dialog box is closed, and the selected webhooks appear in the table.

https://help-2020r2.acumatica.com/Help?ScreenId=ShowWiki&pageid=40deeeee-fb24-4331-8f59-793fb5c08fb7

| Managing Items in a Project | 284

If you want to make the implementation class of the webhook unavailable for editing in the
instance where the customization project is published, select the Predefined check box, and click
Save. In this instance, an administrative user can still make the webhook inactive and modify the
request history settings.

Save the DLL with the implementation class in the customization project as a File item. For details,
see To Add a Custom File to a Project.

| Customizing Elements of the User Interface | 285

Customizing Elements of the User Interface

You can customize the user interface by creating a new form or by changing the content and layout of
a form that already exists in Acumatica ERP.

This part is intended to describe how to use the visual Screen Editor to develop the ASPX code of a
custom form and modify the ASPX code of an existing form.

The following table lists most of the types of ASPX objects supported in the Acumatica Customization

Platform.

Object

Description

PXDataSource

A data source control that connects to a graph instance on the Acumatica ERP

server, retrieves data from the graph instance, and sends data to the graph in-
stance; it also provides the data processing for the control containers that are

defined in the ASPX page. In Acumatica ERP, a page must contain a single px-
DataSource control.

PXFormView

A data-bound UI container control that renders a single record from its associat-
ed data source.

PXGrid

A data-bound UI container control that renders a table with multiple records
from its associated data source. The object can be displayed in form view mode
for a single record and provides paging buttons that can be used to navigate be-
tween records. To define form view mode, the pPxGrid control must include the
RowTemplate element, which can contain controls for the record fields and lay-
out rules for these controls.

PXGridColumn

In a PxGrid container, an object that defines the data field and properties of a
column in the grid.

RowTemplate

In a PxGrid container, an object that defines a record field and layout for each
control to be rendered in form view mode for the grid.

PXTab

A data-bound UI container control that renders tabs defined by child pxTabItem
containers.

PXTabItem

In a pXTab container, a container control that renders a single record from the
data source specified for the parent pxTab container.

PXSmartPanel

An UI container control that renders a dialog box.

PXLayoutRule

In a container with controls for a single data record, a component that defines a
layout rule used to organize the controls within a row or column.

PXPanel

In a container with controls for a single data record, a container with a caption
used to group controls. In a dialog box, it is often used as a container to display
a horizontal row of buttons with right alignment.

PXGroupBox

In a container with controls for a single data record, a container with a caption
used to group controls. It is designed to be used as a radio button container to
render a drop-down field as a set of radio buttons. It contains scripts with logic
to support a nested radio button for each value of a drop-down field.

| Customizing Elements of the User Interface | 286

Object Description

PXRadioButton In a PXGroupBox container, a radio button that is used for a single constant val-
ue of a drop-down field.

In Acumatica ERP, a radio button can work properly only in a px-
GroupBox container that is used for a drop-down data field.

PXLabel In a container with controls for a single data record, an element to display text.

PXButton In a container with controls for a single data record, an element to display a
button control. In a dialog box, it is usually included in @ PXPanel container.

PXJavaScript In a container with controls for a single data record, a control to keep JavaScript
code.

PXTextEdit In a container with controls for a single data record, a text box to display and
edit the value of a string field.

PXNumberEdit In a container with controls for a single data record, a box to display and edit
the value of a decimal or int field.

PXMaskEdit In a container with controls for a single data record, a text box to display and
edit the value of a string field that has the format specified in the data access
class.

PxXDateTimeEdit In a container with controls for a single data record, a box to display and select
the value of a datetime field.

PXCheckBox In a container with controls for a single data record, a check box to display and
select the value of a boo1 field.

PXDropDown In a container with controls for a single data record, a combo box to display,
edit, and select the value of a field with a list attribute, such as pxStringList,
PXIntList, Or PXDecimallist.

PXSelector In a container with controls for a single data record, a lookup control to display,
search, and select the value of a field with the pxSelector attribute.

PXSegmentMask In a container with controls for a single data record, a lookup control with a
specified segmented key value that identifies a data record and consists of one
segment or multiple segments, with a list of possible values defined for each
segment.

PXTreeSelector In a container with controls for a single data record, a lookup control to select a
value for a field with a PXTreeSelector attribute from a tree control.

When you use the Screen Editor to add a UI element to another UI element on a form, you should
understand the rules that are used for nesting objects in ASPX code for Acumatica ERP forms. The
following diagram shows which ASPX objects can be included in other ASPX objects.

| Customizing Elements of the User Interface | 287

ASPX Page

PXFormView PXGrid PXTab PXSmartPanel

\ A A

RowTemplate PXTabltem

PXFormView PXFormView PXFormView

| | .

PXGrid PXGrid PXGrid
PXTab | PXGridColumn | | PXTab |_ PXTab
PXPanel		PXGroupBox		PXRadioButton		PXLabel		PXButton		PXJavaScript
PXTextEdit		PXNumberEdit		PXMaskEdit		PXDaleTimeEdit				
PXLayoutRule		PXCheckBox		PXDropDown		PXSelector		PXSegmentMa.sk		PXTreeSelector

Figure: Nesting rules for elements of an ASPX page
In the diagram, if an arrow goes from object A to object B, it means that multiple instances of object A
can be included in a single object B. For example, pPxTab can contain multiple pPxTabItem objects.

® The PxGrid object can contain a single RowTemplate object.
e The pxsmartPanel object is used to describe the content of a dialog box.

e A control for a data field (also referred as box)—such as PXTextEdit, PXSelector, and
PXCheckBox—can be included in ASPX objects of the following types:

® PXFormView
® RowTemplate
® PXTablItem

® PXSmartPanel

In This Part
® Custom Form
® Existing Form
® form Container (PXFormView)

® Grid Container (PXGrid)

Tab Container (PXTab)

Tab Item Container (PXTabltem)
Dialog Box (PXSmartPanel)
Box (Control for a Data Field)
Layout Rule (PXLayoutRule)
Panel (PXPanel)

Group Box (PXGroupBox)
Label (PXLabel)

Radio Button (PXRadioButton)
Button (PXButton)

Java Script (PXJavaScript)

Toolbars, Action Buttons, and Menus

Other Control Types

Custom Form

| Customizing Elements of the User Interface | 288

By using the Acumatica Customization Platform, you can develop a custom form from scratch and add
it to a customization project. To create a new form, you have to create the following types of code:

ASPX page that contains a description of the UI elements of the form

CS code that provides the business logic for the form

For each form that works with data from the database, the instance of Acumatica ERP must contain at

least the following objects (see the diagram below):

An ASPX page: The page must contain at least the data source control and a container with

controls for data fields.

A business logic controller (BLC, also referred to as graph): The graph must be specified in the
TypeName property of the data source control of the page. The graph must contain at least one
data view, which is specified in the primaryview property of the data source control and in the
DataMember property of the container. The graph instance is created on each round trip and
initializes the creation of the data view instance based on a BQL statement. The data view provides
data manipulation and data flows between the data source control of the ASPX page, the cache
object of the graph, and the corresponding table of the database. The BQL statement contains

a reference to at least one data access class that is required to map the database table to data

records in the cache object.

A data access class (DAC): On each round trip, the DAC instance is created in the cache object
when the data view processes any operation with the corresponding data.

A table in the database: The table is mapped to the data access class that defines the data record

type in the cache object of the graph instance.

| Customizing Elements of the User Interface | 289

C n
Database = Application - Website
n ||
] u
MyTable o MyGraph graph m MyPage.aspx page
table : :
- = PXDataSource
. o Cache - control
o
u o - u ID = ds nEH
: S S | MyTable EEEEEER MvFIEId EEEEEER #=Feuao Typelame = MyGraph i
L] : DAC field = PrimaryView = MyDV :
[- = 1
L o ™ - i
= . s A S I
MyField . = k| | |
column - = Container '
- : MyDV data view * : !
] " Data - DataSourcelID = ds Ll
. H‘ Methods to manipulate data ‘ : DataMembe: = MyDv
: o ™ u
[| | .
- m BaL ‘ MyTable DAC reference ‘]
- | m u
= o " n
(] - "
| |
| |

Figure: Objects required for a form that works with data from a database table
For a custom form to be enabled in an instance of Acumatica ERP, the site map of the instance must
contain information about the form.

You use the Customization Project Editor to perform operations with custom forms, as described in the
following topics:

® To Develop a Custom Form

® To Create a Custom Form Template

® To Delete a Custom Form from a Project
Related Links

® Changes in Webpages (ASPX)

® Customized Screens

To Develop a Custom Form

To create and develop a custom form within a customization project, you can use the following
approach:

1. Plan the functionality, content, and user interface of the new form.

2. If the custom form requires data from a new table, create the table in the database by using a
database administration tool, such as SQL Server Management Studio. (See To Add a Custom Table to
a Project for details.)

3. Create a workable form template by using the New Screen wizard, as described in To Create a
Custom Form Template.

After you have created a custom form template and published the customization project, you
can develop the form in the same way as you customize an existing form of Acumatica ERP. (See

10.

11.

12,

13.

| Customizing Elements of the User Interface | 290

Existing Form for details.) Because the code templates are added to the App RuntimeCode folder of
the Acumatica ERP website, you can develop the code in Microsoft Visual Studio.

C#: Create data access classes that contain the data field declarations required for the form
controls. (See To Create a Custom Data Access Class for details.)

C#: In the graph template, define BQL statements in data views to manage data fields declared in
data access classes. (See To Add a New Member for details.)

ASPX: If needed, add nested containers to the main containers of the form template. (See To Add
a Nested Container for details.)

C#: For each nested container, in the graph template, define the appropriate data views.

ASPX: For each added container, specify the name of an appropriate data view in the bataMember
property. (See To Set a Container Property for details.)

ASPX: If required, for each added container, specify other properties. (See To Set a Container
Property for details.)

ASPX: Add controls for data fields to each container. (See To Add a Box for a Data Field for details.)
ASPX: Specify properties for controls. (See To Set a Box Property for details.)
C#: Develop business logic for the form in the graph (See Customizing Business Logic for details.)

ASPX: If required, add dialog boxes, as described in To Add a Dialog Box.

We recommend that you use the Screen Editor to create the content of an ASPX page and Visual Studio
to develop the business logic for a page. (See Integrating the Project Editor with Microsoft Visual Studio for
details.)

To Create a Custom Form Template

To create a workable template for a custom form by using the New Screen wizard and include the
template in a customization project, perform the following actions:

1.

Open the customization project in the Customization Project Editor. (See To Open a Project for
details.)

Select the Screens node in the navigation pane of the editor to open the Customized Screens
page.

On the page toolbar, click Add Screen > Create New Screen, as item a in the screenshot below
shows.

In the Create New Screen dialog box, which opens, specify values for input controls as follows
(item b in the screenshot):

a. Screen ID: Enter an ID of a custom form in the XX. **, ** ** format, which consists of the
following parts:

1. Two-letter code of the module in Acumatica ERP

| Customizing Elements of the User Interface | 291

You can use a single unique two-letter code for all custom forms in a solution.
Please check the pages folder of the website in the production environment
to ensure that the code you want to use is not already used in the instance of
Acumatica ERP.

2. Two-digit code indicating the form type:

1.

2.

3.

4.

5.

6.

10:

20:

30:

40:

50:

60:

Setup form
Maintenance form
Data entry form
Inquiry form
Processing form

Report form

3. Two-digit code indicating the form sequential humber

4. Two-digit code indicating the subform sequential number

b. Graph Name: Enter a unique name for the new graph.

c. Graph Namespace: By default, the New Screen wizard specifies the customization project
name as the namespace ID. If you want to change the default ID, enter the ID of an existing
or a new namespace for the new graph.

d. Page Title: Enter the title to be used as the form title in Acumatica ERP.

e. Template: Select one of the following ASPX page templates for the custom form.

Template

Description

Form (FormView) | A record-editing page with one pxFormview container

Grid (GridView) | A record-editing page with one PXGrid container

Tab (TabView) A record-editing page with one pxTab container

FormTab

A record-editing page with PXxFormvView and PxTab containers

FormGrid (For- A master-detail editing page with pPxFormview and PXGrid containers
mbDetail)

tail)

TabGrid (TabDe- | A master-detail page with pxTab and PXGrid containers

f. Site Map Parent: Select a parent site map node to place the form in this location in the site
map of Acumatica ERP.

5. Click OK (item c) to create the new form.

| Customizing Elements of the User Interface | 292

Q Acumatica

File Publish Extension Library Source Control
YogiFon 4 Customized Screens
» SCREENS C L X + ’ ADD SCREEN ~
» DATA ACCESS g screen D Title Customize Existing Screen ed By Last Modified On
v _ ?» AR.30.30.00 Customers Create New Screen 1272212015
Files S0.303000 Invoices 12/22/2015

Generic Inguiries (1)

Reports (1) Create New Screen b4

Site Map (1)
DB Scripts * Screen D YF.40.10.00
System Locales * Graph Name CUDetailsIng
Impert/Export Scenarios (1) * Graph Namespace YogiFon
Shared Filters * Page Title Subscription Usage Details
Access Rights * Template FormGrid (FormDetail) -
Wikis _
* Site Map Parent =

Expl
Web Service Endpoints @ xplore

Analytical Reports @ CANCEL

Figure: Using the New Screen wizard to create the new form

The wizard creates the form template and adds the following items to the customization project.

Item Description

File Contains the Pages\xx\XX******x aspx file with the ASPX code
template that has been selected for the new form. The name of
the file corresponds to the value that is entered in the Screen
ID box. The file is located in the pPages\xx folder of the Acumat-
ica ERP website, where XX is the two-letter code of the screen
1D.

File Contains the Pages\xx\xx****** aspx.cs file with the C# code
for the ASPX page.

Code Contains the code template of the business logic controller
(BLC, also referred to as graph) for the new form. This item is
saved in the database. When you publish the project, the plat-
form creates a copy of the code in the file with the same name
in the App RuntimeCode folder of the Acumatica ERP website.
You can develop the code in Microsoft Visual Studio.

Page Contains the link to the new page content, which you can later
develop by using the Screen Editor.

SiteMapNode Contains the site map object of the new form.

For example, if you enter in the Create New Screen dialog box the values that are displayed in

the screenshot above, the wizard creates code templates for both the CUDetailsIng business logic
controller and the YF401000 page, which contain all the components required for the form template to
work properly (see the following diagram).

| Customizing Elements of the User Interface | 293

Figure: Analyzing the content of the new form template

n
. . - .
Application : Website
o
YogiFon.CUDetailslng : YF401000.aspx
graph o page
o
: PXDataSource
o control
] I
u ID="ds"
s - TypeName="YogiFon.CUDetailsIng"
: PrimaryView="MasterView"
MasterTable MasterView o
dataaccess class data view < : PXFormView
- MasterTable : container
-
DAC reference ¢ - DataSourceID="ds"
: DataMember="MasterView"
DetailsTable DetailsView =
- " PXGrid
data access class data view al
] container
DetailsTable 1 —
- DAC reference <—L DataSourceID="ds"
s DataMember="DetailsView"
]
]
]

You can publish the customization project to ensure that it is valid and the custom form can be
opened in the browser. At the moment, the form does not contain a control for a field, as the following
screenshot shows.

© Yogifon ~ Subscription Usage Details CUSTOMIZATION ~ HELP =

[

Figure: Viewing the new form

| Customizing Elements of the User Interface | 294

To Delete a Custom Form from a Project

To remove a custom form from a customization project, you have to delete all the items that have
been added to the project for the form.

To do this, perform the following actions:

o Delete from the customization project the Page item that was added by the New Screen wizard.
(See To Delete a Page Item from a Project for details.)

o Delete from the project the Code item that was added by the New Screen wizard. (See To Delete a
Code Item From a Project.)

o Delete from the project the <FormID>.aspx and <FormID>.aspx.cs File items that were added by
the New Screen wizard. (For more information, see To Delete a Custom File From a Project.)

o Delete from the project the SiteMapNode item that was added by the New Screen wizard. (See To
Delete a Site Map Node from a Project for details.)

e If you added other items for the custom form, such as items for the mobile site map or custom
files, delete these items.

To delete multiple items from the customization project successively on a single page, you can use the
Edit Project Items page of the Customization Project Editor. (See To Delete Iltems from the Project on the
Edit Project Items Page for details.)

The system applies the changes to the file system as soon as you publish the customization project.

Substitute Form

When a user entered data by using an applicable data entry form, the user may want to have a way to
view a list of these records. The most convenient way is to configure a substitute form of the inquiry
type that will serve as an entry point to the entry form.

With a substitute form, when a user clicks the name of the entry form in the navigation pane, the user
is automatically redirected to the corresponding substitute form that contains the list of these records
in a tabular format. When the user clicks a record, the entry form opens to show the details of the
selected record.

This chapter contains information on the configuration and management of the substitute forms in your
system.

In This Chapter

® Substitutes for Entry Forms

® To Replace an Entry Form with a Custom Form
® To Activate the Replacement of an Entry Form

® To Cancel the Replacement of an Entry Form

| Customizing Elements of the User Interface | 295

Substitutes for Entry Forms

Sometimes you might need a faster way to access particular information in the system—such as

the contacts of a particular vendor or the list of customers. Generally in Acumatica ERP, you can
access such information by opening the corresponding data entry or maintenance form and clicking
the magnifier icon in the appropriate box; the list of records then opens in the pop-up window. This
sequence of events, however, may not give you the information you need quickly enough. The data
entry and maintenance forms are convenient for entering new data, but once you have entered most
data, you may have a greater need to instead view the list of records created on the data entry form.

In Acumatica ERP, you can create a generic inquiry or custom form that presents the data of a data
entry or maintenance form (which is called the entry form in this context) in a tabular format. The
generic inquiry or custom form that you create is called the substitute form in this context. Once you
have created the substitute form, you can replace the entry form with it. Thus, when you click the
name of the entry form in the navigation pane, you will access the substitute form that contains the list
of records. When you click a record name in the list, the entry form (data entry or maintenance) will
open.

Configuring a Generic Inquiry to Be Used as a Substitute Form

To configure a generic inquiry to be used as a substitute form, select the entry form, configure the
list of records to be displayed on the substitute form, and then select the place of the form on the
site map. You use the Generic Inquiry (SM208000) form to configure an inquiry. For an example of
configuring a generic inquiry, see Making a Generic Inquiry a Substitute Form: To Configure an Inquiry as an
Entry Point.

For details on configuring a generic inquiry to b